1
|
Al-Zamil M, Kulikova NG, Minenko IA, Shurygina IP, Petrova MM, Mansur N, Kuliev RR, Blinova VV, Khripunova OV, Shnayder NA. Comparative Analysis of High-Frequency and Low-Frequency Transcutaneous Electrical Stimulation of the Right Median Nerve in the Regression of Clinical and Neurophysiological Manifestations of Generalized Anxiety Disorder. J Clin Med 2024; 13:3026. [PMID: 38892737 PMCID: PMC11172620 DOI: 10.3390/jcm13113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: The anxiolytic effect of transcutaneous electrical nerve stimulation (TENS) is associated with the activation of endogenous inhibitory mechanisms in the central nervous system. Both low-frequency, high-amplitude TENS (LF-TENS) and high-frequency, low-amplitude TENS (HF-TENS) are capable of activating opioid, GABA, serotonin, muscarinic, and cannabinoid receptors. However, there has been no comparative analysis of the effectiveness of HF-TENS and LF-TENS in the treatment of GAD. The purpose of our research was to study the effectiveness of direct HF-TENS and LF-TENS of the right median nerve in the treatment of patients with GAD compared with sham TENS. Methods: The effectiveness of direct HF-TENS and LF-TENS of the right median nerve in the treatment of GAD was studied using Generalized Anxiety Disorder 7-item scale (GAD-7) and the Hamilton Anxiety Rating Scale (HAM-A). 40 patients underwent sham TENS, 40 patients passed HF-TENS (50 Hz-50 μs-sensory response) and 41 patients completed LF -TENS (1 Hz-200 μs-motor response) for 30 days daily. After completion of treatment, half of the patients received weekly maintenance therapy for 6 months. Electroencephalography was performed before and after treatment. Results: Our study showed that a significant reduction in the clinical symptoms of GAD as assessed by GAD-7 and HAM-A was observed after HF-TENS and LF-TENS by an average of 42.4%, and after sham stimulation only by 13.5% for at least 2 months after the end of treatment. However, LF-TENS turned out to be superior in effectiveness to HF-TENS by 51% and only on electroencephalography leads to an increase in PSD for the alpha rhythm in the occipital regions by 24% and a decrease in PSD for the beta I rhythm in the temporal and frontal regions by 28%. The prolonged effect of HF-TENS and LF-TENS was maintained without negative dynamics when TENS treatment was continued weekly throughout the entire six-month observation period. Conclusions: A prolonged anxiolytic effect of direct TENS of the right median nerve has been proven with greater regression of clinical and neurophysiological manifestations of GAD after LF-TENS compared to HF-TENS. Minimal side effects, low cost, safety, and simplicity of TENS procedures are appropriate as a home treatment modality.
Collapse
Affiliation(s)
- Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.); (V.V.B.)
| | - Natalia G. Kulikova
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.); (V.V.B.)
- Department of Sports Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (I.A.M.); (O.V.K.)
| | - Inessa A. Minenko
- Department of Sports Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (I.A.M.); (O.V.K.)
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
| | - Irina P. Shurygina
- Department of Ophthalmology, Rostov State Medical University, 344022 Rostov, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
| | - Numman Mansur
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.); (V.V.B.)
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
- City Clinical Hospital Named after V. V. Vinogradov, 117292 Moscow, Russia
| | - Rufat R. Kuliev
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
| | - Vasilissa V. Blinova
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.); (V.V.B.)
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
| | - Olga V. Khripunova
- Department of Sports Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (I.A.M.); (O.V.K.)
| | - Natalia A. Shnayder
- Shared Core Facilities “Molecular and Cell Technologies”, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| |
Collapse
|
2
|
Huang M, Ma G, Zou Y, Ma H, Fan W, Li X, Zhu L, Han P, Wang H, Shi H. A potential brain functional biomarker distinguishing patients with Crohn's disease with different disease stages: a resting-state fMRI study. Front Neurosci 2024; 18:1361320. [PMID: 38500485 PMCID: PMC10945013 DOI: 10.3389/fnins.2024.1361320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Background The previous studies have demonstrated that patients with Crohn's disease in remission (CD-R) have abnormal alterations in brain function. However, whether brain function changes in patients with Crohn's disease in activity (CD-A) and the relationship with CD-R are still unclear. In this study, we aimed to investigate whether the different levels of disease activity may differentially affect the brain function and to find the brain functional biomarker distinguishing patients with different disease stages by measuring the amplitude of low frequency fluctuations (ALFF). Methods 121 patients with CD and 91 healthy controls (HCs) were recruited. The clinical and psychological assessment of participants were collected. The criteria for the disease activity were the Crohn's disease activity index (CDAI) scores. CD-R refers to CD patients in remission which the CDAI score is less than 150. Conversely, CD-A refers to CD patients in activity which the CDAI score is ≥150. The ALFF was compared among three groups by performing one-way analysis of variance, followed by a post hoc two-sample t-test. Differences among the groups were selected as seeds for functional connectivity analyses. We also investigated the correlation among clinical, psychological scores and ALFF. Binary logistic regression analysis was used to examine the unique contribution of the ALFF characteristics of the disease stages. Results There were widespread differences of ALFF values among the 3 groups, which included left frontal pole (FP_L), right supramarginal gyrus (SG_R), left angular gyrus (AG_L), right cingulate gyrus (CG_R), right intracalcarine cortex (IC_R), right parahippocampal gyrus (PG_R), right lingual gyrus (LG_R), right precuneous cortex (PC_R), left occipital fusiform gyrus (OFG_L). Significant brain regions showing the functional connections (FC) increased in FP_L, SG_R, PC_R and OFG_L between CD-A and HCs. The erythrocyte sedimentation rate had a negative correlation with the ALFF values in PC_R in the patients with CD. The phobic anxiety values had a negative correlation with the ALFF values in OFG_L. The psychoticism values had a negative correlation with ALFF values in the IC_R. And the hostility values had a positive correlation with the ALFF values in CG_R. Significant brain regions showing the FC increased in FP_L, SG_R, CG_R, PG_R, LG_R and OFG_L between CD-R and HCs. In binary logistic regression models, the LG_R (beta = 5.138, p = 0.031), PC_R (beta = 1.876, p = 0.002) and OFG_L (beta = 3.937, p = 0.044) was disease stages predictors. Conclusion The results indicated the significance of the altered brain activity in the different disease stages of CD. Therefore, these findings present a potential identify neuroimaging-based brain functional biomarker in CD. Additionally, the study provides a better understanding of the pathophysiology of CD.
Collapse
Affiliation(s)
- Mengting Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Guina Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hui Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Huan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|