1
|
Wang Z, Huang C, Shi Z, Liu H, Han X, Chen Z, Li S, Wang Z, Huang J. Coaxial bioprinting of a three-layer vascular structure exhibiting blood-brain barrier function for neuroprotective drug screening. Colloids Surf B Biointerfaces 2025; 249:114494. [PMID: 39787741 DOI: 10.1016/j.colsurfb.2025.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
The in vitro blood-brain barrier (BBB) structures can offer advantages for studying cerebrovascular functions and developing neuroprotective drugs. However, currently developed BBB models are overly simplistic and inadequate for replicating the complex three-dimensional architecture of the in vivo BBB. In this study, a method is introduced for fabricating a three-layer vascular structure exhibiting BBB function using a coaxial extrusion bioprinting technique with a two-layer nozzle. Photocurable materials were incorporated into the inner layer of the coaxial nozzle, and photoinitiators from the outer layer diffused into the inner layer. As a result, only the materials in the inner layer at the interface between the inner and outer layers underwent crosslinking upon UV exposure. After removing the uncrosslinked materials, a two-layer vascular structure can be formed. Subsequently, a three-layer structure was established after seeding endothelial cells. The perfusion experiments demonstrated that the vascular structure facilitated the continuous flow of culture medium, thereby providing nutrients and oxygen to the surrounding neural tissue. The drug screening analysis indicated that this vascular structure could possess barrier function, allowing the passage of small molecular drugs while effectively blocking macromolecular drugs. Overall, these results suggest that the three-layer vascular structure exhibits excellent perfusion capacity and barrier function, making it a promising candidate for neuroprotective drug screening.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Zhenyu Shi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
2
|
Reginensi D, Ortiz DA, Denis B, Castillo S, Burillo A, Khoury N, Xu J, Dam ML, Escobar AAH, Dave KR, Perez-Pinzon MA, Gittens RA. Region-specific brain decellularized extracellular matrix promotes cell recovery in an in vitro model of stroke. Sci Rep 2025; 15:11921. [PMID: 40195414 PMCID: PMC11976941 DOI: 10.1038/s41598-025-95656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Brain decellularized extracellular matrix (ECM) can be an attractive scaffold capable of mimicking the native ecosystem of the central nervous system tissue. We studied the in vitro response of neural cultures exposed to region-specific brain decellularized ECM scaffolds from three distinct neuroanatomical sections: cortex, cerebellum and remaining areas. First, each brain region was evaluated with the isotropic fractionator method to understand the cellular composition of the different cerebral areas. Second, the cerebral regions were subjected to the decellularization process and their respective characterization using molecular, histological, and ultrastructural techniques. Third, the levels of neurotrophic factors in the decellularized brain scaffold were analyzed. Fourth, we studied the region-specific brain decellularized ECM as a mimetic platform for the maturation of PC12 cells, as a unidirectional model of differentiation. Finally, in vitro studies were carried out to evaluate the cell recovery capacity of brain decellularized ECM under stroke-mimetic conditions. Our results show that region-specific brain decellularized ECM can serve as a biomimetic scaffold capable of promoting the growth of neural lineage cells and, in addition, it possesses a combination of structural and biochemical signals (e.g., neurotrophic factors) that are capable of inducing cell phenotypic changes and promote viability and cell recovery in a stroke/ischemia model in vitro.
Collapse
Affiliation(s)
- Diego Reginensi
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
- Advanced Therapies, School of Medicine, Universidad de Panamá (UP), Panama, Panama
- Tissue Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Américas (UDELAS), Panama, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama, Panama
- Sistema Nacional de Investigación (SNI-SENACYT), Panama, Panama
| | - Didio Alberto Ortiz
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
| | - Bernardino Denis
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
- Sistema Nacional de Investigación (SNI-SENACYT), Panama, Panama
- MD-PhD Program in Clinical and Biomedical Research, School of Medicine, UP, Panama, Panama
| | - Solangel Castillo
- Advanced Therapies, School of Medicine, Universidad de Panamá (UP), Panama, Panama
- Tissue Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Américas (UDELAS), Panama, Panama
| | - Andrea Burillo
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
| | - Nathalie Khoury
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Neurology Department, The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jing Xu
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Neurology Department, The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria Lucia Dam
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
| | - Anthony A Hurtado Escobar
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama, Panama
| | - Kunjan R Dave
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Neurology Department, The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Neurology Department, The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rolando A Gittens
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama.
- Sistema Nacional de Investigación (SNI-SENACYT), Panama, Panama.
- MD-PhD Program in Clinical and Biomedical Research, School of Medicine, UP, Panama, Panama.
- Instituto Técnico Superior Especializado (ITSE), Ave. Domingo Diaz, Tocumen Panama, Republic of Panama.
- Centro de Investigación e Innovación Educativa, Ciencia y Tecnología (CiiECYT-AIP), Panama, Panama.
| |
Collapse
|
3
|
Bansal R, Singh R, Dutta TS, Dar ZA, Bajpai A. Indanone: a promising scaffold for new drug discovery against neurodegenerative disorders. Drug Discov Today 2024; 29:104063. [PMID: 38901670 DOI: 10.1016/j.drudis.2024.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Indanone is a versatile scaffold that has a number of pharmacological properties. The successful development and ensuing approval of indanone-derived donepezil as a drug of choice for Alzheimer's disease attracted significant scientific interest in this moiety. Indanones could act as small molecule chemical probes as they have strong affinity towards several critical enzymes associated with the pathophysiology of various neurological disorders. Inhibition of these enzymes elevates the levels of neuroprotective brain chemicals such as norepinephrine, serotonin and dopamine. Further, indanone derivatives are capable of modulating the activities of both monoamine oxidases (MAO-A and -B) and acetylcholinesterase (AChE), and thus could be useful in various neurodegenerative diseases. This review article presents a panoramic view of the research carried out on the indanone nucleus in the development of potential neuroprotective agents.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Tuhin Shubra Dutta
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Zahid Ahmad Dar
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Ankit Bajpai
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
4
|
Capossela L, Gatto A, Ferretti S, Di Sarno L, Graglia B, Massese M, Soligo M, Chiaretti A. Multifaceted Roles of Nerve Growth Factor: A Comprehensive Review with a Special Insight into Pediatric Perspectives. BIOLOGY 2024; 13:546. [PMID: 39056738 PMCID: PMC11273967 DOI: 10.3390/biology13070546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Nerve growth factor (NGF) is a neurotrophic peptide largely revealed for its ability to regulate the growth and survival of peripheral sensory, sympathetic, and central cholinergic neurons. The pro-survival and regenerative properties of neurotrophic factors propose a therapeutic potential in a wide range of brain diseases, and NGF, in particular, has appeared as an encouraging potential treatment. In this review, a summary of clinical studies regarding NGF and its therapeutic effects published to date, with a specific interest in the pediatric context, will be attempted. NGF has been studied in neurological disorders such as hypoxic-ischemic encephalopathy, traumatic brain injury, neurobehavioral and neurodevelopmental diseases, congenital malformations, cerebral infections, and in oncological and ocular diseases. The potential of NGF to support neuronal survival, repair, and plasticity in these contexts is highlighted. Emerging therapeutic strategies for NGF delivery, including intranasal administration as well as advanced nanotechnology-based methods, are discussed. These techniques aim to enhance NGF bioavailability and target specificity, optimizing therapeutic outcomes while minimizing systemic side effects. By synthesizing current research, this review underscores the promise and challenges of NGF-based therapies in pediatric neurology, advocating for continued innovation in delivery methods to fully harness NGF's therapeutic potential.
Collapse
Affiliation(s)
- Lavinia Capossela
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Antonio Gatto
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.G.); (M.M.)
| | - Serena Ferretti
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Lorenzo Di Sarno
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Benedetta Graglia
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| | - Miriam Massese
- Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.G.); (M.M.)
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy;
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.F.); (L.D.S.); (B.G.); (A.C.)
| |
Collapse
|
5
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
6
|
Bianchi F, Cocilovo FM, Ruggiero A, Tamburrini G. Optic Pathway Gliomas: The Trends of Basic Research to Reduce the Impact of the Disease on Visual Function. Adv Tech Stand Neurosurg 2023; 48:123-137. [PMID: 37770684 DOI: 10.1007/978-3-031-36785-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Pediatric optic pathway gliomas (OPG) are low-grade brain tumors characterized by slow progression and invalidating visual loss. Common therapeutic strategies include surgery, radiotherapy, chemotherapy, and combinations of these modalities, but despite the different treatment strategies, no actual treatment exists to prevent or revert visual impairment. Nowadays, several reports of the literature show promising results regarding NGF eye drop instillation and improvement of visual outcome. Such results seem to be related with the NGF-linked prevention in caspase activation, which reduces retinal ganglion cell loss.Reducing retinal ganglion cell loss results clinically in visual field improvement as well as visual electric potential and optical coherence tomography gain. Nonetheless, visual acuity fails to show significant changes.Visual impairment represents nowadays one of the major issues in dealing with OPGs. Secondary to the interesting results offered by NGF eye drop administration, further studies are warranted to better comprehend potential treatment strategies.
Collapse
Affiliation(s)
| | | | - Antonio Ruggiero
- Fondazione Policlinico Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Milan, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
7
|
Li JT, Dong SQ, Qian T, Yang WB, Chen XJ. Mouse Nerve Growth Factor Injection and Progression Rate in Patients With Amyotrophic Lateral Sclerosis: An Observational Study. Front Neurol 2022; 13:829569. [PMID: 35250834 PMCID: PMC8891443 DOI: 10.3389/fneur.2022.829569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease with no curative treatment up to now. This study aims to analyze ALS progression of patients treated with mouse nerve growth factor (mNGF), as well as the effects, side effects, and adverse events of the therapy. Materials and Methods A retrospective, observational study was performed including 94 patients with ALS from July 2020 to July 2021. Thirty-two of them were treated with at least one course of mNGF on a regular riluzole use, and the rest 62 were treated with riluzole only. The declining rates of body mass index (BMI) and ALS Functional Rating Scale-Revised (ALSFRS-R) scores were compared between the two groups to indicate ALS progression. Results No significant differences in ALS progression indicated by the declining rates of BMI and ALSFRS-R score were observed between the two cohorts. ALS progression before and after the first treatment course of mNGF also showed no discernible difference. However, we noticed a moderate 62.7 and 25.1% reduction in the declining rate of BMI and ALSFRS-R motor subscore when comparing mNGF + riluzole treatment to riluzole only. The mNGF treatment was overall safe and well-tolerated, and a rare case of diarrhea was reported after mNGF injection. Conclusions Our study revealed that mNGF treatment was overall safe and well-tolerated in patients of ALS. Application of mNGF combined with regular riluzole treatment had no significant clinical effects on delaying ALS progression. Prospective cohort studies and randomized clinical trials based on larger cohorts and longer follow-up times are needed to make a more convincing conclusion.
Collapse
Affiliation(s)
- Jia-Tong Li
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Si-Qi Dong
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Ting Qian
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Bo Yang
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Xiang-Jun Chen
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- *Correspondence: Xiang-Jun Chen ; orcid.org/0000-0002-8108-9013
| |
Collapse
|
8
|
Effect of expansion of human umbilical cord blood CD34 + cells on neurotrophic and angiogenic factor expression and function. Cell Tissue Res 2022; 388:117-132. [PMID: 35106623 PMCID: PMC8976778 DOI: 10.1007/s00441-022-03592-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
The use of CD34 + cell-based therapies has largely been focused on haematological conditions. However, there is increasing evidence that umbilical cord blood (UCB) CD34 + -derived cells have neuroregenerative properties. Due to low cell numbers of CD34 + cells present in UCB, expansion is required to produce sufficient cells for therapeutic purposes, especially in adults or when frequent applications are required. However, it is not known whether expansion of CD34 + cells has an impact on their function and neuroregenerative capacity. We addressed this knowledge gap in this study, via expansion of UCB-derived CD34 + cells using combinations of LDL, UM171 and SR-1 to yield large numbers of cells and then tested their functionality. CD34 + cells expanded for 14 days in media containing UM171 and SR-1 resulted in over 1000-fold expansion. The expanded cells showed an up-regulation of the neurotrophic factor genes BDNF, GDNF, NTF-3 and NTF-4, as well as the angiogenic factors VEGF and ANG. In vitro functionality testing showed that these expanded cells promoted angiogenesis and, in brain glial cells, promoted cell proliferation and reduced production of reactive oxygen species (ROS) during oxidative stress. Collectively, this study showed that our 14-day expansion protocol provided a robust expansion that could produce enough cells for therapeutic purposes. These expanded cells, when tested in in vitro, maintained functionality as demonstrated through promotion of cell proliferation, attenuation of ROS production caused by oxidative stress and promotion of angiogenesis.
Collapse
|
9
|
Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury. Childs Nerv Syst 2022; 38:1717-1726. [PMID: 35680685 PMCID: PMC9463308 DOI: 10.1007/s00381-022-05579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Impaired cerebral blood flow is a first-line reason of ischemic-hypoxic brain injury in children. The principal goal of intensive care management is to detect and prevent further cerebral blood flow deficits. This can be achieved by actively managing cerebral perfusion pressure (CPP) using input from cerebrovascular autoregulation (CAR). The main objective of the current study was to investigate CAR after cardiac arrest in children. METHODS Nineteen consecutive children younger than 18 years after cardiopulmonary resuscitation, in whom intracranial pressure (ICP) was continuously measured, were included. Blood pressure and ICP were continuously monitored via ICM + software and actively managed using the pressure reactivity index (PRx) to achieve and maintain an optimal CPP. Outcome was scored using the extended Glasgow outcome scale (eGOS) at discharge and 6 months. RESULTS Eight children died in hospital. At 6 months, further 4 children had an unfavorable (eGOS1-4) and 7 a favorable (eGOS5-8) outcome. Over the entire monitoring period, we found an elevated ICP (24.5 vs 7.4 mmHg), a lower CPP (50.3 vs 66.2 mmHg) and a higher PRx (0.24 vs - 0.01), indicating impaired CAR, in patients with unfavorable outcome. The dose of impaired autoregulation was significantly higher in unfavorable outcome (54.6 vs 29.3%). Analyzing only the first 72 h after cardiac arrest, ICP ≥ 10 mmHg and PRx > 0.2 correlated to unfavorable outcome. CONCLUSIONS Significant doses of impaired CAR within 72 h after resuscitation are associated with unfavorable outcome. The inability to restore autoregulation despite active attempts to do so as well as an elevated ICP may serve as a bad prognostic sign indicating a severe initial hypoxic-ischemic brain injury.
Collapse
|
10
|
Manni L, Conti G, Chiaretti A, Soligo M. Intranasal Delivery of Nerve Growth Factor in Neurodegenerative Diseases and Neurotrauma. Front Pharmacol 2021; 12:754502. [PMID: 34867367 PMCID: PMC8635100 DOI: 10.3389/fphar.2021.754502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Since the 1980s, the development of a pharmacology based on nerve growth factor (NGF) has been postulated for the therapy of Alzheimer’s disease (AD). This hypothesis was based on the rescuing effect of the neurotrophin on the cholinergic phenotype of the basal forebrain neurons, primarily compromised during the development of AD. Subsequently, the use of NGF was put forward to treat a broader spectrum of neurological conditions affecting the central nervous system, such as Parkinson’s disease, degenerative retinopathies, severe brain traumas and neurodevelopmental dysfunctions. While supported by solid rational assumptions, the progress of a pharmacology founded on these hypotheses has been hampered by the difficulty of conveying NGF towards the brain parenchyma without resorting to invasive and risky delivery methods. At the end of the last century, it was shown that NGF administered intranasally to the olfactory epithelium was able to spread into the brain parenchyma. Notably, after such delivery, pharmacologically relevant concentration of exogenous NGF was found in brain areas located at considerable distances from the injection site along the rostral-caudal axis. These observations paved the way for preclinical characterization and clinical trials on the efficacy of intranasal NGF for the treatment of neurodegenerative diseases and of the consequences of brain trauma. In this review, a summary of the preclinical and clinical studies published to date will be attempted, as well as a discussion about the mechanisms underlying the efficacy and the possible development of the pharmacology based on intranasal conveyance of NGF to the brain.
Collapse
Affiliation(s)
- Luigi Manni
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Giorgio Conti
- Department of Emergency, Intensive Pediatric Therapy and Pediatric Trauma Center, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
11
|
Metallinou D, Lazarou E, Lykeridou A. Pharmacological and Non-Pharmacological Brain-Focused Clinical Practices for Premature Neonates at High Risk of Neuronal Injury. MÆDICA 2021; 16:281-290. [PMID: 34621352 DOI: 10.26574/maedica.2020.16.2.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective:Disruption of smooth intrauterine brain development is a significant consequence of premature birth that may lead to adverse neurological outcomes. Although noteworthy progress has been made in the management of prematurity, the rates of neonatal morbidity and neurodevelopmental disorders remain high, underlining the need to find clinical practices that particularly protect the central nervous system. Aim:To identify recent articles regarding pharmacological and non-pharmacological brain-focused clinical practices (BFCP) for premature neonates at high risk of neuronal injury. Material and methods:We did an extensive search of PubMed and Google Scholar for relevant research published between 2000 and 2020. Results:Nineteen full-length original research papers fulfilled the inclusion criteria and were selected for the purpose of the present review. Non-pharmacological BFCP intend to improve the neonate's experience in the NICU environment and can be applied by a multidisciplinary team, while pharmacological ones are related to novel molecules that aim to quell apoptosis and inflammation or promote neurogenesis. Conclusion:In the future, a combination of pharmacological and non-pharmacological BFCP might be considered as the most promising protection and/or treatment provided in clinical practice to premature neonates at high risk of neuronal injury.
Collapse
Affiliation(s)
- Dimitra Metallinou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Greece
| | | | - Aikaterini Lykeridou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Greece
| |
Collapse
|
12
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
13
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
14
|
Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML, Chiaretti A. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res 2021; 16:1740-1750. [PMID: 33510063 PMCID: PMC8328750 DOI: 10.4103/1673-5374.306062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye.
Collapse
Affiliation(s)
- Gemma Eftimiadi
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Lucia Calcagni
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
15
|
Attina G, Maurizi P, Triarico S, Capozza MA, Romano A, Mastrangelo S, Ruggiero A. Management of Children with Optic Gliomas and Neurofibromatosis Type 1. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2020; 13:1601-1606. [DOI: 10.13005/bpj/2035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Optic pathway gliomas (OPG) are a common cancer in children with neurofibromatosis type 1. OPGs can cause clinical symptoms such as reduction of visual acuity, alterations of the visual field, pallor of the optical papilla, strabismus, endocrinological alterations up to diencephalic syndrome.The current guidelines provide for wait and see as the main approach if the tumor is not causing visual deterioration and adopting treatment only in the event of significant impairment of the visual function. Therefore, it is essential to early detect the visual deterioration changes as well as the identification of children eligible for treatment.
Collapse
Affiliation(s)
- Giorgio Attina
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
LEE SH, YEO D, HONG JH. Effect of dihydroferulic acid obtained from fermented rice bran extract on neuroprotection and behavioral recovery in an ischemic rat model. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.33719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Dana YEO
- Inje University, Republic of Korea
| | | |
Collapse
|
17
|
An S, Jia Y, Tian Y, Sun J, Wei Y, Yue S, Lin L, Wei Y, Li Y, Lei P, Zhang J, Jiang R. Mouse nerve growth factor promotes neurological recovery in patients with acute intracerebral hemorrhage: A proof-of-concept study. J Neurol Sci 2020; 418:117069. [PMID: 32798840 DOI: 10.1016/j.jns.2020.117069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND ew drugs were confirmed to be effective in the treatments of neurological dysfunction caused by acute intracerebral hemorrhage (ICH). The present prospective clinical trial aims to evaluate the effect of mouse nerve growth factor (mNGF) on neurological function in patients with acute ICH. METHODS 60 patients with acute spontaneous ICH were randomized to receive mNGF (mNGF group) and citicoline (control group) for 4 weeks within 24-72 h after onset, respectively. The primary outcome was difference in the neurological functional outcome at 3 months by the modified Rankin Scale score (mRS). The secondary outcomes were the changes in hematoma volume at 4 weeks and 3 months. RESULTS There were 55 patients receiving treatment (29 patients in the mNGF group, 26 patients in the control group). Among the patients, 46 patients finished the trial at 3 months; the odds of a shift towards death or dependence (mRS > 3) at 3 months in the mNGF group were lower than that in the control group with adjustment for age, sex, NIHSS at admission, and hematoma volume at admission (adjusted OR, 0.185; 95%CI, 0.059-0.582; P = 0.0039). The hematoma was gradually reduced in all 46 patients and absorbed after non-surgical treatment at 3 months. There was no significant difference in hematoma volume between the two groups. No serious adverse event was found. CONCLUSIONS The administration of mNGF and citicoline was well-tolerated in patients with acute ICH. mNGF was associated with improved neurological function and less disability in patients with ICH. Therefore, the quality of life of patients with ICH may be improved by mNGF. TRIAL REGISTRATION The trial is registered with the Chinese Clinical Trial Registry, number ChiCTR1800020258.
Collapse
Affiliation(s)
- Shuo An
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Jia
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ye Tian
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Sun
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingsheng Wei
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yue
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Rongcai Jiang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
18
|
Miguel PM, Deniz BF, Confortim HD, de Almeida W, Bronauth LP, Vieira MC, Bertoldi K, Siqueira IR, Silveira PP, Pereira LO. Methylphenidate treatment increases hippocampal BDNF levels but does not improve memory deficits in hypoxic-ischemic rats. J Psychopharmacol 2020; 34:750-758. [PMID: 32255391 DOI: 10.1177/0269881120913153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Methylphenidate (MPH) is a stimulant drug mainly prescribed to treat cognitive impairments in attention-deficit/hyperactivity disorder (ADHD). We demonstrated that neonatal hypoxia-ischemia (HI) induced attentional deficits in rats and MPH administration reversed these deficits. However, MPH effects on memory deficits after the HI procedure have not been evaluated yet. AIMS We aimed to analyze learning and memory performance of young hypoxic-ischemic rats after MPH administration and associate their performance with brain-derived neurotrophic factor (BDNF) levels in the prefrontal cortex and hippocampus. METHODS Male Wistar rats were divided into four groups (n=11-13/group): control saline (CTS), control MPH (CTMPH), HI saline (HIS) and HIMPH. The HI procedure was conducted at post-natal day (PND) 7 and memory tasks between PND 30 and 45. MPH administration (2.5 mg/kg, i.p.) occurred 30 min prior to each behavioral session and daily, for 15 days, for the BDNF assay (n=5-7/group). RESULTS As expected, hypoxic-ischemic animals demonstrated learning and memory deficits in the novel-object recognition (NOR) and Morris water maze (MWM) tasks. However, MPH treatment did not improve learning and memory deficits of these animals in the MWM-and even disrupted the animals' performance in the NOR task. Increased BDNF levels were found in the hippocampus of HIMPH animals, which seem to have been insufficient to improve memory deficits observed in this group. CONCLUSIONS The MPH treatment was not able to improve memory deficits resulting from the HI procedure considering a dose of 2.5 mg/kg. Further studies investigating different MPH doses would be necessary to determine a dose-response relationship in this model.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Peres Bronauth
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Bertoldi
- Departamento de Farmacologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Departamento de Farmacologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montreal, Canada
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Yang J, Wu S, Hou L, Zhu D, Yin S, Yang G, Wang Y. Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor mRNA and Protein via Exosomes on Cerebral Ischemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:512-522. [PMID: 32682291 PMCID: PMC7365960 DOI: 10.1016/j.omtn.2020.06.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Stroke is the leading neurological cause of death and disability all over the world, with few effective drugs. Nerve growth factor (NGF) is well known for its multifaceted neuroprotective functions post-ischemia. However, the lack of an efficient approach to systemically deliver bioactive NGF into ischemic region hinders its clinical application. In this study, we engineered the exosomes with RVG peptide on the surface for neuron targeting and loaded NGF into exosomes simultaneously, with the resultant exosomes denoted as NGF@ExoRVG. By systemic administration of NGF@ExoRVG, NGF was efficiently delivered into ischemic cortex, with a burst release of encapsulated NGF protein and de novo NGF protein translated from the delivered mRNA. Moreover, NGF@ExoRVG was found to be highly stable for preservation and function efficiently for a long time in vivo. Functional study revealed that the delivered NGF reduced inflammation by reshaping microglia polarization, promoted cell survival, and increased the population of doublecortin-positive cells, a marker of neuroblast. The results of our study suggest the potential therapeutic effects of NGF@ExoRVG for stroke. Moreover, the strategy proposed in our study may shed light on the clinical application of other neurotrophic factors for central nervous system diseases.
Collapse
Affiliation(s)
- Jialei Yang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China; Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
| | - Danni Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Shimin Yin
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
20
|
TNF-α Pretreatment Improves the Survival and Function of Transplanted Human Neural Progenitor Cells Following Hypoxic-Ischemic Brain Injury. Cells 2020; 9:cells9051195. [PMID: 32403417 PMCID: PMC7291333 DOI: 10.3390/cells9051195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Neural progenitor cells (NPCs) therapy offers great promise in hypoxic-ischemic (HI) brain injury. However, the poor survival of implanted NPCs in the HI host environment limits their therapeutic effects. Tumor necrosis factor-alpha (TNF-α) is a pleiotropic cytokine that is induced in response to a variety of pathological processes including inflammation and immunity. On the other hand, TNF-α has protective effects on cell apoptosis and death and affects the differentiation, proliferation, and survival of neural stem/progenitor cells in the brain. The present study investigated whether TNF-α pretreatment on human NPCs (hNPCs) enhances the effectiveness of cell transplantation therapy under ischemic brain. Fetal brain tissue-derived hNPCs were pretreated with TNF-α before being used in vitro experiments or transplantation. TNF-α significantly increased expression of cIAP2, and the use of short hairpin RNA-mediated knockdown of cIAP2 demonstrated that cIAP2 protected hNPCs against HI-induced cytotoxicity. In addition, pretreatment of hNPCs with TNF-α mediated neuroprotection by altering microglia polarization via increased expression of CX3CL1 and by enhancing expression of neurotrophic factors. Furthermore, transplantation of TNF-α-treated hNPCs reduced infarct volume and improved neurological functions in comparison with non-pretreated hNPCs or vehicle. These findings show that TNF-α pretreatment, which protects hNPCs from HI-injured brain-induced apoptosis and increases neuroprotection, is a simple and safe approach to improve the survival of transplanted hNPCs and the therapeutic efficacy of hNPCs in HI brain injury.
Collapse
|
21
|
Mi F, Liu F, Zhang C. Magnesium protects mouse hippocampal HT22 cells against hypoxia-induced injury by upregulation of miR-221. J Cell Biochem 2019; 121:1452-1462. [PMID: 31512791 DOI: 10.1002/jcb.29381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/28/2019] [Indexed: 11/11/2022]
Abstract
Magnesium (Mg2+ ) has been shown to exert neuroprotective effects against hypoxia. However, it still remains elusive whether Mg2+ protected mouse hippocampal HT22 cells against hypoxia-evoked damages. Therefore, we aimed to investigate the function of Mg2+ and mechanisms associated with microRNA-221 (miR-221). HT22 cells were exposed to 3% O2 for 24 hours to induce hypoxic damages with 21% as a normoxic culture condition. The damages were monitored by viability, migration, and apoptosis of HT22 cells with or without Mg2+ pretreatment. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to examine the alteration of miR-221, miR-210, and miR-17-5p. Transduction was carried out to artificially alter the expression of miR-221 and nerve growth factor (NGF), which was confirmed by qRT-PCR or Western blot assays. To blunt phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor κB (NF-κB), LY294002 (10 µM) and BAY 11-7082 (10 µM) were used. We observed Mg2+ protected HT22 cells against hypoxia-induced damages by upregulating miR-221. Further, miR-221 positively regulated NGF expression. Overexpression of NGF alleviated cell injury, while suppression of NGF aggravated cell injury. Moreover, miR-221 elevated NGF by inducing phosphorylation of regulators in PI3K/AKT and NF-κB transduction cascades and then alleviated cell injury. In conclusion, Mg2+ protected HT22 cells against hypoxia-induced damages by upregulation of miR-221 and NGF. These findings provided insights into the development of improved strategies for clinical application.
Collapse
Affiliation(s)
- Fuli Mi
- Department of Gastrointestinal Endoscopy Center, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Fuyu Liu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong, China
| | - Chuanzhu Zhang
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
22
|
Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev 2019; 148:19-37. [PMID: 31678359 DOI: 10.1016/j.addr.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Neonatal brain injury affects thousands of babies each year and may lead to long-term and permanent physical and neurological problems. Currently, therapeutic hypothermia is standard clinical care for term newborns with moderate to severe neonatal encephalopathy. Nevertheless, it is not completely protective, and additional strategies to restore and promote regeneration are urgently needed. One way to ensure recovery following injury to the immature brain is to augment endogenous regenerative pathways. However, novel strategies such as stem cell therapy, gene therapies and nanotechnology have not been adequately explored in this unique age group. In this perspective review, we describe current efforts that promote neuroprotection and potential targets that are unique to the developing brain, which can be leveraged to facilitate neuroregeneration.
Collapse
|
23
|
Zhou XM, Liu J, Wang Y, Zhang SL, Zhao X, Xu X, Pei J, Zhang MH. Retracted: microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats. J Cell Biochem 2019; 120:6908-6919. [PMID: 29377229 DOI: 10.1002/jcb.26704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 02/02/2023]
Abstract
Our study aims to elucidate the mechanisms how microRNA-129-5p (miR-129-5p) involved in the neuroprotective effect of dexmedetomidine (DEX) on hypoxic-ischemic brain injury (HIBI) by targeting the type III procollagen gene (COL3A1) through the Wnt/β-catenin signaling pathway in neonatal rats. A total of 120 rats were obtained, among which 15 rats were selected as sham group and rest rats as model, DEX, DEX + negative control (DEX + NC), DEX + miR-129-5p mimics, DEX + miR-129-5p inhibitors, DEX + XAV-939, and DEX + miR-129-5p inhibitors + XAV-939 groups. A dual-luciferase reporter assay was performed for the target relationship between miR-129-5p and COL3A1. Weight rate and water content of cerebral hemisphere were detected. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to detect miR-129-5p expression and expressions of COL3A1, E-cadherin, T-cell factor (TCF)- 4, and β-catenin. The DEX, DEX + miR-129-5p mimics, DEX + XAV-939 groups had increased weight rate of the cerebral hemisphere, but decreased water content of left cerebral hemisphere, levels of COL3A1, β-catenin, TCF-4, and E-cadherin in the hippocampus compared with the model and DEX + miR-129-5p inhibitors groups. COL3A1 was verified as the target gene of the miR-129-5p. Compared with the DEX + NC and DEX + miR-129-5p inhibitors + XAV-939 groups, the DEX + XAV-939 and DEX + miR-129-5p mimics groups had elevated weight rate of the cerebral hemisphere, but reduced water content of left cerebral hemisphere, levels of COL3A1, β-catenin, TCF-4, and E-cadherin in the hippocampus. Our findings demonstrate that miR-129-5p improves the neuroprotective role of DEX in HIBI by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats.
Collapse
Affiliation(s)
- Xiu-Min Zhou
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Jie Liu
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Ying Wang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Shu-Li Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xin Zhao
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Man-He Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
24
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
25
|
Feczkó T, Piiper A, Ansar S, Blixt FW, Ashtikar M, Schiffmann S, Ulshöfer T, Parnham MJ, Harel Y, Israel LL, Lellouche JP, Wacker MG. Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy. J Control Release 2018; 293:63-72. [PMID: 30458203 DOI: 10.1016/j.jconrel.2018.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 01/10/2023]
Abstract
For many years, delivering drug molecules across the blood brain barrier has been a major challenge. The neuropeptide nerve growth factor is involved in the regulation of growth and differentiation of cholinergic neurons and holds great potential in the treatment of stroke. However, as with many other compounds, the biomolecule is not able to enter the central nervous system. In the present study, nerve growth factor and ultra-small particles of iron oxide were co-encapsulated into a chemically crosslinked albumin nanocarrier matrix which was modified on the surface with apolipoprotein E. These biodegradable nanoparticles with a size of 212 ± 1 nm exhibited monodisperse size distribution and low toxicity. They delivered NGF through an artificial blood brain barrier and were able to induce neurite outgrowth in PC12 cells in vitro. In an animal model of stroke, the infarct size was significantly reduced compared to the vehicle control. The combination therapy of NGF and the small-molecular MEK inhibitor U0126 showed a slight but not significant difference compared to U0126 alone. However, further in vivo evidence suggests that successful delivery of the neuropeptide is possible as well as the synergism between those two treatments.
Collapse
Affiliation(s)
- Tivadar Feczkó
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Saema Ansar
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frank W Blixt
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mukul Ashtikar
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Yifat Harel
- Department of Chemistry, Bar Ilan University, Israel
| | | | | | - Matthias G Wacker
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
26
|
Bogetti ME, Pozo Devoto VM, Rapacioli M, Flores V, Fiszer de Plazas S. NGF, TrkA-P and neuroprotection after a hypoxic event in the developing central nervous system. Int J Dev Neurosci 2018; 71:111-121. [PMID: 30165176 DOI: 10.1016/j.ijdevneu.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022] Open
Abstract
A decrease in the concentration of oxygen in the blood and tissues (hypoxia) produces important, sometimes irreversible, damages in the central nervous system (CNS) both during development and also postnatally. The present work aims at analyzing the expression of nerve growth factor (NGF) and p75 and the activation of TrkA in response to an acute normobaric hypoxic event and to evaluate the possible protective role of exogenous NGF. The developing chick optic tectum (OT), a recognized model of corticogenesis, was used as experimental system by means of in vivo and in vitro studies. Based on identification of the period of highest sensitivity of developmental programmed cell death (ED15) we show that hypoxia has a mild but reproducible effect that consist of a temporal increase of cell death 6 h after the end of a hypoxic treatment. Cell death was preceded by a significant early increase in the expression of Nerve Growth Factor (NGF) and its membrane receptor p75. In addition, we found a biphasic response of TrkA activation: a decrease during hypoxia followed by an increase -4 h later- that temporally coincide with the interval of NGF overexpression. To test the NGF - NGF receptors role in hypoxic cell death, we quantified, in primary neuronal cultures derived from ED15 OT, the levels of TrkA activation after an acute hypoxic treatment. A significant decline in the level of TrkA activation was observed during hypoxia followed, 24 h later, by significant cell death. Interestingly, this cell death can be reverted if TrkA inactivation during hypoxia is suppressed by the addition of NGF. Our results suggest that TrkA activation may play an important role in the survival of OT neurons subjected to acute hypoxia. The role of TrkA in neuronal survival after injury may be advantageously used for the generation of neuroprotective strategies to improve prenatal insult outcomes.
Collapse
Affiliation(s)
- María Eugenia Bogetti
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Victorio M Pozo Devoto
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Melina Rapacioli
- Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina
| | - Vladimir Flores
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina
| | - Sara Fiszer de Plazas
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
27
|
Suh WS, Kwon OK, Lee TH, Subedi L, Kim SY, Lee KR. Secoiridoid Glycosides from the Twigs of Ligustrum obtusifolium Possess Anti-inflammatory and Neuroprotective Effects. Chem Pharm Bull (Tokyo) 2018; 66:78-83. [PMID: 29311515 DOI: 10.1248/cpb.c17-00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two new secoiridoid glycosides, obtusifolisides A and B (1, 2), together with 7 known secoiridoid glycosides (3-9) were isolated from the twigs of Ligustrum obtusifolium. The chemical structures of new compounds were determined by a spectroscopic data analysis, including one and two dimensional (1D-, 2D)-NMR, High resolution-MS, and experiments involving chemical reactions. The isolated secoiridoid glycosides were evaluated for their anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. Compounds 2, 5, 6, 8, and 9 significantly reduced the production of nitric oxide (NO), with IC50 values of 5.45, 11.17, 14.62, 15.45, and 14.96 µM, respectively. None of the compounds were toxic to the cells. Additionally, we evaluated the neuroprotective effects of compounds 1-9 on nerve growth factor (NGF) induction in a C6 rat glioma cell line. Compounds 2 and 6 upregulated NGF secretion to 155.56±7.16%, and 139.35±11.65%, respectively, without significant cell toxicity.
Collapse
Affiliation(s)
- Won Se Suh
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Oh Kil Kwon
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Tae Hyun Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Lalita Subedi
- Gachon Institute of Pharmaceutical Science, Gachon University.,College of Pharmacy, Gachon University
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University.,College of Pharmacy, Gachon University
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| |
Collapse
|
28
|
Park KJ, Subedi L, Kim SY, Choi SU, Lee KR. Bioactive triterpenoids from twigs of Betula schmidtii. Bioorg Chem 2018; 77:527-533. [PMID: 29454829 DOI: 10.1016/j.bioorg.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 01/31/2023]
Abstract
Investigation of the MeOH extract of Betula schmidtii twigs resulted in the isolation and identification of three new triterpenoids (1-3), along with ten known ones (4-13). The structures of new compounds (1-3) were elucidated by spectroscopic methods, including 1D, 2D NMR (1H and 13C NMR, COSY, HSQC, HMBC, and NOESY), HR-MS, and chemical methods. All the isolated compounds were evaluated for their cytotoxicity against A549, SK-OV-3, SK-MEL-2, and HCT-15 cell lines. Compound 11 exhibited potent cytotoxic activities against four cell lines, and compounds 5 and 13 significantly induced nerve growth factor secretion in a C6 rat glioma cell line. Their anti-inflammatory effects were also assessed by measuring nitric oxide production in lipopolysaccharide-activated BV-2 cells. Compounds 7 and 12 displayed potent inhibition of nitric oxide production, without significant cell toxicity.
Collapse
Affiliation(s)
- Kyoung Jin Park
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Lalita Subedi
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Sun Yeou Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
29
|
Cao JY, Lin Y, Han YF, Ding SH, Fan YL, Pan YH, Zhao B, Guo QH, Sun WH, Wan JQ, Tong XP. Expression of nerve growth factor carried by pseudotyped lentivirus improves neuron survival and cognitive functional recovery of post-ischemia in rats. CNS Neurosci Ther 2018; 24:508-518. [PMID: 29409115 DOI: 10.1111/cns.12818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/25/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023] Open
Abstract
AIMS Nerve growth factor (NGF) has been reported to prevent neuronal damage and contributes to the functional recovery in animal brain injury models and human ischemic disease as well. We aimed to investigate a potential therapeutic effect of NGF gene treatment in ischemic stroke and to estimate the functional recovery both at the cellular and cognitive levels in an ischemia rat model. METHODS After microinjection of pseudolentivirus-delivered β-NGF into an established ischemic stroke model in rats (tMCAO), we estimated neuronal cell apoptosis with TUNEL labeling and neurogenesis by cell proliferation marker Ki67 staining in both ischemic core and penumbra of striatum. Furthermore, we used behavioral functional tests, Morris water maze performance, to evaluate cognitive functional recovery in vivo and propose a potential underlying mechanism. RESULTS We found that pseudolentivirus-mediated delivery of β-NGF gene into the brain induced high expression in striatum of the infarct core area after ischemia in rats. The β-NGF overexpression in the striatal infarction core after ischemia not only improved neuronal survival by reducing cell apoptosis and increasing cell proliferation, but also rescued cognitive functional impairment through upregulation of GAP-43 protein expression in tMCAO rat model of ischemia. CONCLUSION This study demonstrates a potential β-NGF gene therapy by utilization of pseudolentivirus in ischemia and indicates future applications of NGF gene treatment in ischemic patients.
Collapse
Affiliation(s)
- Jia-Yu Cao
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Lin
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Fei Han
- Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Hao Ding
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ling Fan
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Hua Pan
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhao
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-Hua Guo
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Hua Sun
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Qing Wan
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Tong
- Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Wang Y, Zhang H, Wang Z, Liu H, Tian X, Yu J, Chen C. Therapeutic effect of nerve growth factor on canine cerebral infarction evaluated by MRI. Oncotarget 2018; 9:3741-3751. [PMID: 29423079 PMCID: PMC5790496 DOI: 10.18632/oncotarget.23345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
To explore therapeutic effect of nerve growth factor (NGF) on cerebral infarction by establishing canine middle cerebral artery occlusion (MCAO) infarct model. The magnetic resonance imaging (MRI) technology was used to study effects of NGF on cerebral infarction, and the results of MRI indexes (such as diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI)) were compared with the results of pathology, cell biology and molecular biology. The clinical manifestations of the canine infarction model treated by NGF were significantly improved within 7 days compared with control group. The therapeutic evaluation of NGF effect could be determine by canine cerebral infarction treated by NGF within 6 hours according to DWI and PWI. From 6 hours to 7 days, therapeutic evaluation of NGF could be determine by T1WI, T2WI and FLAIR. DWI and PWI could find the change of cerebral ischemia at the early stage, provide advantages for qualitative diagnosis of early-stage cerebral infarction and observation of efficacy in early treatment, initially showing that their great potential for NGF role on cerebral ischemia and mechanism.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Hui Zhang
- Department of Radiology, Hebei General Hospital, Shijiazhuang, Hebei Province 050051, China
| | - Zhe Wang
- Department of Computer Science, Clinical College of Hebei Medical University, Shijiazhuang, Hebei Province 050031, China
| | - Huaijun Liu
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xin Tian
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Jian Yu
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Chaoxu Chen
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| |
Collapse
|
31
|
Effects of neural stem cell media on hypoxic injury in rat hippocampal slice cultures. Brain Res 2017; 1677:20-25. [PMID: 28941572 DOI: 10.1016/j.brainres.2017.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022]
Abstract
Neonatal hypoxic-ischemic brain injuries cause serious neurological sequelae, yet there is currently no effective treatment for them. We hypothesized that neurotrophic factors released into the medium by stem cells could supply hypoxia-damaged organotypic hippocampal slice cultures with regenerative abilities. We prepared organotypic slice cultures of the hippocampus of 7-day-old Sprague-Dawley rats based on the modified Stoppini method; slices were cultured for 14days in vitro using either Gahwiler's medium (G-medium) or stem cell-conditioned medium (S-medium) as culture medium. At day 14 in vitro, hippocampal slice cultures were exposed to 95% N2 and 5% CO2 for 3h to induce hypoxic damage, the extent of which was then measured using propidium iodide fluorescence and immunohistochemistry images. We performed dot blotting to estimate neurotrophic/growth factor levels in the G- and S-media. Organotypic hippocampal slices cultured using S-medium after hypoxic injury were significantly less damaged than those cultured using G-medium. GLUT1, NGF, GDNF, VEGF, GCSF, and IGF2 levels were higher in S-medium than in G-medium, whereas FGF1, HIF, and MCP3 levels were not significantly different between media. In conclusion, we found that stem cell-conditioned medium had a neuroprotective effect against hypoxic injury, and that, of the various neurotrophic factors in S-medium, NGF, GDNF, and VEGF can contribute to neuroprotection.
Collapse
|
32
|
Hassanzadeh P, Atyabi F, Dinarvand R. Application of modelling and nanotechnology-based approaches: The emergence of breakthroughs in theranostics of central nervous system disorders. Life Sci 2017; 182:93-103. [DOI: 10.1016/j.lfs.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 01/28/2023]
|
33
|
Bansal R, Singh R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med Res Rev 2017; 38:1126-1158. [PMID: 28697282 DOI: 10.1002/med.21458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Neurodegeneration is a complex process, which leads to progressive brain damage due to loss of neurons. Despite exhaustive research, the cause of neuronal loss in various degenerative disorders is not entirely understood. Neuroprotective steroids constitute an important line of attack, which could play a major role against the common mechanisms associated with various neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Natural endogenous steroids induce the neuroprotection by protecting the nerve cells from neuronal injury through multiple mechanisms, therefore the structural modifications of the endogenous steroids could be helpful in the generation of new therapeutically useful neuroprotective agents. The review article will keep the readers apprised of the detailed description of natural as well as synthetic neuroprotective steroids from the medicinal chemistry point of view, which would be helpful in drug discovery efforts aimed toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
34
|
Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Nerve growth factor-carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke. Life Sci 2017; 179:15-22. [DOI: 10.1016/j.lfs.2016.11.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022]
|
35
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
36
|
Urinary Levels of IL-1 β and GDNF in Preterm Neonates as Potential Biomarkers of Motor Development: A Prospective Study. Mediators Inflamm 2017; 2017:8201423. [PMID: 28553016 PMCID: PMC5434239 DOI: 10.1155/2017/8201423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/22/2017] [Indexed: 01/07/2023] Open
Abstract
Objectives. To evaluate the association between inflammatory biomarkers, neurotrophic factors, birth conditions, and the presence of motor development abnormalities in preterm neonates. Methods. Plasma and urinary levels of cytokines (IL-1β, IL-6, IL-10, TNF, and IL-12p70), chemokines (CXCL8/IL-8, CCL2/MCP-1, CCL5/RANTES, CXCL10/IP-10, and CXCL9/MIG), and neurotrophic factors (BDNF and GDNF) were evaluated in 40 preterm neonates born between 28 and 32 incomplete weeks of gestation, at four distinct time points: at birth (umbilical cord blood) (T0), at 48 (T1), at 72 hours (T2), and at 3 weeks after birth (T3). Biomarkers levels were compared between different time points and then associated with Test of Infant Motor Performance (TIMP) percentiles. Results. Maternal age, plasma, and urinary concentrations of inflammatory molecules and neurotrophic factors were significantly different between groups with normal versus lower than expected motor development. Higher levels of GDNF were found in the group with lower than expected motor development, while IL-1β and CXCL8/IL-8 values were higher in the group with typical motor development. Conclusion. Measurements of cytokines and neurotrophic factors in spot urine may be useful in the follow-up of motor development in preterm neonates.
Collapse
|
37
|
Shishkova VN, Zotova LI, Maljukova NG, Sutjusheva IR, Kan NV, Gasanova EM, Kerimova EI. [An assessment of cerebrolysin effect on BDNF level in patients with post stroke aphasia depending on carbohydrate metabolism disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:57-63. [PMID: 26356162 DOI: 10.17116/jnevro20151155157-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM We carried out an open randomized controlled study to explore the changes in the rate of speech recovery and BDNF concentrations in patients with left-hemisphere stroke and carbohydrate metabolism disorders (diabetes mellitus type2 or prediabetes) who received cerebrolysin. MATERIAL AND METHODS A study included 60 inpatients of the Center of Speech Pathology and Neurorehabilitation. Neuropsychological examination was performed at baseline and after the treatment was completed. We determined aphasia type and quantitatively assessed speech in scores which reflected the severity of speech impairment. BDNF serum concentrations were measured. RESULTS Clinical efficacy of cerebrolysin (intravenously in dose 20 ml in 100 ml of physiological solution, 5 days a week, during 4 weeks) used in addition to standard neurorehabilitation measures in patients with post stroke aphasia of different severity was demonstrated. This treatment was most effective in patients with very marked and marked speech impairment that was confirmed by the maximal possible improvement of speech during the first course of neurorehabilitation measures, in particular in a subgroup of patients without carbohydrate metabolism disorders. A significant increase in BDNF concentrations was an additional evidence of this improvement. CONCLUSION The use of cerebrolysin in the complex treatment of patients with post stroke aphasia of different severity improves the prognosis of their rehabilitation.
Collapse
Affiliation(s)
- V N Shishkova
- Center of Speech Pathology and Neurorehabilitation, Moscow
| | - L I Zotova
- Center of Speech Pathology and Neurorehabilitation, Moscow
| | - N G Maljukova
- Center of Speech Pathology and Neurorehabilitation, Moscow
| | - I R Sutjusheva
- Center of Speech Pathology and Neurorehabilitation, Moscow
| | - N V Kan
- Center of Speech Pathology and Neurorehabilitation, Moscow
| | - E M Gasanova
- Center of Speech Pathology and Neurorehabilitation, Moscow
| | - E I Kerimova
- Center of Speech Pathology and Neurorehabilitation, Moscow
| |
Collapse
|
38
|
Larpthaveesarp A, Ferriero DM, Gonzalez FF. Growth factors for the treatment of ischemic brain injury (growth factor treatment). Brain Sci 2015; 5:165-77. [PMID: 25942688 PMCID: PMC4493462 DOI: 10.3390/brainsci5020165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.
Collapse
Affiliation(s)
- Amara Larpthaveesarp
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA 94158, USA.
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Baek SE, Kim JY, Song WT, Lee SH, Hong JH, Lee CK, Kang SG. Neuroprotective effect of rice bran extract supplemented with ferulic acid in the rat model of ischemic brain injury. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.904249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|