1
|
Battista S, Fedele M, Secco L, Ingo AMD, Sgarra R, Manfioletti G. Binding to the Other Side: The AT-Hook DNA-Binding Domain Allows Nuclear Factors to Exploit the DNA Minor Groove. Int J Mol Sci 2024; 25:8863. [PMID: 39201549 PMCID: PMC11354804 DOI: 10.3390/ijms25168863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The "AT-hook" is a peculiar DNA-binding domain that interacts with DNA in the minor groove in correspondence to AT-rich sequences. This domain has been first described in the HMGA protein family of architectural factors and later in various transcription factors and chromatin proteins, often in association with major groove DNA-binding domains. In this review, using a literature search, we identified about one hundred AT-hook-containing proteins, mainly chromatin proteins and transcription factors. After considering the prototypes of AT-hook-containing proteins, the HMGA family, we review those that have been studied in more detail and that have been involved in various pathologies with a particular focus on cancer. This review shows that the AT-hook is a domain that gives proteins not only the ability to interact with DNA but also with RNA and proteins. This domain can have enzymatic activity and can influence the activity of the major groove DNA-binding domain and chromatin docking modules when present, and its activity can be modulated by post-translational modifications. Future research on the function of AT-hook-containing proteins will allow us to better decipher their function and contribution to the different pathologies and to eventually uncover their mutual influences.
Collapse
Affiliation(s)
- Sabrina Battista
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | - Guidalberto Manfioletti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| |
Collapse
|
2
|
Lucà S, Franco R, Napolitano A, Soria V, Ronchi A, Zito Marino F, Della Corte CM, Morgillo F, Fiorelli A, Luciano A, Palma G, Arra C, Battista S, Cerchia L, Fedele M. PATZ1 in Non-Small Cell Lung Cancer: A New Biomarker That Negatively Correlates with PD-L1 Expression and Suppresses the Malignant Phenotype. Cancers (Basel) 2023; 15:cancers15072190. [PMID: 37046851 PMCID: PMC10093756 DOI: 10.3390/cancers15072190] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC), the leading cause of cancer death worldwide, is still an unmet medical problem due to the lack of both effective therapies against advanced stages and markers to allow a diagnosis of the disease at early stages before its progression. Immunotherapy targeting the PD-1/PD-L1 checkpoint is promising for many cancers, including NSCLC, but its success depends on the tumor expression of PD-L1. PATZ1 is an emerging cancer-related transcriptional regulator and diagnostic/prognostic biomarker in different malignant tumors, but its role in lung cancer is still obscure. Here we investigated expression and role of PATZ1 in NSCLC, in correlation with NSCLC subtypes and PD-L1 expression. A cohort of 104 NSCLCs, including lung squamous cell carcinomas (LUSCs) and adenocarcinomas (LUADs), was retrospectively analyzed by immunohistochemistry for the expression of PATZ1 and PD-L1. The results were correlated with each other and with the clinical characteristics, showing on the one hand a positive correlation between the high expression of PATZ1 and the LUSC subtype and, on the other hand, a negative correlation between PATZ1 and PD-L1, validated at the mRNA level in independent NSCLC datasets. Consistently, two NSCLC cell lines transfected with a PATZ1-overexpressing plasmid showed PD-L1 downregulation, suggesting a role for PATZ1 in the negative regulation of PD-L1. We also showed that PATZ1 overexpression inhibits NSCLC cell proliferation, migration, and invasion, and that Patz1-knockout mice develop LUAD. Overall, this suggests that PATZ1 may act as a tumor suppressor in NSCLC.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonella Napolitano
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Valeria Soria
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Medical Oncology, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Alfonso Fiorelli
- Translational Medical and Surgical Science, Thoracic Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Sabrina Battista
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Laura Cerchia
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| |
Collapse
|
3
|
Efficacy and Safety of Fuzheng Yiqi Kang-Ai Decoction Combined with External Irradiation in the Treatment of Undifferentiated Thyroid Carcinoma and Its Influence on Antiangiogenesis. JOURNAL OF ONCOLOGY 2022; 2022:3589924. [PMID: 35615246 PMCID: PMC9126711 DOI: 10.1155/2022/3589924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the efficacy and safety of Fuzheng Yiqi Kang-ai (FZYQKA for short) decoction with external irradiation in the treatment of undifferentiated thyroid carcinoma (UTC) and its influence on antiangiogenesis. Methods. In this retrospective study, the clinical data of 120 patients with UTC admitted to Zibo Central Hospital (February 2019-February 2020) were retrospectively analyzed, and the patients were equally divided into the experimental group (EG) and the control group (CG) according to the order of admission. All patients received external irradiation, and the EG received FZYQKA decoction additionally. FZYQKA decoction was taken orally 1 dose daily in 3 times with a total of 100 ml, for a total of 2 months. Short-term efficacy, incidence of acute radiotoxic responses, levels of matrix metalloproteinases (MMPs), indexes of immune function, and level of vascular endothelial growth factor (VEGF) were compared between both groups. Results Compared with the CG, the disease control rate of the EG was obviously higher (73.3% vs. 40.0%, P < 0.001). The acute radiotoxic responses of the two groups were mainly grade I-II oral mucositis, radiodermatitis, pharyngitis, esophagitis, and myelosuppression, and only three patients (5.0%) had grade III-IV toxic reactions. Compared with the CG, the incidence of grade I-II oral mucositis, radiodermatitis, pharyngitis, and esophagitis in the EG was obviously lower (P < 0.05). After treatment, compared with the CG, levels of MMPs and VEGF of the EG were obviously lower (P < 0.001). After treatment, compared with the CG, indexes of immune function of the EG were obviously higher (P < 0.001). Conclusion For patients with UTC, FZYQKA decoction combined with external irradiation can exert the antiangiogenesis effect, reduce levels of MMPs, and optimize the short-term efficacy. The safe treatment method has mild toxic and side effects, which should be popularized in practice.
Collapse
|
4
|
Mancinelli S, Vitiello M, Donnini M, Mantile F, Palma G, Luciano A, Arra C, Cerchia L, Liguori GL, Fedele M. The Transcription Regulator Patz1 Is Essential for Neural Stem Cell Maintenance and Proliferation. Front Cell Dev Biol 2021; 9:657149. [PMID: 33898458 PMCID: PMC8058466 DOI: 10.3389/fcell.2021.657149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Proper regulation of neurogenesis, the process by which new neurons are generated from neural stem and progenitor cells (NS/PCs), is essential for embryonic brain development and adult brain function. The transcription regulator Patz1 is ubiquitously expressed in early mouse embryos and has a key role in embryonic stem cell maintenance. At later stages, the detection of Patz1 expression mainly in the developing brain suggests a specific involvement of Patz1 in neurogenesis. To address this point, we first got insights in Patz1 expression profile in different brain territories at both embryonic and postnatal stages, evidencing a general decreasing trend with respect to time. Then, we performed in vivo and ex vivo analysis of Patz1-knockout mice, focusing on the ventricular and subventricular zone, where we confirmed Patz1 enrichment through the analysis of public RNA-seq datasets. Both embryos and adults showed a significant reduction in the number of Patz1-null NS/PCs, as well as of their self-renewal capability, compared to controls. Consistently, molecular analysis revealed the downregulation of stemness markers in NS/PCs derived from Patz1-null mice. Overall, these data demonstrate the requirement of Patz1 for NS/PC maintenance and proliferation, suggesting new roles for this key transcription factor specifically in brain development and plasticity, with possible implications for neurodegenerative disorders and glial brain tumors.
Collapse
Affiliation(s)
- Sara Mancinelli
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Michela Vitiello
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Maria Donnini
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Francesca Mantile
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Giuseppe Palma
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Antonio Luciano
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Laura Cerchia
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | | | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
5
|
Piepoli S, Alt AO, Atilgan C, Mancini EJ, Erman B. Structural analysis of the PATZ1 BTB domain homodimer. Acta Crystallogr D Struct Biol 2020; 76:581-593. [PMID: 32496219 PMCID: PMC7271949 DOI: 10.1107/s2059798320005355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
PATZ1 is a ubiquitously expressed transcriptional repressor belonging to the ZBTB family that is functionally expressed in T lymphocytes. PATZ1 targets the CD8 gene in lymphocyte development and interacts with the p53 protein to control genes that are important in proliferation and in the DNA-damage response. PATZ1 exerts its activity through an N-terminal BTB domain that mediates dimerization and co-repressor interactions and a C-terminal zinc-finger motif-containing domain that mediates DNA binding. Here, the crystal structures of the murine and zebrafish PATZ1 BTB domains are reported at 2.3 and 1.8 Å resolution, respectively. The structures revealed that the PATZ1 BTB domain forms a stable homodimer with a lateral surface groove, as in other ZBTB structures. Analysis of the lateral groove revealed a large acidic patch in this region, which contrasts with the previously resolved basic co-repressor binding interface of BCL6. A large 30-amino-acid glycine- and alanine-rich central loop, which is unique to mammalian PATZ1 amongst all ZBTB proteins, could not be resolved, probably owing to its flexibility. Molecular-dynamics simulations suggest a contribution of this loop to modulation of the mammalian BTB dimerization interface.
Collapse
Affiliation(s)
- Sofia Piepoli
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Aaron Oliver Alt
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center, SUNUM, 34956 Istanbul, Turkey
| | - Erika Jazmin Mancini
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Batu Erman
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| |
Collapse
|
6
|
Vitiello M, Palma G, Monaco M, Bello AM, Camorani S, Francesca P, Rea D, Barbieri A, Chiappetta G, Vita GD, Cerchia L, Arra C, Fedele M. Dual Oncogenic/Anti-Oncogenic Role of PATZ1 in FRTL5 Rat Thyroid Cells Transformed by the Ha-RasV12 Oncogene. Genes (Basel) 2019; 10:genes10020127. [PMID: 30744101 PMCID: PMC6410289 DOI: 10.3390/genes10020127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/10/2023] Open
Abstract
PATZ1 is a transcriptional factor downregulated in thyroid cancer whose re-expression in thyroid cancer cells leads to a partial reversion of the malignant phenotype, including the capacity to proliferate, migrate, and undergo epithelial-to-mesenchymal transition. We have recently shown that PATZ1 is specifically downregulated downstream of the Ras oncogenic signaling through miR-29b, and that restoration of PATZ1 in Ha-Ras transformed FRTL5 rat thyroid cells is able to inhibit their capacities to proliferate and migrate in vitro. Here, we analyzed the impact of PATZ1 expression on the in vivo tumorigenesis of these cells. Surprisingly, FRTL5-Ras-PATZ1 cells showed enhanced tumor initiation when engrafted in nude mice, even if their tumor growth rate was reduced compared to that of FRTL5-Ras control cells. To further investigate the cause of the enhanced tumor engraftment of FRTL5-Ras-PATZ1 cells, we analyzed the stem-like potential of these cells through their capacity to grow as thyrospheres. The results showed that restoration of PATZ1 expression in these cells increases stem cell markers’ expression and self-renewal ability of the thyrospheres while limiting their growth capacity. Therefore, we suggest that PATZ1 may play a role in enhancing the stem cell potential of thyroid cancer cells, but, at the same time, it impairs the proliferation of non-stem cells.
Collapse
Affiliation(s)
- Michela Vitiello
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori⁻IRCCS⁻Fondazione G. Pascale, 80131 Naples, Italy.
| | - Mario Monaco
- Functional Genomic Unit, Istituto Nazionale Tumori⁻IRCCS⁻Fondazione G. Pascale, 80131 Naples, Italy.
| | - Anna Maria Bello
- Functional Genomic Unit, Istituto Nazionale Tumori⁻IRCCS⁻Fondazione G. Pascale, 80131 Naples, Italy.
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Paola Francesca
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Domenica Rea
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori⁻IRCCS⁻Fondazione G. Pascale, 80131 Naples, Italy.
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori⁻IRCCS⁻Fondazione G. Pascale, 80131 Naples, Italy.
| | - Gennaro Chiappetta
- Functional Genomic Unit, Istituto Nazionale Tumori⁻IRCCS⁻Fondazione G. Pascale, 80131 Naples, Italy.
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori⁻IRCCS⁻Fondazione G. Pascale, 80131 Naples, Italy.
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|