1
|
Gonzales CN, Negussie MB, Krishna S, Ambati VS, Hervey-Jumper SL. Malignant glioma remodeling of neuronal circuits: therapeutic opportunities and repurposing of antiepileptic drugs. Trends Cancer 2024; 10:1106-1115. [PMID: 39327186 DOI: 10.1016/j.trecan.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Tumor-associated epilepsy is the most common presenting symptom in patients diagnosed with diffuse gliomas. Recent evidence illustrates the requirement of synaptic activity to drive glioma proliferation and invasion. Class 1, 2, and 3 evidence is limited regarding the use of antiepileptic drugs (AEDs) as antitumor therapy in combination with chemotherapy. Furthermore, no central mechanism has emerged as the most targetable. The optimal timing of AED regimen remains unknown. Targeting aberrant neuronal activity is a promising avenue for glioma treatment. Clinical biomarkers may aid in identifying patients most likely to benefit from AEDs. Quality evidence is needed to guide treatment decisions.
Collapse
Affiliation(s)
- Cesar Nava Gonzales
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mikias B Negussie
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, USA; Weill Institute of Neurosciences, University of California, San Francisco, CA, USA
| | - Vardhaan S Ambati
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA; Weill Institute of Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Alavi MS, Al-Asady AM, Fanoudi S, Sadeghnia HR. Differential effects of antiseizure medications on neurogenesis: Evidence from cells to animals. Heliyon 2024; 10:e26650. [PMID: 38420427 PMCID: PMC10901100 DOI: 10.1016/j.heliyon.2024.e26650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Neurogenesis, the process of generating functionally integrated neurons from neural stem and progenitor cells, is involved in brain development during embryonic stages but continues throughout life. Adult neurogenesis plays essential roles in many brain functions such as cognition, brain plasticity, and repair. Abnormalities in neurogenesis have been described in many neuropsychiatric and neurological disorders, including epilepsy. While sharing a common property of suppressing seizures, accumulating evidence has shown that some antiseizure medications (ASM) exhibit neuroprotective potential in the non-epileptic models including Parkinson's disease, Alzheimer's disease, cerebral ischemia, or traumatic brain injury. ASM are a heterogeneous group of medications with different mechanisms of actions. Therefore, it remains to be revealed whether neurogenesis is a class effect or related to them all. In this comprehensive literature study, we reviewed the literature data on the influence of ASM on the neurogenesis process during brain development and also in the adult brain under physiological or pathological conditions. Meanwhile, we discussed the underlying mechanisms associated with the neurogenic effects of ASM by linking the reported in vivo and in vitro studies. PubMed, Web of Science, and Google Scholar databases were searched until the end of February 2023. A total of 83 studies were used finally. ASM can modulate neurogenesis through the increase or decrease of proliferation, survival, and differentiation of the quiescent NSC pool. The present article indicated that the neurogenic potential of ASM depends on the administered dose, treatment period, temporal administration of the drug, and normal or disease context.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
| | - Sahar Fanoudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamid R Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Sherawat K, Mehan S. Tanshinone-IIA mediated neuroprotection by modulating neuronal pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1647-1667. [PMID: 37010572 DOI: 10.1007/s00210-023-02476-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
The progression of neurological diseases is mainly attributed to oxidative stress, apoptosis, inflammation, and trauma, making them a primary public concern. Since no drugs can stop these neurological disorders from happening, active phytochemical intervention has been suggested as a possible treatment. Among the several phytochemicals being studied for their potential health advantages, tanshinone-IIA (Tan-IIA ) stands out due to its wide range of therapeutic effects. Tan-IIA, derived from the Salvia miltiorrhiza plant, is a phenanthrenequinone. The pharmacological characteristics of Tan-IIAagainst various neurodegenerative and neuropsychiatric illnesses have led researchers to believe that the compound possesses neuroprotective potential. Tan-IIA has therapeutic potential in treating neurological diseases due to its capacity to cross the blood-brain barrier and its broad range of activities. In treating neurological disorders, Tan-IIA has been shown to have neuroprotective effects such as anti-apoptotic, anti-inflammatory, BBB protectant, and antioxidant properties. This article concisely summarises the latest scientific findings about the cellular and molecular aspects of Tan-IIA neuroprotection in relation to various neurological diseases. The results of preclinical studies on Tan-IIA provide insight into its potential application in future therapeutic development. This molecule rapidly establishes as a prominent bioactive compound for clinical research.
Collapse
Affiliation(s)
- Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
4
|
Moya-Gómez A, Font LP, Burlacu A, Alpizar YA, Cardonne MM, Brône B, Bronckaers A. Extremely Low-Frequency Electromagnetic Stimulation (ELF-EMS) Improves Neurological Outcome and Reduces Microglial Reactivity in a Rodent Model of Global Transient Stroke. Int J Mol Sci 2023; 24:11117. [PMID: 37446295 DOI: 10.3390/ijms241311117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Extremely low-frequency electromagnetic stimulation (ELF-EMS) was demonstrated to be significantly beneficial in rodent models of permanent stroke. The mechanism involved enhanced cerebrovascular perfusion and endothelial cell nitric oxide production. However, the possible effect on the neuroinflammatory response and its efficacy in reperfusion stroke models remains unclear. To evaluate ELF-EMS effectiveness and possible immunomodulatory response, we studied neurological outcome, behavior, neuronal survival, and glial reactivity in a rodent model of global transient stroke treated with 13.5 mT/60 Hz. Next, we studied microglial cells migration and, in organotypic hippocampal brain slices, we assessed neuronal survival and microglia reactivity. ELF-EMS improved the neurological score and behavior in the ischemia-reperfusion model. It also improved neuronal survival and decreased glia reactivity in the hippocampus, with microglia showing the first signs of treatment effect. In vitro ELF-EMS decreased (Lipopolysaccharide) LPS and ATP-induced microglia migration in both scratch and transwell assay. Additionally, in hippocampal brain slices, reduced microglial reactivity, improved neuronal survival, and modulation of inflammation-related markers was observed. Our study is the first to show that an EMF treatment has a direct impact on microglial migration. Furthermore, ELF-EMS has beneficial effects in an ischemia/reperfusion model, which indicates that this treatment has clinical potential as a new treatment against ischemic stroke.
Collapse
Affiliation(s)
- Amanda Moya-Gómez
- BIOMED, UHasselt, Agoralaan, 3590 Diepenbeek, Belgium
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | | | | | - Miriam Marañón Cardonne
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | - Bert Brône
- BIOMED, UHasselt, Agoralaan, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| |
Collapse
|
5
|
Therapeutic Administration of Oxcarbazepine Saves Cerebellar Purkinje Cells from Ischemia and Reperfusion Injury Induced by Cardiac Arrest through Attenuation of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122450. [PMID: 36552657 PMCID: PMC9774942 DOI: 10.3390/antiox11122450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.
Collapse
|
6
|
Kim HI, Lee JC, Kim DW, Shin MC, Cho JH, Ahn JH, Lim SS, Kang IJ, Park JH, Won MH, Lee TK. Hypothermia Induced by Oxcarbazepine after Transient Forebrain Ischemia Exerts Therapeutic Neuroprotection through Transient Receptor Potential Vanilloid Type 1 and 4 in Gerbils. Int J Mol Sci 2021; 23:ijms23010237. [PMID: 35008663 PMCID: PMC8745517 DOI: 10.3390/ijms23010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common carotid arteries for 5 min under normothermic conditions (37 ± 0.2 °C). The ischemic gerbils were treated with vehicle, hypothermia (whole-body cooling; 33.0 ± 0.2 °C), or 200 mg/kg OXC. Post-ischemic treatments with vehicle and hypothermia failed to attenuate and improve, respectively, ischemia-induced hyperactivity and cognitive impairment (decline in spatial and short-term memory). However, post-ischemic treatment with OXC significantly attenuated the hyperactivity and the cognitive impairment, showing that OXC treatment significantly reduced body temperature (to about 33 °C). When the hippocampus was histopathologically examined, pyramidal cells (principal neurons) were dead (lost) in the subfield Cornu Ammonis 1 (CA1) of the gerbils treated with vehicle and hypothermia on Day 4 after ischemia, but these cells were saved in the gerbils treated with OXC. In the gerbils treated with OXC after ischemia, the expression of transient receptor potential vanilloid type 1 (TRPV1; one of the transient receptor potential cation channels) was significantly increased in the CA1 region compared with that in the gerbils treated with vehicle and hypothermia. In brief, our results showed that OXC-induced hypothermia after transient forebrain ischemia effectively protected against ischemia–reperfusion injury through an increase in TRPV1 expression in the gerbil hippocampal CA1 region, indicating that TRPV1 is involved in OXC-induced hypothermia.
Collapse
Affiliation(s)
- Hyung-Il Kim
- Department of Emergency Medicine, Dankook University Hospital, College of Medicine, Dankook University, Cheonan 31116, Chungnam, Korea;
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Gangwon, Korea; (M.C.S.); (J.H.C.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon, Korea; (J.-C.L.); (J.H.A.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Gangwon, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Gangwon, Korea; (M.C.S.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Gangwon, Korea; (M.C.S.); (J.H.C.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon, Korea; (J.-C.L.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Gyeongnam, Korea
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Gangwon, Korea; (S.-S.L.); (I.J.K.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Gangwon, Korea; (S.-S.L.); (I.J.K.)
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Gyeongbuk, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Gangwon, Korea; (J.-C.L.); (J.H.A.)
- Correspondence: (M.-H.W.); (T.-K.L.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2135 (T.-K.L.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-255-4787 (T.-K.L.)
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Gangwon, Korea; (S.-S.L.); (I.J.K.)
- Correspondence: (M.-H.W.); (T.-K.L.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2135 (T.-K.L.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-255-4787 (T.-K.L.)
| |
Collapse
|
7
|
Pottoo FH, Salahuddin M, Khan FA, AL Dhamen MA, Alsaeed WJ, Gomaa MS, Vatte C, Alomary MN. Combinatorial Regimen of Carbamazepine and Imipramine Exhibits Synergism against Grandmal Epilepsy in Rats: Inhibition of Pro-Inflammatory Cytokines and PI3K/Akt/mTOR Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:1204. [PMID: 34832986 PMCID: PMC8624327 DOI: 10.3390/ph14111204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a neurodegenerative disorder that causes recurring seizures. Thirty-five percent of patients remain refractory, with a higher prevalence of depression. We investigated the anticonvulsant efficacy of carbamazepine (CBZ; 20 and 50 mg/kg), imipramine (IMI; 10 and 20 mg/kg) alone, and as a low dose combination. This preclinical investigation included dosing of rats for 14 days followed by elicitation of electroshock on the last day of treatment. Along with behavioral monitoring, the rat hippocampus was processed for quantification of mTOR, IL-1β, IL-6 and TNF-α levels. The histopathological analysis of rat hippocampus was performed to ascertain neuroprotection. In vitro studies and in silico studies were also conducted. We found that the low dose combinatorial therapy of CBZ (20 mg/kg) + IMI (10 mg/kg) exhibits synergism (p < 0.001) in abrogation of maximal electroshock (MES) induced convulsions/tonic hind limb extension (THLE), by reducing levels of pro-inflammatory cytokines, and weakening of the PI3K/Akt/mTOR signal. The combination also exhibits cooperative binding at the Akt. As far as neuroprotection is concerned, the said combination increased cell viability by 166.37% compared to Pentylenetetrazol (PTZ) treated HEK-293 cells. Thus, the combination of CBZ (20 mg/kg) + IMI (10 mg/kg) is a fruitful combination therapy to elevate seizure threshold and provide neuroprotection.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem cell Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Marwa Abdullah AL Dhamen
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Walaa Jafar Alsaeed
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Chittibabu Vatte
- Department of Biochemistry, College of Medicine, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), P.O. Box 1982, Riyadh 11442, Saudi Arabia
| |
Collapse
|
8
|
Shi Y, Qi H. Effects of Different Seaweed Bioactive Compounds on Neurodegenerative Disorders, Potential Uses on Insomnia: A Mini-review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yixin Shi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
9
|
Increased Calbindin D28k Expression via Long-Term Alternate-Day Fasting Does Not Protect against Ischemia-Reperfusion Injury: A Focus on Delayed Neuronal Death, Gliosis and Immunoglobulin G Leakage. Int J Mol Sci 2021; 22:ijms22020644. [PMID: 33440708 PMCID: PMC7827208 DOI: 10.3390/ijms22020644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood–brain barrier, which triggers gliosis after ischemic insults.
Collapse
|
10
|
Luo L, Song S, Ezenwukwa CC, Jalali S, Sun B, Sun D. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem Int 2020; 142:104925. [PMID: 33248207 DOI: 10.1016/j.neuint.2020.104925] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Microglial cells interact with all components of the central nervous system (CNS) and are increasingly recognized to play essential roles during brain development, homeostasis and disease pathologies. Functions of microglia include maintaining tissue integrity, clearing cellular debris and dead neurons through the process of phagocytosis, and providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. Changes of microglial ionic homeostasis (Na+, Ca2+, K+, H+, Cl-) are important for microglial activation, including proliferation, migration, cytokine release and reactive oxygen species production, etc. These are mediated by ion channels and ion transporters in microglial cells. Here, we review the current knowledge about the role of major microglial ion channels and transporters, including several types of Ca2+ channels (store-operated Ca2+ entry (SOCE) channels, transient receptor potential (TRP) channels and voltage-gated Ca2+ channels (VGCCs)) and Na+ channels (voltage-gated Na+ channels (Nav) and acid-sensing ion channels (ASICs)), K+ channels (inward rectifier K+ channels (Kir), voltage-gated K+ channels (KV) and calcium-activated K+ channels (KCa)), proton channels (voltage-gated proton channel (Hv1)), and Cl- channels (volume (or swelling)-regulated Cl- channels (VRCCs) and chloride intracellular channels (CLICs)). In addition, ion transporter proteins such as Na+/Ca2+ exchanger (NCX), Na+-K+-Cl- cotransporter (NKCC1), and Na+/H+ exchanger (NHE1) are also involved in microglial function in physiology and brain diseases. We discussed microglial activation and neuroinflammation in relation to the ion channel/transporter stimulation under brain disease conditions and therapeutic aspects of targeting microglial ion channels/transporters for neurodegenerative disease, ischemic stroke, traumatic brain injury and neuropathic pain.
Collapse
Affiliation(s)
- Lanxin Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Shayan Jalali
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Baoshan Sun
- Pólo DoisPortos, Instituto National de InvestigaçãoAgrária e Veterinária, I.P., Quinta da Almoinha, DoisPortos, 2565-191, Portugal.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
The Attenuation of Traumatic Brain Injury via Inhibition of Oxidative Stress and Apoptosis by Tanshinone IIA. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4170156. [PMID: 32454938 PMCID: PMC7218958 DOI: 10.1155/2020/4170156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major source of mortality and long-term disability worldwide. The mechanisms associated with TBI development are poorly understood, and little progress has been made in the treatment of TBI. Tanshinone IIA is an effective agent to treat a variety of disorders; however, the mechanisms of Tanshinone IIA on TBI remain unclear. The aim of the present study was to investigate the therapeutic potential of Tanshinone IIA on TBI and its underlying molecular mechanisms. Changes in microvascular permeability were examined to determine the extent of TBI with Evans blue dye. Brain edema was assessed by measuring the wet weight to dry weight ratio. The expression levels of CD11, interleukin- (IL-) 1β, and tumor necrosis factor- (TNF-) α mRNA were determined by reverse transcription-quantitative PCR. Aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), and p47phox protein expression levels were detected by western blotting. Superoxide dismutase (SOD), catalase and glutathione peroxidase (GSH-PX) activities, and malondialdehyde (MDA) content were determined using commercial kits. Cell apoptosis was detected by western blotting and TUNEL staining. Tanshinone IIA (10 mg/kg/day, intraperitoneal administration) significantly reduced brain water content and vascular permeability at 12, 24, 48, and 72 h after TBI. Tanshinone IIA downregulated the mRNA expression levels of various factors induced by TBI, including CD11, IL-1β, and TNF-α. Notably, CD11 mRNA downregulation suggested that Tanshinone IIA inhibited microglia activation. Further results showed that Tanshinone IIA treatment significantly downregulated AQP4 and GFAP expression. TBI-induced oxidative stress and apoptosis were markedly reversed by Tanshinone IIA, with an increase in SOD and GSH-PX activities and a decrease in the MDA content. Moreover, Tanshinone IIA decreased TBI-induced NADPH oxidase activation via the inhibition of p47phox. Tanshinone IIA attenuated TBI, and its mechanism of action may involve the inhibition of oxidative stress and apoptosis.
Collapse
|
12
|
Park CW, Ahn JH, Lee TK, Park YE, Kim B, Lee JC, Kim DW, Shin MC, Park Y, Cho JH, Ryoo S, Kim YM, Won MH, Park JH. Post-treatment with oxcarbazepine confers potent neuroprotection against transient global cerebral ischemic injury by activating Nrf2 defense pathway. Biomed Pharmacother 2020; 124:109850. [PMID: 31981945 DOI: 10.1016/j.biopha.2020.109850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/12/2020] [Indexed: 01/27/2023] Open
Abstract
Oxcarbazepine (OXC), a voltage-gated sodium channel blocker, is an antiepileptic medication and used for the bipolar disorders treatment. Some voltage-gated sodium channel blockers have been demonstrated to display strong neuroprotective properties in models of cerebral ischemia. However, neuroprotective effects and mechanisms of OXC have not yet been reported. Here, we investigated the protective effect of OXC and its mechanisms in the cornu ammonis 1 subfield (CA1) of gerbils subjected to 5 min of transient global cerebral ischemia (tGCI). tGCI led to death of most pyramidal neurons in CA1 at 5 days after ischemia. OXC (100 and 200 mg/kg) was intraperitoneally administered once at 30 min after tGCI. Treatment with 200 mg/kg, not 100 mg/kg OXC, significantly protected CA1 pyramidal neurons from tGCI-induced injury. OXC treatment significantly decreased superoxide anion production, 4-hydroxy-2-nonenal and 8-hydroxyguanine levels in ischemic CA1 pyramidal neurons. In addition, the treatment restored levels of superoxide dismutases, catalase, and glutathione peroxidase. Furthermore, the treatment distinctly inhibited tGCI-induced microglia activation and significantly reduced levels of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). In particular, OXC treatment significantly enhanced expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream protein heme oxygenase-1 in ischemic CA1. The neuroprotective effects of OXC were abolished by brusatol (an inhibitor of Nrf2). Taken together, these results indicate that post-treatment of OXC can display neuroprotection against brain injuries following ischemic insults. This neuroprotection may be displayed by attenuation of oxidative stress and neuroinflammation, which can be mediated by activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea.
| |
Collapse
|
13
|
Pre-Treatment with Laminarin Protects Hippocampal CA1 Pyramidal Neurons and Attenuates Reactive Gliosis Following Transient Forebrain Ischemia in Gerbils. Mar Drugs 2020; 18:md18010052. [PMID: 31940961 PMCID: PMC7024340 DOI: 10.3390/md18010052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Transient brain ischemia triggers selective neuronal death/loss, especially in vulnerable regions of the brain including the hippocampus. Laminarin, a polysaccharide originating from brown seaweed, has various pharmaceutical properties including an antioxidant function. To the best of our knowledge, few studies have been conducted on the protective effects of laminarin against ischemic injury induced by ischemic insults. In this study, we histopathologically investigated the neuroprotective effects of laminarin in the Cornu Ammonis 1 (CA1) field of the hippocampus, which is very vulnerable to ischemia-reperfusion injury, following transient forebrain ischemia (TFI) for five minutes in gerbils. The neuroprotective effect was examined by cresyl violet staining, Fluoro-Jade B histofluorescence staining and immunohistochemistry for neuronal-specific nuclear protein. Additionally, to study gliosis (glial changes), we performed immunohistochemistry for glial fibrillary acidic protein to examine astrocytes, and ionized calcium-binding adaptor molecule 1 to examine microglia. Furthermore, we examined alterations in pro-inflammatory M1 microglia by using double immunofluorescence. Pretreatment with 10 mg/kg laminarin failed to protect neurons in the hippocampal CA1 field and did not attenuate reactive gliosis in the field following TFI. In contrast, pretreatment with 50 or 100 mg/kg laminarin protected neurons, attenuated reactive gliosis and reduced pro-inflammatory M1 microglia in the CA1 field following TFI. Based on these results, we firmly propose that 50 mg/kg laminarin can be strategically applied to develop a preventative against injuries following cerebral ischemic insults.
Collapse
|