Zhang N, Zhang Y. Correlation between gyral size, brain size, and head impact risk across mammalian species.
Brain Res 2024;
1828:148768. [PMID:
38244756 DOI:
10.1016/j.brainres.2024.148768]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
A study on primates has established that gyral size is largely independent of overall brain size. Building on this-and other research suggesting that brain gyrification may mitigate the effects of head impacts-our study aims to explore potential correlations between gyral size and the risk of head impact across a diverse range of mammalian species. Our findings corroborate the idea that gyral sizes are largely independent of brain sizes, especially among species with larger brains, thus extending this observation beyond primates. Preliminary evidence also suggests a correlation between an animal's gyral size and its lifestyle, particularly in terms of head-impact risk. For instance, goats, known for their headbutting behaviors, exhibit smaller gyral sizes. In contrast, species such as manatees and dugongs, which typically face lower risks of head impact, have lissencephalic brains. Additionally, we explore mechanisms that may explain how narrower gyral sizes could offer protective advantages against head impact. Finally, we discuss a possible trade-off associated with gyrencephaly.
Collapse