1
|
Peris M, Benseny-Cases N, Manich G, Zerpa O, Almolda B, Perálvarez-Marín À, González B, Castellano B. Roadmap for Postnatal Brain Maturation: Changes in Gray and White Matter Composition during Development Measured by Fourier Transformed Infrared Microspectroscopy. ACS Chem Neurosci 2023; 14:3088-3102. [PMID: 37540627 PMCID: PMC10485886 DOI: 10.1021/acschemneuro.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Key events in postnatal brain development, such as neuronal migration, synaptogenesis, and myelination, shape the adult brain. These events are reflected in changes in gray and white matter (GM and WM) occurring during this period. Therefore, precise knowledge of GM and WM composition in perinatal brain development is crucial to characterizing brain formation as well as the neurodevelopmental disruption observed in diseases such as autism and schizophrenia. In this study, we combined histochemical and immunohistochemical staining with biochemical and biophysical analyses using Fourier transform infrared (IR) microspectroscopy (μFTIR) to better understand the chemical changes during postnatal developmental myelination. For this purpose, we analyzed the GM and WM in the mouse brain and cerebellum (strain C57BL/6) from postnatal day 0 (P0) to day P28 and established presumed correlations between staining and IR data. IR spectra allowed the (i) quantification of lipid and protein content through the CH2/amide I ratio, (ii) determination of chemical characteristics of lipids, such as the presence of unsaturated bonds in the carbonate chain or carbonyls from ester groups in the polar head, and (iii) determination of the protein secondary structure (α-helix and intramolecular β-sheets). The results indicate that the increase in the CH2/amide I ratio calculated from the μFTIR data correlates well with lipid histochemical staining. IR data indicated a change in the lipid composition in WM since carbonyl and unsaturated olefinic groups do not increase when lipids accumulate during myelination. Our correlation analysis between IR data and immunohistochemical staining of myelin-associated proteins revealed that myelin oligodendrocyte protein correlated well with lipid accumulation, while myelin basic protein appeared before lipid modifications, which indicated that myelin-associated proteins and lipid deposition were not synchronic. These events were related to a decrease in the intramolecular β/α protein ratio. Our results indicate that lipids and proteins in WM substantially change their composition due to primary myelination, and according to results obtained from staining, these modifications are better described by lipid histochemical staining than by immunohistochemistry against myelin-related proteins. In conclusion, μFTIR can be a useful technique to study WM during perinatal development and provide detailed information about alterations in the chemical composition related to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Marta Peris
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Núria Benseny-Cases
- Biophysics
Unit. Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Gemma Manich
- Department
of Morphological Sciences, Universitat Autònoma
de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Oriana Zerpa
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Beatriz Almolda
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Àlex Perálvarez-Marín
- Biophysics
Unit. Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Berta González
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Bernardo Castellano
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Chow EOW, Fung SF, Singh H. Actor-partner effects of wellbeing, hope and self-esteem on depression in stroke survivor-caregiver dyads: A randomized controlled trial. Clin Rehabil 2023; 37:394-406. [PMID: 36453001 PMCID: PMC9912309 DOI: 10.1177/02692155221128758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Stroke is a disabling, long-term condition that challenges the mental and physical health of stroke-survivors concurrently with their primary family-caregivers (dyad). However, there has been a lack of emphasis on this dyadic need. Thus, this study aims to investigate the impacts of two interventions on hope, self-esteem and hedonic wellbeing on depression among the stroke-survivor-caregiver dyad. METHODS This randomized-controlled-trial applied the actor-partner interdependence model to 100 randomly-selected dyads (N = 200) of stroke-survivors, mean (SD) age was 73.63(7.22) and family-caregivers, mean (SD) age was 62.49(14.44) years, recruited from Hong Kong hospitals and rehabilitation centres. The intervention was eight-weekly two-hour narrative therapy group sessions (n = 54 dyads), compared with the current model of psychoeducational group to each dyad as needed. Outcomes were collected via questionnaires and interviews, at four time-points: baseline (T1), during-intervention (T2) (1-month), immediately post-intervention (T3) (2-months) and follow-up (T4) (6-months). RESULTS The results demonstrated that there are actor effects on stroke-survivors (β = -0.353, p < 0.05) and caregivers (β = -0.383, p < 0.05), where higher levels of hedonic wellbeing were associated with fewer depressive symptoms. Partner effects were observed as caregivers' depressive symptoms were possessing a significant negative relationship with stroke survivors' wellbeing (β = -0.387, p < 0.05). Those stroke survivors in the intervention group had a significantly higher level of self-esteem associated with lower levels of depression (β = -0.314, p < 0.05). CONCLUSIONS Improving hope, self-esteem and wellbeing through narrative therapy significantly mediates depressive symptoms, strengthening the dyadic support of stroke survivors and family caregivers.
Collapse
Affiliation(s)
- Esther OW Chow
- Department of Social and Behavioural Sciences, City University of Hong
Kong, Hong Kong, China,Esther OW Chow, Department of Social and
Behavioural Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong.
| | - Sai-fu Fung
- Department of Social and Behavioural Sciences, City University of Hong
Kong, Hong Kong, China
| | - Hardev Singh
- Department of Social and Behavioural Sciences, City University of Hong
Kong, Hong Kong, China
| |
Collapse
|
3
|
Fourier Transform Infrared Imaging-A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury. Brain Sci 2021; 11:brainsci11070918. [PMID: 34356152 PMCID: PMC8307811 DOI: 10.3390/brainsci11070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) can be defined as a disorder in the function of the brain after a bump, blow, or jolt to the head, or penetrating head injury. Mild traumatic brain injury (mTBI) can cause devastating effects, such as the initiation of long-term neurodegeneration in brain tissue. In the current study, the effects of mTBI were investigated on rat brain regions; cortex (Co) and corpus callosum (CC) after 24 h (subacute trauma) by Fourier transform infrared (FTIR) imaging and immunohistochemistry (IHC). IHC studies showed the formation of amyloid-β (Aβ) plaques in the cortex brain region of mTBI rats. Moreover, staining of myelin basic protein presented the shearing of axons in CC region in the same group of animals. According to FTIR imaging results, total protein and lipid content significantly decreased in both Co and CC regions in mTBI group compared to the control. Due to this significant decrease in both lipid and protein content, remarkable consistency in lipid/protein band ratio in mTBI and control group, was observed. Significant decrease in methyl content and a significant increase in olefinic content were observed in Co and CC regions of mTBI rat brain tissues. Classification amongst distinguishable groups was performed using principal component analysis (PCA) and hierarchical clustering (HCA). This study established the prospective of FTIR imaging for assessing biochemical changes due to mTBI with high sensitivity, precision and high-resolution.
Collapse
|
4
|
Li Z, Gao H, Zeng P, Jia Y, Kong X, Xu K, Bai R. Secondary Degeneration of White Matter After Focal Sensorimotor Cortical Ischemic Stroke in Rats. Front Neurosci 2021; 14:611696. [PMID: 33536869 PMCID: PMC7848148 DOI: 10.3389/fnins.2020.611696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic lesions could lead to secondary degeneration in remote regions of the brain. However, the spatial distribution of secondary degeneration along with its role in functional deficits is not well understood. In this study, we explored the spatial and connectivity properties of white matter (WM) secondary degeneration in a focal unilateral sensorimotor cortical ischemia rat model, using advanced microstructure imaging on a 14 T MRI system. Significant axonal degeneration was observed in the ipsilateral external capsule and even remote regions including the contralesional external capsule and corpus callosum. Further fiber tractography analysis revealed that only fibers having direct axonal connections with the primary lesion exhibited a significant degeneration. These results suggest that focal ischemic lesions may induce remote WM degeneration, but limited to fibers tied to the primary lesion. These “direct” fibers mainly represent perilesional, interhemispheric, and subcortical axonal connections. At last, we found that primary lesion volume might be the determining factor of motor function deficits.
Collapse
Affiliation(s)
- Zhaoqing Li
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Huan Gao
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Pingmei Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yinhang Jia
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
From Mouse to Human: Comparative Analysis between Grey and White Matter by Synchrotron-Fourier Transformed Infrared Microspectroscopy. Biomolecules 2020; 10:biom10081099. [PMID: 32722088 PMCID: PMC7464184 DOI: 10.3390/biom10081099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fourier Transform Infrared microspectroscopy (μFTIR) is a very useful method to analyze the biochemical properties of biological samples in situ. Many diseases affecting the central nervous system (CNS) have been studied using this method, to elucidate alterations in lipid oxidation or protein aggregation, among others. In this work, we describe in detail the characteristics between grey matter (GM) and white matter (WM) areas of the human brain by μFTIR, and we compare them with the mouse brain (strain C57BL/6), the most used animal model in neurological disorders. Our results show a clear different infrared profile between brain areas in the lipid region of both species. After applying a second derivative in the data, we established a 1.5 threshold value for the lipid/protein ratio to discriminate between GM and WM areas in non-pathological conditions. Furthermore, we demonstrated intrinsic differences of lipids and proteins by cerebral area. Lipids from GM present higher C=CH, C=O and CH3 functional groups compared to WM in humans and mice. Regarding proteins, GM present lower Amide II amounts and higher intramolecular β-sheet structure amounts with respect to WM in both species. However, the presence of intermolecular β-sheet structures, which is related to β-aggregation, was only observed in the GM of some human individuals. The present study defines the relevant biochemical properties of non-pathological human and mouse brains by μFTIR as a benchmark for future studies involving CNS pathological samples.
Collapse
|