1
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
2
|
Zhang C, Wang L, Xu C, Xu H, Wu Y. Resistance mechanisms of immune checkpoint inhibition in lymphoma: Focusing on the tumor microenvironment. Front Pharmacol 2023; 14:1079924. [PMID: 36959853 PMCID: PMC10027765 DOI: 10.3389/fphar.2023.1079924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic strategies of multiple types of malignancies including lymphoma. However, efficiency of ICIs varies dramatically among different lymphoma subtypes, and durable response can only be achieved in a minority of patients, thus requiring unveiling the underlying mechanisms of ICI resistance to optimize the individualized regimens and improve the treatment outcomes. Recently, accumulating evidence has identified potential prognostic factors for ICI therapy, including tumor mutation burden and tumor microenvironment (TME). Given the distinction between solid tumors and hematological malignancies in terms of TME, we here review the clinical updates of ICIs for lymphoma, and focus on the underlying mechanisms for resistance induced by TME, which play important roles in lymphoma and remarkably influence its sensitivity to ICIs. Particularly, we highlight the value of multiple cell populations (e.g., tumor infiltrating lymphocytes, M2 tumor-associated macrophages, and myeloid-derived suppressor cells) and metabolites (e.g., indoleamine 2, 3-dioxygenase and adenosine) in the TME as prognostic biomarkers for ICI response, and also underline additional potential targets in immunotherapy, such as EZH2, LAG-3, TIM-3, adenosine, and PI3Kδ/γ.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiming Wang
- Shenzhen Bay Laboratory, Center for transnational medicine, Shenzhen, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| |
Collapse
|
3
|
M’Kacher R, Miguet M, Maillard PY, Colicchio B, Scheidecker S, Najar W, Arnoux M, Oudrhiri N, Borie C, Biehler M, Plesch A, Heidingsfelder L, Bennaceur-Griscelli A, Dieterlen A, Voisin P, Junker S, Carde P, Jeandidier E. A Central Role of Telomere Dysfunction in the Formation of a Unique Translocation within the Sub-Telomere Region Resulting in Duplication and Partial Trisomy. Genes (Basel) 2022; 13:genes13101762. [PMID: 36292646 PMCID: PMC9601474 DOI: 10.3390/genes13101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Telomeres play a major role in maintaining genome stability and integrity. Putative involvement of telomere dysfunction in the formation of various types of chromosomal aberrations is an area of active research. Here, we report a case of a six-month-old boy with a chromosomal gain encompassing the 11q22.3q25 region identified by SNP array analysis. The size of the duplication is 26.7 Mb and contains 170 genes (OMIM). The duplication results in partial trisomy of the region in question with clinical consequences, including bilateral renal dysplasia, delayed development, and a heart defect. Moreover, the karyotype determined by R-banding and chromosome painting as well as by hybridization with specific sub-telomere probes revealed the presence of an unbalanced t(9;11)(p24;q22.3) translocation with a unique breakpoint involving the sub-telomere region of the short arm of chromosome 9. The karyotypes of the parents were normal. Telomere integrity in circulating lymphocytes from the child and from his parents was assessed using an automated high-throughput method based on fluorescence in situ hybridization (FISH) with telomere- and centromere-specific PNA probes followed by M-FISH multicolor karyotyping. Very short telomeres, as well as an increased frequency of telomere loss and formation of telomere doublets, were detected in the child’s cells. Interestingly, similar telomere profiles were found in the circulating lymphocytes of the father. Moreover, an assessment of clonal telomere aberrations identified chromosomes 9 and 11 with particularly high frequencies of such aberrations. These findings strongly suggest that telomere dysfunction plays a central role in the formation of this specific unbalanced chromosome rearrangement via chromosome end-to-end fusion and breakage–fusion–bridge cycles.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| | - Marguerite Miguet
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
| | - Pierre-Yves Maillard
- Service de Génétique Hôpitaux Universitaires de Strasbourg, Hôpital de Haute Pierre, 1, Rue Molière, 67000 Strasbourg, France
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Sophie Scheidecker
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Wala Najar
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Micheline Arnoux
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Noufissa Oudrhiri
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Claire Borie
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Margaux Biehler
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, 68804 Altlussheim, Germany
| | | | - Annelise Bennaceur-Griscelli
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Patrice Carde
- Department of Hematology Gustave Roussy Cancer Campus, Paris Saclay, 94805 Villejuif, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| |
Collapse
|
4
|
Patient-Derived iPSCs Reveal Evidence of Telomere Instability and DNA Repair Deficiency in Coats Plus Syndrome. Genes (Basel) 2022; 13:genes13081395. [PMID: 36011306 PMCID: PMC9407572 DOI: 10.3390/genes13081395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Coats plus (CP) syndrome is an inherited autosomal recessive condition that results from mutations in the conserved telomere maintenance component 1 gene (CTC1). The CTC1 protein functions as a part of the CST protein complex, a protein heterotrimer consisting of CTC1-STN1-TEN1 which promotes telomere DNA synthesis and inhibits telomerase-mediated telomere elongation. However, it is unclear how CTC1 mutations may have an effect on telomere structure and function. For that purpose, we established the very first induced pluripotent stem cell lines (iPSCs) from a compound heterozygous patient with CP carrying deleterious mutations in both alleles of CTC1. Telomere dysfunction and chromosomal instability were assessed in both circulating lymphocytes and iPSCs from the patient and from healthy controls of similar age. The circulating lymphocytes and iPSCs from the CP patient were characterized by their higher telomere length heterogeneity and telomere aberrations compared to those in control cells from healthy donors. Moreover, in contrast to iPSCs from healthy controls, the high levels of telomerase were associated with activation of the alternative lengthening of telomere (ALT) pathway in CP-iPSCs. This was accompanied by inappropriate activation of the DNA repair proteins γH2AX, 53BP1, and ATM, as well as with accumulation of DNA damage, micronuclei, and anaphase bridges. CP-iPSCs presented features of cellular senescence and increased radiation sensitivity. Clonal dicentric chromosomes were identified only in CP-iPSCs after exposure to radiation, thus mirroring the role of telomere dysfunction in their formation. These data demonstrate that iPSCs derived from CP patients can be used as a model system for molecular studies of the CP syndrome and underscores the complexity of telomere dysfunction associated with the defect of DNA repair machinery in the CP syndrome.
Collapse
|
5
|
M'kacher R, Colicchio B, Marquet V, Borie C, Najar W, Hempel WM, Heidingsfelder L, Oudrhiri N, Al Jawhari M, Wilhelm-Murer N, Miguet M, Dieterlen A, Deschênes G, Tabet AC, Junker S, Grynberg M, Fenech M, Bennaceur-Griscelli A, Voisin P, Carde P, Jeandidier E, Yardin C. Telomere aberrations, including telomere loss, doublets, and extreme shortening, are increased in patients with infertility. Fertil Steril 2020; 115:164-173. [PMID: 33272625 DOI: 10.1016/j.fertnstert.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To test the hypothesis that telomere shortening and/or loss are risk factors for infertility. DESIGN Retrospective analysis of the telomere status in patients with infertility using conventional cytogenetic data collected prospectively. SETTING Academic centers. PATIENT(S) Cytogenetic slides with cultured peripheral lymphocytes from 50 patients undergoing fertility treatment and 150 healthy donors, including 100 donors matched for age. INTERVENTION(S) Cytogenetic slides were used to detect chromosomal and telomere aberrations. MAIN OUTCOME MEASURE(S) Telomere length and telomere aberrations were analyzed after telomere and centromere staining. RESULT(S) The mean telomere length of patients consulting for infertility was significantly less than that of healthy donors of similar age. Moreover, patients with infertility showed significantly more extreme telomere loss and telomere doublet formation than healthy controls. Telomere shortening and/or telomere aberrations were more pronounced in patients with structural chromosomal aberrations. Dicentric chromosomes were identified in 6/13 patients, with constitutional chromosomal aberrations leading to chromosomal instability that correlated with chromosomal end-to-end fusions. CONCLUSION(S) Our findings demonstrate the feasibility of analyzing telomere aberrations in addition to chromosomal aberrations, using cytogenetic slides. Telomere attrition and/or dysfunction represent the main common cytogenetic characteristic of patients with infertility, leading to potential implications for fertility assessment. Pending further studies, these techniques that correlate the outcome of assisted reproduction and telomere integrity status may represent a novel and useful diagnostic and/or prognostic tool for medical care in this field.
Collapse
Affiliation(s)
- Radhia M'kacher
- Cell Environment, DNA Damage Research & Development, Paris, France.
| | - Bruno Colicchio
- Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, Mulhouse, France
| | - Valentine Marquet
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l'Enfant, Centre hospitalo-universitaire Dupuytren, Limoges, France
| | - Claire Borie
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | - Wala Najar
- Cell Environment, DNA Damage Research & Development, Paris, France; Faculté de médecine Paris Centre, Université de Paris, Paris, France
| | - William M Hempel
- Cell Environment, DNA Damage Research & Development, Paris, France
| | | | - Noufissa Oudrhiri
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | | | - Nadège Wilhelm-Murer
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Marguerite Miguet
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Alain Dieterlen
- Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, Mulhouse, France
| | | | | | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Michael Grynberg
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Antoine Béclère, Clamart, France
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia
| | - Annelise Bennaceur-Griscelli
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | - Philippe Voisin
- Cell Environment, DNA Damage Research & Development, Paris, France
| | - Patrice Carde
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Jeandidier
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Catherine Yardin
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l'Enfant, Centre hospitalo-universitaire Dupuytren, Limoges, France; CNRS, XLIM, UMR 7252, University of Limoges, Limoges, France
| |
Collapse
|
6
|
Germline variants of DNA repair genes in early onset mantle cell lymphoma. Oncogene 2020; 40:551-563. [PMID: 33191405 DOI: 10.1038/s41388-020-01542-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022]
Abstract
Although somatic mutations of DNA repair genes are frequent in mantle cell lymphoma (MCL), our understanding of their germline defects is limited. In a Chinese family with maternal Lynch syndrome and paternal B cell non-Hodgkin lymphoma, one sibling developed both Lynch syndrome and MCL. Lynch syndrome is caused by heterozygous mutations in mismatch repair (MMR) genes. To understand the genetic predispositions in the family, we performed exome sequencing and analyses of affected individuals and their tumor samples. A novel germline indel, MLH1 Gly101fsX1, was identified as the cause of Lynch syndrome, and unstable microsatellite loci and mutational signatures as evidence of defective MMR were revealed in the MCL sample. Furthermore, we included additional 15 MCL patients with early onset, and found by exome sequencing that 11 patients carried heterozygous germline variants of 20 DNA repair genes, including MSH2 in MMR. In the MCL with MSH2 Arg359fsX16, unstable microsatellite loci and defective MMR signatures were also found. In addition, five patients also had heterozygous germline variants of genes involved in B cell functions. Thus, our study found germline variants of genes in single-strand break repair, double-strand break repair, and Fanconi anemia pathway in early onset MCL; and for the first time we identified germline defects of MMR in two MCLs.
Collapse
|
7
|
M’kacher R, Colicchio B, Borie C, Junker S, Marquet V, Heidingsfelder L, Soehnlen K, Najar W, Hempel WM, Oudrhiri N, Wilhelm-Murer N, Miguet M, Arnoux M, Ferrapie C, Kerbrat W, Plesch A, Dieterlen A, Girinsky T, Voisin P, Deschenes G, Tabet AC, Yardin C, Bennaceur-Griscelli A, Fenech M, Carde P, Jeandidier E. Telomere and Centromere Staining Followed by M-FISH Improves Diagnosis of Chromosomal Instability and Its Clinical Utility. Genes (Basel) 2020; 11:E475. [PMID: 32349350 PMCID: PMC7291161 DOI: 10.3390/genes11050475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Dicentric chromosomes are a relevant marker of chromosomal instability. Their appearance is associated with telomere dysfunction, leading to cancer progression and a poor clinical outcome. Here, we present Telomere and Centromere staining followed by M-FISH (TC+M-FISH) for improved detection of telomere dysfunction and the identification of dicentric chromosomes in cancer patients and various genetic syndromes. Significant telomere length shortening and significantly higher frequencies of telomere loss and deletion were found in the peripheral lymphocytes of patients with cancer and genetic syndromes relative to similar age-matched healthy donors. We assessed our technique against conventional cytogenetics for the detection of dicentric chromosomes by subjecting metaphase preparations to both approaches. We identified dicentric chromosomes in 28/50 cancer patients and 21/44 genetic syndrome patients using our approach, but only 7/50 and 12/44, respectively, using standard cytogenetics. We ascribe this discrepancy to the identification of the unique configuration of dicentric chromosomes. We observed significantly higher frequencies of telomere loss and deletion in patients with dicentric chromosomes (p < 10-4). TC+M-FISH analysis is superior to classical cytogenetics for the detection of chromosomal instability. Our approach is a relatively simple but useful tool for documenting telomere dysfunction and chromosomal instability with the potential to become a standard additional diagnostic tool in medical genetics and the clinic.
Collapse
Affiliation(s)
- Radhia M’kacher
- Cell Environment, DNA Damage R&D, 75020 Paris, France; (K.S.); (W.N.); (W.M.H.); (P.V.)
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France; (B.C.); (A.D.)
| | - Claire Borie
- APHP-Service D’hématologie Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/ Inserm UMR 935, 94800 Villejuif, France; (C.B.); (N.O.); (M.A.); (C.F.); (W.K.); (A.B.-G.)
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark;
| | - Valentine Marquet
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l’Enfant, CHU Dupuytren, 87042 Limoges, France; (V.M.); (C.Y.)
| | | | - Kevin Soehnlen
- Cell Environment, DNA Damage R&D, 75020 Paris, France; (K.S.); (W.N.); (W.M.H.); (P.V.)
| | - Wala Najar
- Cell Environment, DNA Damage R&D, 75020 Paris, France; (K.S.); (W.N.); (W.M.H.); (P.V.)
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France; (B.C.); (A.D.)
- APHP-Service D’hématologie Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/ Inserm UMR 935, 94800 Villejuif, France; (C.B.); (N.O.); (M.A.); (C.F.); (W.K.); (A.B.-G.)
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark;
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l’Enfant, CHU Dupuytren, 87042 Limoges, France; (V.M.); (C.Y.)
- MetaSystems GmbH, Robert-Bosch-Str., 6 D-68804 Altlussheim, Germany; (L.H.); (A.P.)
- Faculté de Médicine, Université Paris Descartes, 75005 Paris, France
| | - William M. Hempel
- Cell Environment, DNA Damage R&D, 75020 Paris, France; (K.S.); (W.N.); (W.M.H.); (P.V.)
| | - Noufissa Oudrhiri
- APHP-Service D’hématologie Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/ Inserm UMR 935, 94800 Villejuif, France; (C.B.); (N.O.); (M.A.); (C.F.); (W.K.); (A.B.-G.)
| | - Nadège Wilhelm-Murer
- Service de Génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace Mulhouse, 68070 Mulhouse, France; (N.W.-M.); (M.M.); (E.J.)
| | - Marguerite Miguet
- Service de Génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace Mulhouse, 68070 Mulhouse, France; (N.W.-M.); (M.M.); (E.J.)
| | - Micheline Arnoux
- APHP-Service D’hématologie Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/ Inserm UMR 935, 94800 Villejuif, France; (C.B.); (N.O.); (M.A.); (C.F.); (W.K.); (A.B.-G.)
| | - Catherine Ferrapie
- APHP-Service D’hématologie Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/ Inserm UMR 935, 94800 Villejuif, France; (C.B.); (N.O.); (M.A.); (C.F.); (W.K.); (A.B.-G.)
| | - Wendy Kerbrat
- APHP-Service D’hématologie Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/ Inserm UMR 935, 94800 Villejuif, France; (C.B.); (N.O.); (M.A.); (C.F.); (W.K.); (A.B.-G.)
| | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str., 6 D-68804 Altlussheim, Germany; (L.H.); (A.P.)
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France; (B.C.); (A.D.)
| | - Theodore Girinsky
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | - Philippe Voisin
- Cell Environment, DNA Damage R&D, 75020 Paris, France; (K.S.); (W.N.); (W.M.H.); (P.V.)
| | - Georges Deschenes
- Nephrology Department, APHP-Hopital Robert Debré, 75019 Paris, France;
| | - Anne-Claude Tabet
- Cytogenetic Laboratory, APHP-Hopital Robert Debré, 75019 Paris, France;
| | - Catherine Yardin
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l’Enfant, CHU Dupuytren, 87042 Limoges, France; (V.M.); (C.Y.)
| | - Annelise Bennaceur-Griscelli
- APHP-Service D’hématologie Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/ Inserm UMR 935, 94800 Villejuif, France; (C.B.); (N.O.); (M.A.); (C.F.); (W.K.); (A.B.-G.)
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Genome Health Foundation, North Brighton, SA 5048, Australia
| | - Patrice Carde
- Department of Hematology, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | - Eric Jeandidier
- Service de Génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace Mulhouse, 68070 Mulhouse, France; (N.W.-M.); (M.M.); (E.J.)
| |
Collapse
|
8
|
Guinobert I, Blondeau C, Colicchio B, Oudrhiri N, Dieterlen A, Jeandidier E, Deschenes G, Bardot V, Cotte C, Ripoche I, Carde P, Berthomier L, M’Kacher R. The Use of Natural Agents to Counteract Telomere Shortening: Effects of a Multi-Component Extract of Astragalus mongholicus Bunge and Danazol. Biomedicines 2020; 8:biomedicines8020031. [PMID: 32059353 PMCID: PMC7168059 DOI: 10.3390/biomedicines8020031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
A link between telomere shortening and oxidative stress was found in aging people and patients with cancer or inflammatory diseases. Extracts of Astragalus spp. are known to stimulate telomerase activity, thereby compensating telomere shortening. We characterized a multi-component hydroethanolic root extract (HRE) of Astragalus mongholicus Bunge and assessed its effects on telomeres compared to those of danazol. Astragalosides I to IV, flavonoids, amino acids and sugars were detected in the HRE. Samples of peripheral blood lymphocytes with short telomeres from 18 healthy donors (mean age 63.5 years; range 32–86 years) were exposed to a single dose of 1 µg/mL HRE or danazol for three days. Telomere length and telomerase expression were then measured. Significant elongation of telomeres associated to a less toxicity was observed in lymphocytes from 13/18 donors following HRE treatment (0.54 kb (0.15–2.06 kb)) and in those from 9/18 donors after danazol treatment (0.95 kb (0.06–2.06 kb)). The rate of cells with short telomeres (<3 kb) decreased in lymphocytes from all donors after exposure to either HRE or danazol, telomere elongation being telomerase-dependent. These findings suggest that the HRE could be used for the management of age-related diseases.
Collapse
Affiliation(s)
- Isabelle Guinobert
- Groupe PiLeJe, 37 Quai de Grenelle, 75015 Paris Cedex 15, Naturopôle, Les Tiolans, 03800 Saint-Bonnet de Rochefort, France; (I.G.); (C.B.); (V.B.); (C.C.)
| | - Claude Blondeau
- Groupe PiLeJe, 37 Quai de Grenelle, 75015 Paris Cedex 15, Naturopôle, Les Tiolans, 03800 Saint-Bonnet de Rochefort, France; (I.G.); (C.B.); (V.B.); (C.C.)
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France; (B.C.); (A.D.)
| | - Noufissa Oudrhiri
- Service d’Hématologie Moléculaire et Cytogénétique Paul Brousse CHU Paris Sud, Université Paris Sud, Inserm UMRS935, 94800 Villejuif, France;
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France; (B.C.); (A.D.)
| | - Eric Jeandidier
- Service de Génétique Médicale, Groupe Hospitalier de la Région de Mulhouse et Sud-Alsace, 68070 Mulhouse, France;
| | - Georges Deschenes
- Service de Néphrologie, APHP-Hôpital Robert Debré, 75019 Paris, France;
| | - Valérie Bardot
- Groupe PiLeJe, 37 Quai de Grenelle, 75015 Paris Cedex 15, Naturopôle, Les Tiolans, 03800 Saint-Bonnet de Rochefort, France; (I.G.); (C.B.); (V.B.); (C.C.)
| | - César Cotte
- Groupe PiLeJe, 37 Quai de Grenelle, 75015 Paris Cedex 15, Naturopôle, Les Tiolans, 03800 Saint-Bonnet de Rochefort, France; (I.G.); (C.B.); (V.B.); (C.C.)
| | - Isabelle Ripoche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, BP 10448, 63000 Clermont-Ferrand, France; (I.R.); (L.B.)
| | - Patrice Carde
- Département d’hématologie, Gustave Roussy Cancer Campus, université Paris Saclay, 94808 Villejuif, France;
| | - Lucile Berthomier
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, BP 10448, 63000 Clermont-Ferrand, France; (I.R.); (L.B.)
| | - Radhia M’Kacher
- Cell Environment, DNA damage R&D, 75020 Paris, France
- Correspondence: ; Tel.: +33-01-48-81-30-38
| |
Collapse
|
9
|
Gladbach YS, Wiegele L, Hamed M, Merkenschläger AM, Fuellen G, Junghanss C, Maletzki C. Unraveling the Heterogeneous Mutational Signature of Spontaneously Developing Tumors in MLH1 -/- Mice. Cancers (Basel) 2019; 11:cancers11101485. [PMID: 31581674 PMCID: PMC6827043 DOI: 10.3390/cancers11101485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Mismatch repair deficient (MMR-D) tumors exemplify the prototypic hypermutator phenotype. Owing to the high mutation rates, plenty of neo-antigens are present on the tumor cells' surface, ideally shared among different cancer types. The MLH1 knock out mouse represents a preclinical model that resembles features of the human MMR-D counterpart. While these mice develop neoplasias in a sequential twin-peaked manner (lymphomas > gastrointestinal tumors (GIT)) we aimed at identification of underlying molecular mechanisms. Using whole-genome sequencing, we focused on (I) shared and (II) mutually exclusive mutations and describe the process of ongoing mutational events in tumor-derived cell cultures. The landscape of MLH1-/- tumors is heterogeneous with only a few shared mutations being detectable among different tumor entities (ARID1A and IDH2). With respect to coding microsatellite analysis of MMR-D-related target genes, partial overlap was detectable, yet recognizing shared antigens. The present study is the first reporting results of a comparison between spontaneously developing tumors in MMR-D driven tumorigenesis. Additionally to identifying ARID1A as potential causative mutation hotspot, this comprehensive characterization of the mutational landscape may be a good starting point to refine therapeutic concepts.
Collapse
Affiliation(s)
- Yvonne Saara Gladbach
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.
| | - Leonie Wiegele
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Anna-Marie Merkenschläger
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
10
|
Cuceu C, Colicchio B, Jeandidier E, Junker S, Plassa F, Shim G, Mika J, Frenzel M, Al Jawhari M, Hempel WM, Kabacik S, Lenain A, Morat L, Girinsky T, Dieterlen A, Polanska J, Badie C, Carde P, M'Kacher R. Erratum: Cuceu, C., et al. Independent Mechanisms Lead to Genomic Instability in Hodgkin Lymphoma: Microsatellite or Chromosomal Instability. Cancers 2018, 10, 233. Cancers (Basel) 2019; 11:cancers11060757. [PMID: 31151278 PMCID: PMC6627774 DOI: 10.3390/cancers11060757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Corina Cuceu
- Radiobiology and Oncology Laboratory, CEA, iRCM, 92265 Fontenay aux Roses CEDEX, France.
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Eric Jeandidier
- Department of Genetic, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68093 Mulhouse, France.
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark.
| | - François Plassa
- Laboratory of Biochemistry B, Saint Louis Hospital, 75010 Paris, France.
| | - Grace Shim
- Radiobiology and Oncology Laboratory, CEA, iRCM, 92265 Fontenay aux Roses CEDEX, France.
| | - Justyna Mika
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Techology, 44-100 Gliwice, Poland.
| | - Monika Frenzel
- Radiobiology and Oncology Laboratory, CEA, iRCM, 92265 Fontenay aux Roses CEDEX, France.
| | - Mustafa Al Jawhari
- Radiobiology and Oncology Laboratory, CEA, iRCM, 92265 Fontenay aux Roses CEDEX, France.
| | - William M Hempel
- Radiobiology and Oncology Laboratory, CEA, iRCM, 92265 Fontenay aux Roses CEDEX, France.
| | - Sylwia Kabacik
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK.
| | - Aude Lenain
- Radiobiology and Oncology Laboratory, CEA, iRCM, 92265 Fontenay aux Roses CEDEX, France.
| | - Luc Morat
- Radiobiology and Oncology Laboratory, CEA, iRCM, 92265 Fontenay aux Roses CEDEX, France.
| | - Theodore Girinsky
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 94805 Villejuif, France.
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Joanna Polanska
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Techology, 44-100 Gliwice, Poland.
| | - Christophe Badie
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK.
| | - Patrice Carde
- Department of Medicine, Gustave Roussy Cancer Campus, University Paris Saclay, 94805 Villejuif, France.
| | - Radhia M'Kacher
- Radiobiology and Oncology Laboratory, CEA, iRCM, 92265 Fontenay aux Roses CEDEX, France.
- Cell Environment DNA Damages R&D Oncology Section, 75020 Paris, France.
| |
Collapse
|
11
|
M'kacher R, Junker S, Jeandidier E, Carde P. Letter to the editor of environmental and molecular mutagenesis: In regard to Ramos et al. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:385-386. [PMID: 30851116 DOI: 10.1002/em.22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Affiliation(s)
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Eric Jeandidier
- Department of Genetic, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Mulhouse, France
| | - Patrice Carde
- Department of Medicine, Gustave Roussy Cancer Campus, University Paris-Saclay, Villejuif, France
| |
Collapse
|
12
|
Detecting Chromosome Instability in Cancer: Approaches to Resolve Cell-to-Cell Heterogeneity. Cancers (Basel) 2019; 11:cancers11020226. [PMID: 30781398 PMCID: PMC6406658 DOI: 10.3390/cancers11020226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Chromosome instability (CIN) is defined as an increased rate of chromosome gains and losses that manifests as cell-to-cell karyotypic heterogeneity and drives cancer initiation and evolution. Current research efforts are aimed at identifying the etiological origins of CIN, establishing its roles in cancer pathogenesis, understanding its implications for patient prognosis, and developing novel therapeutics that are capable of exploiting CIN. Thus, the ability to accurately identify and evaluate CIN is critical within both research and clinical settings. Here, we provide an overview of quantitative single cell approaches that evaluate and resolve cell-to-cell heterogeneity and CIN, and discuss considerations when selecting the most appropriate approach to suit both research and clinical contexts.
Collapse
|
13
|
M'kacher R, Frenzel M, Al Jawhari M, Junker S, Cuceu C, Morat L, Bauchet AL, Stimmer L, Lenain A, Dechamps N, Hempel WM, Pottier G, Heidingsfelder L, Laplagne E, Borie C, Oudrhiri N, Jouni D, Bennaceur-Griscelli A, Colicchio B, Dieterlen A, Girinsky T, Boisgard R, Bourhis J, Bosq J, Mehrling T, Jeandidier E, Carde P. Establishment and Characterization of a Reliable Xenograft Model of Hodgkin Lymphoma Suitable for the Study of Tumor Origin and the Design of New Therapies. Cancers (Basel) 2018; 10:cancers10110414. [PMID: 30384446 PMCID: PMC6265845 DOI: 10.3390/cancers10110414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/16/2023] Open
Abstract
To identify the cells responsible for the initiation and maintenance of Hodgkin lymphoma (HL) cells, we have characterized a subpopulation of HL cells grown in vitro and in vivo with the aim of establishing a reliable and robust animal model for HL. To validate our model, we challenged the tumor cells in vivo by injecting the alkylating histone-deacetylase inhibitor, EDO-S101, a salvage regimen for HL patients, into xenografted mice. Methodology: Blood lymphocytes from 50 HL patients and seven HL cell lines were used. Immunohistochemistry, flow cytometry, and cytogenetics analyses were performed. The in vitro and in vivo effects of EDO-S101 were assessed. Results: We have successfully determined conditions for in vitro amplification and characterization of the HL L428-c subline, containing a higher proportion of CD30−/CD15− cells than the parental L428 cell line. This subline displayed excellent clonogenic potential and reliable reproducibility upon xenografting into immunodeficient NOD-SCID-gamma (−/−)(NSG) mice. Using cell sorting, we demonstrate that CD30−/CD15− subpopulations can gain the phenotype of the L428-c cell line in vitro. Moreover, the human cells recovered from the seventh week after injection of L428-c cells into NSG mice were small cells characterized by a high frequency of CD30−/CD15− cells. Cytogenetic analysis demonstrated that they were diploid and showed high telomere instability and telomerase activity. Accordingly, chromosomal instability emerged, as shown by the formation of dicentric chromosomes, ring chromosomes, and breakage/fusion/bridge cycles. Similarly, high telomerase activity and telomere instability were detected in circulating lymphocytes from HL patients. The beneficial effect of the histone-deacetylase inhibitor EDO-S101 as an anti-tumor drug validated our animal model. Conclusion: Our HL animal model requires only 103 cells and is characterized by a high survival/toxicity ratio and high reproducibility. Moreover, the cells that engraft in mice are characterized by a high frequency of small CD30−/CD15− cells exhibiting high telomerase activity and telomere dysfunction.
Collapse
Affiliation(s)
- Radhia M'kacher
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
- Cell Environment, Oncology Section, 75020 Paris, France.
| | - Monika Frenzel
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Mustafa Al Jawhari
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | - Corina Cuceu
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Luc Morat
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Anne-Laure Bauchet
- Platform for Experimental Pathology PathEX/CRC MIRCen/CEA-INSERM, University Paris-Saclay, 92265 Fontenay aux Rroses, France.
| | - Lev Stimmer
- Platform for Experimental Pathology PathEX/CRC MIRCen/CEA-INSERM, University Paris-Saclay, 92265 Fontenay aux Rroses, France.
| | - Aude Lenain
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Nathalie Dechamps
- Platform for Cell Sorting, CEA, iRCM, 92265 Fontenay aux Roses, France.
| | - William M Hempel
- Radiobiology and Oncology Laboratory, CEA, iRCM, University Paris-Saclay, 92 265 Fontenay aux Roses, France.
| | - Geraldine Pottier
- Laboratoire d'Imagerie Moléculaire Expérimentale Groupe d'Imagerie du Petit Animal CEA/DSV/I2BM/SHFJ/U1023, University Paris-Saclay, 91400 Orsay, France.
| | | | | | - Claire Borie
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, 94800 Villejuif, France.
| | - Noufissa Oudrhiri
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, 94800 Villejuif, France.
| | - Dima Jouni
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, 94800 Villejuif, France.
| | | | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Theodore Girinsky
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, University Paris-Saclay, 94805 Villejuif, France.
| | - Raphael Boisgard
- Laboratoire d'Imagerie Moléculaire Expérimentale Groupe d'Imagerie du Petit Animal CEA/DSV/I2BM/SHFJ/U1023, University Paris-Saclay, 91400 Orsay, France.
| | - Jean Bourhis
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, University Paris-Saclay, 94805 Villejuif, France.
| | - Jacques Bosq
- Departement of Anapathology, Gustave Roussy Cancer Campus, University Paris-Saclay, 94805 Vilejuif, France.
| | | | - Eric Jeandidier
- Department of Genetic, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68093 Mulhouse, France.
| | - Patrice Carde
- Department of Medicine, Gustave Roussy Cancer Campus, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
14
|
M'kacher R, Cuceu C, Al Jawhari M, Morat L, Frenzel M, Shim G, Lenain A, Hempel WM, Junker S, Girinsky T, Colicchio B, Dieterlen A, Heidingsfelder L, Borie C, Oudrhiri N, Bennaceur-Griscelli A, Moralès O, Renaud S, Van de Wyngaert Z, Jeandidier E, Delhem N, Carde P. The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes. Cancers (Basel) 2018; 10:E169. [PMID: 29848986 PMCID: PMC6025489 DOI: 10.3390/cancers10060169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
Background: We analyzed telomere maintenance mechanisms (TMMs) in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Materials and Methods: Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA) was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT) was also assessed, along with EBV status. Results: Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30-/CD15- cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival (p < 10-3), event-free survival (p < 10-4), and freedom from progression (p < 10-3) and the presence of an ALT profile in lymph nodes of EBV+ patients. Conclusion: The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients.
Collapse
Affiliation(s)
- Radhia M'kacher
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
- Cell Environment, DNA Damages R&D, Oncology Section, 75020 Paris, France.
| | - Corina Cuceu
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Mustafa Al Jawhari
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Luc Morat
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Monika Frenzel
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Grace Shim
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Aude Lenain
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - William M Hempel
- Laboratoire de Radiobiologie et d'Oncologie, IRCM/DSV/CEA, 92265 Fontenay aux Roses, France.
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | - Theodore Girinsky
- Department of Radiation Therapy, Gustave Roussy Cancer Campus, 94808 Villejuif, France.
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68093 Mulhouse, France.
| | | | - Claire Borie
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Noufissa Oudrhiri
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Annelise Bennaceur-Griscelli
- Université Paris Sud, Service d'hématologie moléculaire et cytogénétique Paul brousse CHU paris Sud, Inserm UMRS935, 94800 Villejuif, France.
| | - Olivier Moralès
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Sarah Renaud
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Zoé Van de Wyngaert
- CHRU Lille Service des Maladies du Sang, Hopital Huriez, 59000 Lille, France.
| | - Eric Jeandidier
- Service de génétique, Groupe hospitalier de la région de Mulhouse Sud-Alsace, 68093 Mulhouse, France.
| | - Nadira Delhem
- CNRS, Institut Pasteur de Lille, UMR 8161-Immunoregulation of Virus-induced Cancers Team, F-59000 Lille, France.
| | - Patrice Carde
- Department of Medicine, Gustave Roussy Cancer Campus, 94808 Villejuif, France.
| |
Collapse
|