1
|
Li Y, Zhang X, Guan S, Ma G, Kong Y. Topology-Guided Graph Masked Autoencoder Learning for Population-Based Neurodevelopmental Disorder Diagnosis. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1550-1561. [PMID: 40257873 DOI: 10.1109/tnsre.2025.3562662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Exploring the pathogenic mechanisms of brain disorders within population is an important research in the field of neuroscience. Existing methods either combine clinical information to assist analysis or use data augmentation for sample expansion, ignoring the mining of individual information and the exploration of inter-individual associations in population. To solve these problems, this work proposes a novel approach for detecting abnormal neural circuits associated with brain diseases, named Topology-guided Graph Masked autoencoder Learning method (TGML), which focuses on individual representation and intra-population association, to achieve the effective diagnosis of brain diseases within the population. Concretely, the TGML comprises 1) the topology-guided group association module (T ${G}^{{2}}$ AM) that reconstructs the edges and update the initial population graph, 2) the intra-population interaction masked autoencoder network (IPI_MAE) captures the discriminative characteristics of subjects based on the novel Masked Autoencoder, which incorporates traditional masked autoencoders into a task-related process. The proposed method is evaluated on two neurodevelopmental disorder diagnosis tasks of Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). The results show that the proposed TGML achieves significant improvements and surpasses the state-of-the-art methods.
Collapse
|
2
|
Baboli R, Wu K, Halperin JM, Li X. White Matter Microstructural Abnormalities in Children with Familial vs. Non-Familial Attention-Deficit/Hyperactivity Disorder (ADHD). Biomedicines 2025; 13:676. [PMID: 40149652 PMCID: PMC11940736 DOI: 10.3390/biomedicines13030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent, heterogeneous neurodevelopmental disorder. Methods: This study presents, for the first time, a comprehensive investigation of white matter microstructural differences between familial ADHD (ADHD-F) and non-familial ADHD (ADHD-NF) using advanced diffusion tensor imaging analyses in a large community-based sample. Results: Children with ADHD-F exhibited significantly greater volume in the right anterior thalamic radiations and the left inferior fronto-occipital fasciculus compared to controls, and greater volume in the left inferior longitudinal fasciculus relative to ADHD-NF. The ADHD-NF group showed reduced fractional anisotropy in the left inferior longitudinal fasciculus compared to the controls. In both the ADHD-F and ADHD-NF groups, a greater volume of anterior thalamic radiation significantly contributed to reduced ADHD symptoms. Conclusions: Our findings suggest that white matter microstructural alterations along the frontal-thalamic pathways may play a critical role in hereditary factors among children with ADHD-F and significantly contribute to elevated inattentive and hyperactive/impulsive behaviors in the affected children.
Collapse
Affiliation(s)
- Rahman Baboli
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511436, China
| | - Jeffrey M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Baboli R, Cao M, Martin E, Halperin JM, Wu K, Li X. Distinct structural brain network properties in children with familial versus non-familial attention-deficit/hyperactivity disorder (ADHD). Cortex 2024; 179:1-13. [PMID: 39089096 PMCID: PMC11401761 DOI: 10.1016/j.cortex.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 06/17/2024] [Indexed: 08/03/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is among the most prevalent, inheritable, and heterogeneous childhood-onset neurodevelopmental disorders. Children with a hereditary background of ADHD have heightened risk of having ADHD and persistent impairment symptoms into adulthood. These facts suggest distinct familial-specific neuropathological substrates in ADHD that may exist in anatomical components subserving attention and cognitive control processing pathways during development. The objective of this study is to investigate the topological properties of the gray matter (GM) structural brain networks in children with familial ADHD (ADHD-F), non-familial ADHD (ADHD-NF), as well as matched controls. A total of 452 participants were involved, including 132, 165 and 155 in groups of ADHD-F, ADHD-NF and typically developed children, respectively. The GM structural brain network was constructed for each group using graph theoretical techniques with cortical and subcortical structures as nodes and correlations between volume of each pair of the nodes within each group as edges, while controlled for confounding factors using regression analysis. Relative to controls, children in both ADHD-F and ADHD-NF groups showed significantly higher nodal global and nodal local efficiencies in the left caudal middle frontal gyrus. Compared to controls and ADHD-NF, children with ADHD-F showed distinct structural network topological patterns associated with right precuneus (significantly higher nodal global efficiency and significantly higher nodal strength), left paracentral gyrus (significantly higher nodal strength and trend toward significantly higher nodal local efficiency) and left putamen (significantly higher nodal global efficiency and trend toward significantly higher nodal local efficiency). Our results for the first time in the field provide evidence of familial-specific structural brain network alterations in ADHD, that may contribute to distinct clinical/behavioral symptomology and developmental trajectories in children with ADHD-F.
Collapse
Affiliation(s)
- Rahman Baboli
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA; Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA
| | - Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA; Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA
| | - Elizabeth Martin
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Jeffrey M Halperin
- Department of Psychology, Queens College, City University of New York, NY, USA
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA; Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ, USA.
| |
Collapse
|
4
|
Li X, Motwani C, Cao M, Martin E, Halperin JM. Working Memory-Related Neurofunctional Correlates Associated with the Frontal Lobe in Children with Familial vs. Non-Familial Attention Deficit/Hyperactivity Disorder. Brain Sci 2023; 13:1469. [PMID: 37891836 PMCID: PMC10605263 DOI: 10.3390/brainsci13101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high prevalence, heritability, and heterogeneity. Children with a positive family history of ADHD have a heightened risk of ADHD emergence, persistence, and executive function deficits, with the neural mechanisms having been under investigated. The objective of this study was to investigate working memory-related functional brain activation patterns in children with ADHD (with vs. without positive family histories (ADHD-F vs. ADHD-NF)) and matched typically developing children (TDC). Voxel-based and region of interest analyses were conducted on two-back task-based fMRI data of 362 subjects, including 186, 96, and 80 children in groups of TDC, ADHD-NF, and ADHD-F, respectively. Relative to TDC, both ADHD groups had significantly reduced activation in the left inferior frontal gyrus (IFG). And the ADHD-F group demonstrated a significant positive association of left IFG activation with task reaction time, a negative association of the right IFG with ADHD symptomatology, and a negative association of the IFG activation laterality index with the inattention symptom score. These results suggest that working memory-related functional alterations in bilateral IFGs may play distinct roles in ADHD-F, with the functional underdevelopment of the left IFG significantly informing the onset of ADHD symptoms. Our findings have the potential to assist in tailored diagnoses and targeted interventions in children with ADHD-F.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Chirag Motwani
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Elizabeth Martin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA;
| |
Collapse
|
5
|
Volnova A, Kurzina N, Belskaya A, Gromova A, Pelevin A, Ptukha M, Fesenko Z, Ignashchenkova A, Gainetdinov RR. Noradrenergic Modulation of Learned and Innate Behaviors in Dopamine Transporter Knockout Rats by Guanfacine. Biomedicines 2023; 11:222. [PMID: 36672730 PMCID: PMC9856099 DOI: 10.3390/biomedicines11010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.
Collapse
Affiliation(s)
- Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arina Gromova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arseniy Pelevin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg 199034, Russia
| |
Collapse
|