1
|
Christidi F, Kleinerova J, Tan EL, Delaney S, Tacheva A, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Siah WF, Chang KM, Lope J, Bede P. Limbic Network and Papez Circuit Involvement in ALS: Imaging and Clinical Profiles in GGGGCC Hexanucleotide Carriers in C9orf72 and C9orf72-Negative Patients. BIOLOGY 2024; 13:504. [PMID: 39056697 PMCID: PMC11273537 DOI: 10.3390/biology13070504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Background: While frontotemporal involvement is increasingly recognized in Amyotrophic lateral sclerosis (ALS), the degeneration of limbic networks remains poorly characterized, despite growing evidence of amnestic deficits, impaired emotional processing and deficits in social cognition. Methods: A prospective neuroimaging study was conducted with 204 individuals with ALS and 111 healthy controls. Patients were stratified for hexanucleotide expansion status in C9orf72. A deep-learning-based segmentation approach was implemented to segment the nucleus accumbens, hypothalamus, fornix, mammillary body, basal forebrain and septal nuclei. The cortical, subcortical and white matter components of the Papez circuit were also systematically evaluated. Results: Hexanucleotide repeat expansion carriers exhibited bilateral amygdala, hypothalamus and nucleus accumbens atrophy, and C9orf72 negative patients showed bilateral basal forebrain volume reductions compared to controls. Both patient groups showed left rostral anterior cingulate atrophy, left entorhinal cortex thinning and cingulum and fornix alterations, irrespective of the genotype. Fornix, cingulum, posterior cingulate, nucleus accumbens, amygdala and hypothalamus degeneration was more marked in C9orf72-positive ALS patients. Conclusions: Our results highlighted that mesial temporal and parasagittal subcortical degeneration is not unique to C9orf72 carriers. Our radiological findings were consistent with neuropsychological observations and highlighted the importance of comprehensive neuropsychological testing in ALS, irrespective of the underlying genotype.
Collapse
Affiliation(s)
- Foteini Christidi
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Siobhan Delaney
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | | | - Mark A. Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
2
|
Mohammadi S, Ghaderi S, Fatehi F. MRI biomarkers and neuropsychological assessments of hippocampal and parahippocampal regions affected by ALS: A systematic review. CNS Neurosci Ther 2024; 30:e14578. [PMID: 38334254 PMCID: PMC10853901 DOI: 10.1111/cns.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a progressive motor and extra-motor neurodegenerative disease. This systematic review aimed to examine MRI biomarkers and neuropsychological assessments of the hippocampal and parahippocampal regions in patients with ALS. METHODS A systematic review was conducted in the Scopus and PubMed databases for studies published between January 2000 and July 2023. The inclusion criteria were (1) MRI studies to assess hippocampal and parahippocampal regions in ALS patients, and (2) studies reporting neuropsychological data in patients with ALS. RESULTS A total of 46 studies were included. Structural MRI revealed hippocampal atrophy, especially in ALS-FTD, involving specific subregions (CA1, dentate gyrus). Disease progression and genetic factors impacted atrophy patterns. Diffusion tensor imaging (DTI) showed increased mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and decreased fractional anisotropy (FA) in the hippocampal tracts and adjacent regions, indicating loss of neuronal and white matter integrity. Functional MRI (fMRI) revealed reduced functional connectivity (FC) between the hippocampus, parahippocampus, and other regions, suggesting disrupted networks. Perfusion MRI showed hypoperfusion in parahippocampal gyri. Magnetic resonance spectroscopy (MRS) found changes in the hippocampus, indicating neuronal loss. Neuropsychological tests showed associations between poorer memory and hippocampal atrophy or connectivity changes. CA1-2, dentate gyrus, and fimbria atrophy were correlated with worse memory. CONCLUSIONS The hippocampus and the connected regions are involved in ALS. Hippocampal atrophy disrupted connectivity and metabolite changes correlate with cognitive and functional decline. Specific subregions can be particularly affected. The hippocampus is a potential biomarker for disease monitoring and prognosis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Medical Sciences, School of MedicineIran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Jellinger KA. The Spectrum of Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: An Update. Int J Mol Sci 2023; 24:14647. [PMID: 37834094 PMCID: PMC10572320 DOI: 10.3390/ijms241914647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|