1
|
Karimi F, Steiner M, Newton T, Lloyd BA, Cassara AM, de Fontenay P, Farcito S, Paul Triebkorn J, Beanato E, Wang H, Iavarone E, Hummel FC, Kuster N, Jirsa V, Neufeld E. Precision non-invasive brain stimulation: an in silicopipeline for personalized control of brain dynamics. J Neural Eng 2025; 22:026061. [PMID: 39978066 PMCID: PMC12047647 DOI: 10.1088/1741-2552/adb88f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Objective.Non-invasive brain stimulation (NIBS) offers therapeutic benefits for various brain disorders. Personalization may enhance these benefits by optimizing stimulation parameters for individual subjects.Approach.We present a computational pipeline for simulating and assessing the effects of NIBS using personalized, large-scale brain network activity models. Using structural MRI and diffusion-weighted imaging data, the pipeline leverages a convolutional neural network-based segmentation algorithm to generate subject-specific head models with up to 40 tissue types and personalized dielectric properties. We integrate electromagnetic simulations of NIBS exposure with whole-brain network models to predict NIBS-dependent perturbations in brain dynamics, simulate the resulting EEG traces, and quantify metrics of brain dynamics.Main results.The pipeline is implemented on o2S2PARC, an open, cloud-based infrastructure designed for collaborative and reproducible computational life science. Furthermore, a dedicated planning tool provides guidance for optimizing electrode placements for transcranial temporal interference stimulation. In two proof-of-concept applications, we demonstrate that: (i) transcranial alternating current stimulation produces expected shifts in the EEG spectral response, and (ii) simulated baseline network activity exhibits physiologically plausible fluctuations in inter-hemispheric synchronization.Significance.This pipeline facilitates a shift from exposure-based to response-driven optimization of NIBS, supporting new stimulation paradigms that steer brain dynamics towards desired activity patterns in a controlled manner.
Collapse
Affiliation(s)
- Fariba Karimi
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Taylor Newton
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Bryn A Lloyd
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Antonino M Cassara
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Paul de Fontenay
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Silvia Farcito
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | | | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL) Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Huifang Wang
- Institut de Neurosciences des Systémes, Marseille, France
| | - Elisabetta Iavarone
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL) Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Viktor Jirsa
- Institut de Neurosciences des Systémes, Marseille, France
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| |
Collapse
|
2
|
Han L, Dong L, Liu H, Wang H, Shi R, Hao Y. Transcranial Magnetic Stimulation Combined with Auricular Point Pressure Bean on Emotional Disorders in Elderly Patients after Intracerebral Hemorrhage Surgery: A Retrospective Cohort Study. ALPHA PSYCHIATRY 2024; 25:541-547. [PMID: 39360302 PMCID: PMC11443290 DOI: 10.5152/alphapsychiatry.2024.231498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/07/2024] [Indexed: 10/04/2024]
Abstract
Objective To investigate whether the combination of repetitive transcranial magnetic stimulation (rTMS) and auricular point pressure bean could effectively ameliorate postoperative affective disorder in elderly patients suffering from cerebral hemorrhage. Methods From June 2020 to September 2023, 116 elderly patients with depression after cerebral hemorrhage, who underwent surgical procedures were divided into the exposure group and the control group. The division was determined based on whether received rTMS and traditional Chinese medicine auricular point pressure bean therapy. Hamilton anxiety scale (HAMA), Hamilton Depression scale (HAMD), National Institutes of Health Stroke scale (NIHSS), Montreal Cognitive Assessment scale (MoCA) and Mini Mental State examination scale (MMSE) were collected and compared between before intervention and after intervention. Results In accordance with a 1 : 1 matching ratio, the patients in the study were paired using propensity score matching (PSM), with 53 patients in both the exposure group and the control group. There were no notable differences in baseline characteristics between the 2 groups (P > .05). Following the intervention, the HAMA score and the NIHSS score of the exposure group were markedly lower than those of the control group (P < .001). Additionally, theMoCA scores (P = .001) and MMSE scores (P < .001) in the exposure group were significantlyhigher. The difference score have a significant difference in HAMA score (P = .001), NIHSS score (P < .001), MoCA (P < .001) and MMSE scores (P < .001). Conclusion The combination of rTMS therapy and auricular point pressure bean therapy in traditional Chinese medicine demonstrates can effectively relieve the anxiety level, postoperative emotional and cognitive disorders of elderly patients after intracerebral hemorrhage, and provide certain ideas and support for clinical treatment.
Collapse
Affiliation(s)
- Limin Han
- Department of Neurosurgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei, China
| | - Lisha Dong
- Department of Neurosurgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei, China
| | - Huimin Liu
- Department of Neurosurgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei, China
| | - Huifang Wang
- Department of Neurosurgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei, China
| | - Ruolin Shi
- Department of Neurosurgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei, China
| | - Yajie Hao
- Department of Neurosurgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei, China
| |
Collapse
|
3
|
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J Pers Med 2024; 14:675. [PMID: 39063929 PMCID: PMC11277881 DOI: 10.3390/jpm14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Francesca Santoro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Marco Monticone
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
4
|
Mannarelli D, Pauletti C, Missori P, Trompetto C, Cotellessa F, Fattapposta F, Currà A. Cerebellum's Contribution to Attention, Executive Functions and Timing: Psychophysiological Evidence from Event-Related Potentials. Brain Sci 2023; 13:1683. [PMID: 38137131 PMCID: PMC10741792 DOI: 10.3390/brainsci13121683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Since 1998, when Schmahmann first proposed the concept of the "cognitive affective syndrome" that linked cerebellar damage to cognitive and emotional impairments, a substantial body of literature has emerged. Anatomical, neurophysiological, and functional neuroimaging data suggest that the cerebellum contributes to cognitive functions through specific cerebral-cerebellar connections organized in a series of parallel loops. The aim of this paper is to review the current findings on the involvement of the cerebellum in selective cognitive functions, using a psychophysiological perspective with event-related potentials (ERPs), alone or in combination with non-invasive brain stimulation techniques. ERPs represent a very informative method of monitoring cognitive functioning online and have the potential to serve as valuable biomarkers of brain dysfunction that is undetected by other traditional clinical tools. This review will focus on the data on attention, executive functions, and time processing obtained in healthy subjects and patients with varying clinical conditions, thus confirming the role of ERPs in understanding the role of the cerebellum in cognition and exploring the potential diagnostic and therapeutic implications of ERP-based assessments in patients.
Collapse
Affiliation(s)
- Daniela Mannarelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (D.M.); (C.P.); (P.M.); (F.F.)
| | - Caterina Pauletti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (D.M.); (C.P.); (P.M.); (F.F.)
| | - Paolo Missori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (D.M.); (C.P.); (P.M.); (F.F.)
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (C.T.); (F.C.)
- IRCCS Ospedale Policlinico San Martino, Division of Neurorehabilitation, Department of Neuroscience, 16132 Genoa, Italy
| | - Filippo Cotellessa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (C.T.); (F.C.)
| | - Francesco Fattapposta
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (D.M.); (C.P.); (P.M.); (F.F.)
| | - Antonio Currà
- Academic Neurology Unit, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04019 Terracina, Italy
| |
Collapse
|