1
|
McCane LM, Wolpaw JR, Thompson AK. Effects of active and sham tDCS on the soleus H-reflex during standing. Exp Brain Res 2023; 241:1611-1622. [PMID: 37145136 PMCID: PMC10224818 DOI: 10.1007/s00221-023-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Weak transcranial direct current stimulation (tDCS) is known to affect corticospinal excitability and enhance motor skill acquisition, whereas its effects on spinal reflexes in actively contracting muscles are yet to be established. Thus, in this study, we examined the acute effects of Active and Sham tDCS on the soleus H-reflex during standing. In fourteen adults without known neurological conditions, the soleus H-reflex was repeatedly elicited at just above M-wave threshold throughout 30 min of Active (N = 7) or Sham (N = 7) 2-mA tDCS over the primary motor cortex in standing. The maximum H-reflex (Hmax) and M-wave (Mmax) were also measured before and immediately after 30 min of tDCS. The soleus H-reflex amplitudes became significantly larger (by 6%) ≈1 min into Active or Sham tDCS and gradually returned toward the pre-tDCS values, on average, within 15 min. With Active tDCS, the amplitude reduction from the initial increase appeared to occur more swiftly than with Sham tDCS. An acute temporary increase in the soleus H-reflex amplitude within the first minute of Active and Sham tDCS found in this study indicates a previously unreported effect of tDCS on the H-reflex excitability. The present study suggests that neurophysiological characterization of Sham tDCS effects is just as important as investigating Active tDCS effects in understanding and defining acute effects of tDCS on the excitability of spinal reflex pathways.
Collapse
Affiliation(s)
- Lynn M McCane
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, 02881, USA
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, 12208, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, 12208, USA
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, MSC 700, Charleston, SC, 29425, USA.
| |
Collapse
|
2
|
Ryan JL, Eng E, Fehlings DL, Wright FV, Levac DE, Beal DS. Motor Evoked Potential Amplitude in Motor Behavior-based Transcranial Direct Current Stimulation Studies: A Systematic Review. J Mot Behav 2023; 55:313-329. [PMID: 36919517 DOI: 10.1080/00222895.2023.2184320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Motor evoked potential amplitude (MEPamp) is frequently measured in transcranial direct current stimulation (tDCS) studies that target the primary motor cortex (M1), and a subset of these studies involve motor behavior. This systematic review explored the role of MEPamp as an indicator of neural change in M1-targeted tDCS studies involving motor behavior (i.e., motor practice and/or evaluation of motor performance) in healthy individuals, and examined the association between changes in motor performance and MEPamp. We executed our search strategy across four bibliographic databases. Twenty-two manuscripts met eligibility criteria. While anodal tDCS combined with motor practice frequently increased MEPamp, MEPamp outcomes did not necessarily align with changes in motor performance. Thus, MEPamp may not be the most appropriate indicator of neural change in tDCS studies that aim to improve motor performance.
Collapse
Affiliation(s)
- Jennifer L Ryan
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Emily Eng
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Darcy L Fehlings
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - F Virginia Wright
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada.,Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Danielle E Levac
- School of Rehabilitation, University of Montreal, Montreal, Canada
| | - Deryk S Beal
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Hamajima H, Gomez-Tames J, Uehara S, Otaka Y, Tanaka S, Hirata A. Computation of group-level electric field in lower limb motor area for different tDCS montages. Clin Neurophysiol 2023; 150:69-78. [PMID: 37023635 DOI: 10.1016/j.clinph.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) injects a weak electric current into the brain via electrodes attached to the scalp to modulate cortical excitability. tDCS is used to rebalance brain activity between affected and unaffected hemispheres in rehabilitation. However, a systematic quantitative evaluation of tDCS montage is not reported for the lower limbs. In this study, we computationally investigated the generated electric field intensity, polarity, and co-stimulation of cortical areas for lower limb targeting using high-resolution head models. METHODS Volume conductor models have thus been employed to estimate the electric field in the brain. A total of 18 head models of healthy subjects were used to calculate the group-level electric fields generated from four montages of tDCS for modulation of lower limbs. RESULTS C1-C2 montage delivered higher electric field intensities while reaching deeper regions of the lower-limb motor area. It produced a uniform polarization on the same hemisphere target with comparable intensities between hemispheres but with higher variability. CONCLUSIONS Proper montage selection allows reaching deeper regions of the lower-limb motor area with uniform polarization. SIGNIFICANCE First systematic computational study providing support to tDCS experimental studies using montages for the lower limb while considering polarity factor for balancing brain activity.
Collapse
|
4
|
Tedla JS, Sangadala DR, Reddy RS, Gular K, Kakaraparthi VN, Asiri F. Transcranial direct current stimulation (tDCS) effects on upper limb motor function in stroke: an overview review of the systematic reviews. Brain Inj 2023; 37:122-133. [PMID: 36617689 DOI: 10.1080/02699052.2022.2163289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Stroke is the prime cause of disability in the elderly population. Transcranial direct current stimulation (tDCS) is an emerging noninvasive brain stimulation in rehabilitating upper limb function post-stroke. However, mixed evidence exists in the literature and ambiguous conclusions regarding the effect of tDCS on upper limb function. OBJECTIVE This study aimed to assess the current evidence on the effect of (tDCS) on upper limb motor function and activities of daily living in patients after stroke by conducting an overview of systematic reviews. METHODOLOGY We performed electronic database searches and gray literature searches for the articles. RESULTS Two distinct literature searches gathered a total of 203 studies. Out of them, six systematic reviews and meta-analyses were included for methodological quality assessment and data extraction. All included studies were determined to be of good to high quality based on a methodological appraisal using the Assessment of Multiple Systematic Reviews checklist. CONCLUSION Identified evidence suggests that tDCS has superior effects to control interventions in improving functions of the upper limb and activities of daily living in patients who have had a stroke. Moreover, cathodal stimulation over the non-affected brain region was more effective than anodal and dual tDCS stimulation.
Collapse
Affiliation(s)
- Jaya Shanker Tedla
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Devika Rani Sangadala
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ravi Shankar Reddy
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Kumar Gular
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Venkata Nagaraj Kakaraparthi
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Faisal Asiri
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Zandonai T, Bertucco M, Graziani N, Montani V, Cesari P. Transcranial Direct Current Stimulation (tDCS) modulates motor execution in a limb reaching task. Eur J Neurosci 2022; 56:4445-4454. [PMID: 35790041 DOI: 10.1111/ejn.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
The majority of human activities show a trade-off between movement speed and accuracy. Here we tested 16 participants in a quick pointing action after 20 minutes (2mA) of transcranial Direct Current Stimulation (tDCS) delivered at the Supplementary Motor Area (SMA) in a single-blind crossover design study for testing the feedforward components in the control of action. tDCS stimuli were delivered in three randomized sessions of stimulations as anodal, cathodal and sham as a control. The task performed Pre and Post tDCS stimulation, was to point as fast and as precise as possible with the big toe to targets having different sizes (2 and 8 cm; Width) and positioned at different Distances (20 and 60 cm; Distance). An optoelectronic motion capture system was used to collect the kinematics of movement. Result indicates that individuals after receiving anodal stimulation decreased their movement time and increased their movement speed while the opposite happened after receiving a cathodal stimulation. The scarcity of studies in this area invites us to plan a research that aims at the trade-off especially in the clinical settings.
Collapse
Affiliation(s)
- Thomas Zandonai
- Department of Pharmacology, Paediatrics and Organic Chemistry, Miguel Hernández University of Elche Alicante, Spain.,Neuropharmacology on Pain and Functional Diversity (NED), Institute of Health and Biomedical Research of Alicante (ISABIAL Foundation), Alicante, Spain
| | - Matteo Bertucco
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Verona, Italy
| | - Nadia Graziani
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Verona, Italy
| | - Veronica Montani
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Verona, Italy
| | - Paola Cesari
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Verona, Italy
| |
Collapse
|
6
|
Review of tDCS Configurations for Stimulation of the Lower-Limb Area of Motor Cortex and Cerebellum. Brain Sci 2022; 12:brainsci12020248. [PMID: 35204011 PMCID: PMC8870282 DOI: 10.3390/brainsci12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
This article presents an exhaustive analysis of the works present in the literature pertaining to transcranial direct current stimulation(tDCS) applications. The aim of this work is to analyze the specific characteristics of lower-limb stimulation, identifying the strengths and weaknesses of these works and framing them with the current knowledge of tDCS. The ultimate goal of this work is to propose areas of improvement to create more effective stimulation therapies with less variability.
Collapse
|
7
|
Pilloni G, Choi C, Shaw MT, Coghe G, Krupp L, Moffat M, Cocco E, Pau M, Charvet L. Walking in multiple sclerosis improves with tDCS: a randomized, double-blind, sham-controlled study. Ann Clin Transl Neurol 2020; 7:2310-2319. [PMID: 33080122 PMCID: PMC7664269 DOI: 10.1002/acn3.51224] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate whether multiple sessions of transcranial direct current stimulation (tDCS) applied to the primary motor (M1) cortex paired with aerobic exercise can improve walking functions in multiple sclerosis (MS). METHODS MS participants were recruited for a double-blind, parallel-arm, randomized, sham-controlled trial and assigned to 10 sessions (5 d/wk for 2 weeks) of either active or sham tDCS paired with unloaded cycling for 20 minutes. Stimulation was administered over the left M1 cortex (2.5 mA; anode over C3/cathode over FP2). Gait spatiotemporal parameters were assessed using a wearable inertial sensor (10-meter and 2-minute walking tests). Measurements were collected at baseline, end of tDCS intervention, and 4-week postintervention to test for duration of any benefits. RESULTS A total of 15 participants completed the study, nine in the active and six in the sham condition. The active and sham groups were matched according to gender (50% vs. 40% female), neurologic disability (median EDSS 5.5 vs. 5), and age (mean 52.1 ± 12.9 vs. 53.7 ± 9.8 years). The active group had a significantly greater increase in gait speed (0.87 vs. 1.20 m/s, p < 0.001) and distance covered during the 2-minute walking test (118.53 vs. 133.06 m, p < 0.001) at intervention end compared to baseline. At 4-week follow-up, these improvements were maintained (baseline vs. follow-up: gait speed 0.87 vs. 1.18 m/s, p < 0.001; distance traveled 118.53 vs. 143.82 m, p < 0.001). INTERPRETATION Multiple sessions of tDCS paired with aerobic exercise lead to cumulative and persisting improvements in walking and endurance in patients with MS.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, NYU Langone Health, New York, NY, USA.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Claire Choi
- Department of Medicine, SUNY Downstate, New York, NY, USA
| | - Michael T Shaw
- Department of Psychology, Binghamton University, New York, NY, USA
| | - Giancarlo Coghe
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lauren Krupp
- Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Marilyn Moffat
- Department of Physical Therapy, New York University, New York, NY, USA
| | - Eleonora Cocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Leigh Charvet
- Department of Neurology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
8
|
Gowan S, Hordacre B. Transcranial Direct Current Stimulation to Facilitate Lower Limb Recovery Following Stroke: Current Evidence and Future Directions. Brain Sci 2020; 10:brainsci10050310. [PMID: 32455671 PMCID: PMC7287858 DOI: 10.3390/brainsci10050310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Stroke remains a global leading cause of disability. Novel treatment approaches are required to alleviate impairment and promote greater functional recovery. One potential candidate is transcranial direct current stimulation (tDCS), which is thought to non-invasively promote neuroplasticity within the human cortex by transiently altering the resting membrane potential of cortical neurons. To date, much work involving tDCS has focused on upper limb recovery following stroke. However, lower limb rehabilitation is important for regaining mobility, balance, and independence and could equally benefit from tDCS. The purpose of this review is to discuss tDCS as a technique to modulate brain activity and promote recovery of lower limb function following stroke. Preliminary evidence from both healthy adults and stroke survivors indicates that tDCS is a promising intervention to support recovery of lower limb function. Studies provide some indication of both behavioral and physiological changes in brain activity following tDCS. However, much work still remains to be performed to demonstrate the clinical potential of this neuromodulatory intervention. Future studies should consider treatment targets based on individual lesion characteristics, stage of recovery (acute vs. chronic), and residual white matter integrity while accounting for known determinants and biomarkers of tDCS response.
Collapse
Affiliation(s)
- Samuel Gowan
- Interdisciplinary Neuroscience Program, Department of Biology, University of Wisconsin—La Crosse, La Crosse, WI 54601, USA
- Correspondence: ; Tel.: +61-8-83021286
| | - Brenton Hordacre
- IIMPACT in Health, University of South Australia, Adelaide, SA 5001, Australia;
| |
Collapse
|
9
|
Pilloni G, Choi C, Coghe G, Cocco E, Krupp LB, Pau M, Charvet LE. Gait and Functional Mobility in Multiple Sclerosis: Immediate Effects of Transcranial Direct Current Stimulation (tDCS) Paired With Aerobic Exercise. Front Neurol 2020; 11:310. [PMID: 32431658 PMCID: PMC7214839 DOI: 10.3389/fneur.2020.00310] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Walking impairments are a debilitating feature of multiple sclerosis (MS) because of the direct interference with daily activity. The management of motor symptoms in those with MS remains a therapeutic challenge. Transcranial direct current stimulation (tDCS) is a type of non-invasive brain stimulation that is emerging as a promising rehabilitative tool but requires further characterization to determine its optimal therapeutic use. In this randomized, sham-controlled proof-of-concept study, we tested the immediate effects of a single tDCS session on walking and functional mobility in those with MS. Seventeen participants with MS completed one 20-min session of aerobic exercise, randomly assigned to be paired with either active (2.5 mA, n = 9) or sham (n = 8) tDCS over the primary motor cortex (M1). The groups (active vs. sham) were matched according to gender (50% vs. 60% F), age (52.1 ± 12.85 vs. 54.2 ± 8.5 years), and level of neurological disability (median Expanded Disability Status Scale score 5.5 vs. 5). Gait speed on the 10-m walk test and the Timed Up and Go (TUG) time were measured by a wearable inertial sensor immediately before and following the 20-min session, with changes compared between conditions and time. There were no significant differences in gait speed or TUG time changes following the session in the full sample or between the active vs. sham groups. These findings suggest that a single session of anodal tDCS over M1 is not sufficient to affect walking and functional mobility in those with MS. Instead, behavioral motor response of tDCS is likely to be cumulative, and the effects of multiple tDCS sessions require further study. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03658668.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- NYU Langone Health, Department of Neurology, New York, NY, United States.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Claire Choi
- SUNY Downstate, Department of Medicine, New York, NY, United States
| | - Giancarlo Coghe
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lauren B Krupp
- NYU Langone Health, Department of Neurology, New York, NY, United States
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Leigh E Charvet
- NYU Langone Health, Department of Neurology, New York, NY, United States
| |
Collapse
|