1
|
Shao Z, Yan H, Zhu M, Liu Z, Chen Z, Li W, Wang C, Zhang L, Zheng J. The impact of the subventricular zone invasion types and MGMT methylation status on tumor recurrence and prognosis in glioblastoma. Heliyon 2024; 10:e40558. [PMID: 39687126 PMCID: PMC11647857 DOI: 10.1016/j.heliyon.2024.e40558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Purpose The prognosis of isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) with the subventricular zone (SVZ) invasion is extremely unfavorable but the underlying mechanism remains unclear. We aimed to conduct a retrospective study to mainly investigate the prognostic value of SVZ invasion and MGMT status, and developed a novel clinical prediction model based on our findings. Methods 139 patients with IDH wild-type GBM were retrospectively studied. They were categorized into four types, taking into consideration of the spatial positional relationship between tumor, SVZ and the cerebral cortex (Ctx) on the preoperative T1-weighted contrast-enhanced images (T1WI + C). Survival analysis was conducted to identify significant variables, which were then included in a clinical model to predict patient survival outcomes. Results Among the included patients, 41 (29.5 %) were type I, 23 (16.5 %) were type II, 59 (42.4 %) were type III, and 16 (11.5 %) were type IV. In Cox regression analysis, partial surgical resection, SVZ invasion, MGMT unmethylation, short adjuvant chemotherapy cycles, and distant recurrence were identified as independent risk factors of prognosis. A clinical prediction model based on these factors was developed to accurately predicted the survival outcome at 6, 12, and 18 months. Conclusion Both SVZ invasion and MGMT unmethylation negatively influenced the prognosis of patients with IDH wild-type GBM. The clinical model developed in this study accurately predicts the survival outcome, providing a basis and reference for clinical practice.
Collapse
Affiliation(s)
- Zhiying Shao
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hao Yan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Min Zhu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zhengyang Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Ziqin Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Weiqi Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chenyang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
2
|
Tsuchiya T, Kawauchi D, Ohno M, Miyakita Y, Takahashi M, Yanagisawa S, Osawa S, Fujita S, Omura T, Narita Y. Risk Factors of Distant Recurrence and Dissemination of IDH Wild-Type Glioblastoma: A Single-Center Study and Meta-Analysis. Cancers (Basel) 2024; 16:2873. [PMID: 39199644 PMCID: PMC11352485 DOI: 10.3390/cancers16162873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) is a highly aggressive brain tumor with a high recurrence rate despite adjuvant treatment. This study aimed to evaluate the risk factors for non-local recurrence of GBM. In the present study, we analyzed 104 GBMs with a single lesion (non-multifocal or multicentric). Univariate analysis revealed that subventricular zone (SVZ) involvement was significantly associated with non-local recurrence (hazard ratio [HR]: 2.09 [1.08-4.05]). Tumors in contact with the trigone of the lateral ventricle tended to develop subependymal dissemination (p = 0.008). Ventricular opening via surgery did not increase the risk of non-local recurrence in patients with SVZ involvement (p = 0.190). A systematic review was performed to investigate the risk of non-local recurrence, and 21 studies were identified. A meta-analysis of previous studies confirmed SVZ involvement (odds ratio [OR]: 1.30 [1.01-1.67]) and O-6-methylguanine DNA methyltransferase promoter methylation (OR: 1.55 [1.09-2.20]) as significant risk factors for local recurrence. A time-dependent meta-analysis revealed a significant association between SVZ involvement and dissemination (HR: 1.69 [1.09-2.63]), while no significant association was found for distant recurrence (HR: 1.29 [0.74-2.27]). Understanding SVZ involvement and specific tumor locations associated with non-local recurrence provides critical insights for the management of GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.T.); (D.K.); (M.O.); (Y.M.); (M.T.); (S.Y.); (S.O.); (S.F.); (T.O.)
| |
Collapse
|
3
|
Jung K, Kempter J, Prokop G, Herrmann T, Griessmair M, Kim SH, Delbridge C, Meyer B, Bernhardt D, Combs SE, Zimmer C, Wiestler B, Schmidt-Graf F, Metz MC. Quantitative Assessment of Tumor Contact with Neurogenic Zones and Its Effects on Survival: Insights beyond Traditional Predictors. Cancers (Basel) 2024; 16:1743. [PMID: 38730694 PMCID: PMC11083354 DOI: 10.3390/cancers16091743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
So far, the cellular origin of glioblastoma (GBM) needs to be determined, with prevalent theories suggesting emergence from transformed endogenous stem cells. Adult neurogenesis primarily occurs in two brain regions: the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Whether the proximity of GBM to these neurogenic niches affects patient outcome remains uncertain. Previous studies often rely on subjective assessments, limiting the reliability of those results. In this study, we assessed the impact of GBM's relationship with the cortex, SVZ and SGZ on clinical variables using fully automated segmentation methods. In 177 glioblastoma patients, we calculated optimal cutpoints of minimal distances to the SVZ and SGZ to distinguish poor from favorable survival. The impact of tumor contact with neurogenic zones on clinical parameters, such as overall survival, multifocality, MGMT promotor methylation, Ki-67 and KPS score was also examined by multivariable regression analysis, chi-square test and Mann-Whitney-U. The analysis confirmed shorter survival in tumors contacting the SVZ with an optimal cutpoint of 14 mm distance to the SVZ, separating poor from more favorable survival. In contrast, tumor contact with the SGZ did not negatively affect survival. We did not find significant correlations with multifocality or MGMT promotor methylation in tumors contacting the SVZ, as previous studies discussed. These findings suggest that the spatial relationship between GBM and neurogenic niches needs to be assessed differently. Objective measurements disprove prior assumptions, warranting further research on this topic.
Collapse
Affiliation(s)
- Kirsten Jung
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Johanna Kempter
- Department of Neurology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (J.K.); (G.P.); (F.S.-G.)
| | - Georg Prokop
- Department of Neurology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (J.K.); (G.P.); (F.S.-G.)
| | - Tim Herrmann
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Michael Griessmair
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Su-Hwan Kim
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Claire Delbridge
- Department of Pathology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany;
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine and Health, Technical University of Munich, 81675 München, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (D.B.); (S.E.C.)
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (D.B.); (S.E.C.)
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| | - Benedikt Wiestler
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
- TranslaTUM, Technical University of Munich, 81675 München, Germany
| | - Friederike Schmidt-Graf
- Department of Neurology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (J.K.); (G.P.); (F.S.-G.)
| | - Marie-Christin Metz
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 München, Germany; (T.H.); (M.G.); (S.-H.K.); (C.Z.); (B.W.); (M.-C.M.)
| |
Collapse
|
4
|
Qiao W, Wang Y, Luo C, Wu J, Qin G, Zhang J, Yao Y. Development of preoperative and postoperative models to predict recurrence in postoperative glioma patients: a longitudinal cohort study. BMC Cancer 2024; 24:274. [PMID: 38418976 PMCID: PMC10900633 DOI: 10.1186/s12885-024-11996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Glioma recurrence, subsequent to maximal safe resection, remains a pivotal challenge. This study aimed to identify key clinical predictors influencing recurrence and develop predictive models to enhance neurological diagnostics and therapeutic strategies. METHODS This longitudinal cohort study with a substantial sample size (n = 2825) included patients with non-recurrent glioma who were pathologically diagnosed and had undergone initial surgical resection between 2010 and 2018. Logistic regression models and stratified Cox proportional hazards models were established with the top 15 clinical variables significantly influencing outcomes screened by the least absolute shrinkage and selection operator (LASSO) method. Preoperative and postoperative models predicting short-term (within 6 months) postoperative recurrence in glioma patients were developed to explore the risk factors associated with short- and long-term recurrence in glioma patients. RESULTS Preoperative and postoperative logistic models predicting short-term recurrence had accuracies of 0.78 and 0.87, respectively. A range of biological and early symptomatic characteristics linked to short- and long-term recurrence have been pinpointed. Age, headache, muscle weakness, tumor location and Karnofsky score represented significant odd ratios (t > 2.65, p < 0.01) in the preoperative model, while age, WHO grade 4 and chemotherapy or radiotherapy treatments (t > 4.12, p < 0.0001) were most significant in the postoperative period. Postoperative predictive models specifically targeting the glioblastoma and IDH wildtype subgroups were also performed, with an AUC of 0.76 and 0.80, respectively. The 50 combinations of distinct risk factors accommodate diverse recurrence risks among glioma patients, and the nomograms visualizes the results for clinical practice. A stratified Cox model identified many prognostic factors for long-term recurrence, thereby facilitating the enhanced formulation of perioperative care plans for patients, and glioblastoma patients displayed a median progression-free survival (PFS) of only 11 months. CONCLUSION The constructed preoperative and postoperative models reliably predicted short-term postoperative glioma recurrence in a substantial patient cohort. The combinations risk factors and nomograms enhance the operability of personalized therapeutic strategies and care regimens. Particular emphasis should be placed on patients with recurrence within six months post-surgery, and the corresponding treatment strategies require comprehensive clinical investigation.
Collapse
Affiliation(s)
- Wanyu Qiao
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Tumor Screening and Prevention, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Neurosurgical Institute, Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
| | - Ye Yao
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Brighi C, Waddington DEJ, Keall PJ, Booth J, O’Brien K, Silvester S, Parkinson J, Mueller M, Yim J, Bailey DL, Back M, Drummond J. The MANGO study: a prospective investigation of oxygen enhanced and blood-oxygen level dependent MRI as imaging biomarkers of hypoxia in glioblastoma. Front Oncol 2023; 13:1306164. [PMID: 38192626 PMCID: PMC10773871 DOI: 10.3389/fonc.2023.1306164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive type of brain cancer, with a 5-year survival rate of ~5% and most tumours recurring locally within months of first-line treatment. Hypoxia is associated with worse clinical outcomes in GBM, as it leads to localized resistance to radiotherapy and subsequent tumour recurrence. Current standard of care treatment does not account for tumour hypoxia, due to the challenges of mapping tumour hypoxia in routine clinical practice. In this clinical study, we aim to investigate the role of oxygen enhanced (OE) and blood-oxygen level dependent (BOLD) MRI as non-invasive imaging biomarkers of hypoxia in GBM, and to evaluate their potential role in dose-painting radiotherapy planning and treatment response assessment. Methods The primary endpoint is to evaluate the quantitative and spatial correlation between OE and BOLD MRI measurements and [18F]MISO values of uptake in the tumour. The secondary endpoints are to evaluate the repeatability of MRI biomarkers of hypoxia in a test-retest study, to estimate the potential clinical benefits of using MRI biomarkers of hypoxia to guide dose-painting radiotherapy, and to evaluate the ability of MRI biomarkers of hypoxia to assess treatment response. Twenty newly diagnosed GBM patients will be enrolled in this study. Patients will undergo standard of care treatment while receiving additional OE/BOLD MRI and [18F]MISO PET scans at several timepoints during treatment. The ability of OE/BOLD MRI to map hypoxic tumour regions will be evaluated by assessing spatial and quantitative correlations with areas of hypoxic tumour identified via [18F]MISO PET imaging. Discussion MANGO (Magnetic resonance imaging of hypoxia for radiation treatment guidance in glioblastoma multiforme) is a diagnostic/prognostic study investigating the role of imaging biomarkers of hypoxia in GBM management. The study will generate a large amount of longitudinal multimodal MRI and PET imaging data that could be used to unveil dynamic changes in tumour physiology that currently limit treatment efficacy, thereby providing a means to develop more effective and personalised treatments.
Collapse
Affiliation(s)
- Caterina Brighi
- Image X Institute, Sydney School of Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David E. J. Waddington
- Image X Institute, Sydney School of Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Paul J. Keall
- Image X Institute, Sydney School of Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jeremy Booth
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, Australia
| | | | - Shona Silvester
- Image X Institute, Sydney School of Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jonathon Parkinson
- Department of Neurosurgery, Royal North Shore Hospital, Sydney, NSW, Australia
- The Brain Cancer Group Sydney, St Leonards, NSW, Australia
| | - Marco Mueller
- Siemens Healthcare Pty Ltd, Brisbane, QLD, Australia
| | - Jackie Yim
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
- The Brain Cancer Group Sydney, St Leonards, NSW, Australia
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, NSW, Australia
| | - Dale L. Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Michael Back
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
- The Brain Cancer Group Sydney, St Leonards, NSW, Australia
| | - James Drummond
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
- The Brain Cancer Group Sydney, St Leonards, NSW, Australia
- Department of Neuroradiology, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
6
|
Cao W, Xiong L, Meng L, Li Z, Hu Z, Lei H, Wu J, Song T, Liu C, Wei R, Shen L, Hong J. Prognostic analysis and nomogram construction for older patients with IDH-wild-type glioblastoma. Heliyon 2023; 9:e18310. [PMID: 37519736 PMCID: PMC10372674 DOI: 10.1016/j.heliyon.2023.e18310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
As many countries face an ageing population, the number of older patients with glioblastoma (GB) is increasing. Thus, there is an urgent need for prognostic models to aid in treatment decision-making and life planning. A total of 98 patients with isocitrate dehydrogenase (IDH)-wild-type GB aged ≥65 years were analysed from January 2012 to January 2020. Independent prognostic factors were identified by prognostic analysis. Using the independent prognostic factors for overall survival (OS), a nomogram was constructed by R software to predict the prognosis of older patients with IDH-wild-type GB. The concordance index (C-index) and receiver operating characteristic (ROC) curve were used to assess model discrimination, and the calibration curve was used to assess model calibration. Prognostic analysis showed that the extent of resection (EOR), adjusted Charlson comorbidity index (ACCI), O6-methylguanine-DNA methyltransferase (MGMT) methylation status, postoperative radiotherapy, and postoperative temozolomide (TMZ) chemotherapy were independent prognostic factors for OS. MGMT methylation status and subventricular zone (SVZ) involvement were independent prognostic factors for progression-free survival (PFS). A nomogram was constructed based on EOR, ACCI, MGMT methylation status, postoperative radiotherapy and postoperative TMZ chemotherapy to predict the 6-month, 12-month and 18-month OS of older patients with IDH-wild-type GB. The C-index of the nomogram was 0.72, and the ROC curves showed that the areas under the curve (AUCs) at 6, 12 and 18 months were 0.874, 0.739 and 0.779, respectively. The calibration plots showed that the nomogram was in good agreement with the actual observations in predicting the OS of older patients with IDH-wild-type GB. Older patients with IDH-wild-type GB can benefit from gross total resection (GTR), postoperative radiotherapy and postoperative TMZ chemotherapy. A high ACCI score and MGMT nonmethylation are poor prognostic factors. We constructed a nomogram including the ACCI to facilitate clinical decision-making and follow-up interval selection.
Collapse
Affiliation(s)
- Wenjun Cao
- Department of Hematology and Oncology, The First Hospital of Changsha, People's Republic of China
| | - Luqi Xiong
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Li Meng
- Department of Radiology, Xiangya Hospital, Central South University, People's Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Zhongliang Hu
- Department of Pathology, Xiangya Hospital, Central South University, People's Republic of China
| | - Huo Lei
- Department of Neurosurgery, Xiangya Hospital, Central South University, People's Republic of China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, People's Republic of China
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, People's Republic of China
| | - Chao Liu
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| |
Collapse
|
7
|
Dao Trong P, Kilian S, Jesser J, Reuss D, Aras FK, Von Deimling A, Herold-Mende C, Unterberg A, Jungk C. Risk Estimation in Non-Enhancing Glioma: Introducing a Clinical Score. Cancers (Basel) 2023; 15:cancers15092503. [PMID: 37173969 PMCID: PMC10177456 DOI: 10.3390/cancers15092503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The preoperative grading of non-enhancing glioma (NEG) remains challenging. Herein, we analyzed clinical and magnetic resonance imaging (MRI) features to predict malignancy in NEG according to the 2021 WHO classification and developed a clinical score, facilitating risk estimation. A discovery cohort (2012-2017, n = 72) was analyzed for MRI and clinical features (T2/FLAIR mismatch sign, subventricular zone (SVZ) involvement, tumor volume, growth rate, age, Pignatti score, and symptoms). Despite a "low-grade" appearance on MRI, 81% of patients were classified as WHO grade 3 or 4. Malignancy was then stratified by: (1) WHO grade (WHO grade 2 vs. WHO grade 3 + 4) and (2) molecular criteria (IDHmut WHO grade 2 + 3 vs. IDHwt glioblastoma + IDHmut astrocytoma WHO grade 4). Age, Pignatti score, SVZ involvement, and T2/FLAIR mismatch sign predicted malignancy only when considering molecular criteria, including IDH mutation and CDKN2A/B deletion status. A multivariate regression confirmed age and T2/FLAIR mismatch sign as independent predictors (p = 0.0009; p = 0.011). A "risk estimation in non-enhancing glioma" (RENEG) score was derived and tested in a validation cohort (2018-2019, n = 40), yielding a higher predictive value than the Pignatti score or the T2/FLAIR mismatch sign (AUC of receiver operating characteristics = 0.89). The prevalence of malignant glioma was high in this series of NEGs, supporting an upfront diagnosis and treatment approach. A clinical score with robust test performance was developed that identifies patients at risk for malignancy.
Collapse
Affiliation(s)
- Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Samuel Kilian
- Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Jesser
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - David Reuss
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Fuat Kaan Aras
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Von Deimling
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Isocitrate-dehydrogenase-mutant lower grade glioma in elderly patients: treatment and outcome in a molecularly characterized contemporary cohort. J Neurooncol 2023; 161:605-615. [PMID: 36648586 PMCID: PMC9992027 DOI: 10.1007/s11060-022-04230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/24/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Lower-grade glioma (LGG) is rare among patients above the age of 60 ("elderly"). Previous studies reported poor outcome, likely due to the inclusion of isocitrate dehydrogenase (IDH) wildtype astrocytomas and advocated defensive surgical and adjuvant treatment. This study set out to question this paradigm analyzing a contemporary cohort of patients with IDH mutant astrocytoma and oligodendroglioma WHO grade 2 and 3. METHODS Elderly patients treated in our department for a supratentorial, hemispheric LGG between 2009 and 2019 were retrospectively analyzed for patient-, tumor- and treatment-related factors and progression-free survival (PFS) and compared to patients aged under 60. Inclusion required the availability of subtype-defining molecular data and pre- and post-operative tumor volumes. RESULTS 207 patients were included, among those 21 elderlies (10%). PFS was comparable between elderly and younger patients (46 vs. 54 months; p = 0.634). Oligodendroglioma was more common in the elderly (76% vs. 46%; p = 0.011). Most patients underwent tumor resection (elderly: 81% vs. younger: 91%; p = 0.246) yielding comparable residual tumor volumes (elderly: 7.8 cm3; younger: 4.1 cm3; p = 0.137). Adjuvant treatment was administered in 76% of elderly and 61% of younger patients (p = 0.163). Uni- and multi-variate survival analyses identified a tumor crossing the midline, surgical strategy, and pre- and post-operative tumor volumes as prognostic factors. CONCLUSION Elderly patients constitute a small fraction of molecularly characterized LGGs. In contrast to previous reports, favorable surgical and survival outcomes were achieved in our series comparable to those of younger patients. Thus, intensified treatment including maximal safe resection should be advocated in elderly patients whenever feasible.
Collapse
|
9
|
Jiao Y, Wang M, Liu X, Wang J, Shou Y, Sun H. Clinical features and prognostic significance of tumor involved with subventricular zone in pediatric glioblastoma: a 10-year experience in a single hospital. Childs Nerv Syst 2022; 38:1469-1477. [PMID: 35474540 DOI: 10.1007/s00381-022-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Tumors involved with subventricular zone (SVZ) predicted an adverse prognosis had been well proved in adult glioblastoma (GBM). However, we still know less about its impact on children due to the rarity of pediatric glioblastoma (pGBM). We performed this retrospective study to better understand the clinical and prognostic features of pGBM involved with SVZ. METHODS Fifty-two patients diagnosed with pGBM at our center between January 2011 and January 2021 were selected for review to demonstrate the characteristics of tumor contacting SVZ. Thirty patients who underwent concurrent chemoradiotherapy and adjuvant chemotherapy postoperatively were selected for survival analysis. RESULTS Of all the 52 patients, 21 were found to contact SVZ and 31 were not. The median PFS and OS in SVZ + patients were 5.2 and 8.9 months, respectively, whereas median PFS and OS were 11.9 and 17.9 months, respectively, in SVZ - patients. Multivariate analysis showed that involvement of SVZ was an independent prognostic factor for OS while focality at diagnosis was an independent prognostic factor for PFS. Tumors contacted with SVZ tend to have larger volumes, lower incidence of epilepsy, and lower total resect rate and they were more likely to originate from midline location. Age at diagnosis; gender; adjuvant therapy; focality at diagnosis; focality at relapse; mutational status of H3K27M, MGMT, IDH1, and IDH2; and expression of P53 and ATRX protein failed to characterize SVZ + patients. CONCLUSION Involvement of SVZ predicted worse OS in pGBM and it had some distinct clinical features in comparison with those that did not contact with SVZ. Multifocal tumor at diagnosis was related to a shorter PFS. We should make a further step to clarify its molecular features.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Meng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Xueyou Liu
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Junkuan Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Yuwei Shou
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Sun
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
10
|
Hagiwara A, Schlossman J, Shabani S, Raymond C, Tatekawa H, Abrey LE, Garcia J, Chinot O, Saran F, Nishikawa R, Henriksson R, Mason WP, Wick W, Cloughesy TF, Ellingson BM. Incidence, molecular characteristics, and imaging features of “clinically-defined pseudoprogression” in newly diagnosed glioblastoma treated with chemoradiation. J Neurooncol 2022; 159:509-518. [DOI: 10.1007/s11060-022-04088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/02/2022] [Indexed: 11/27/2022]
|
11
|
Adeberg S, Knoll M, Koelsche C, Bernhardt D, Schrimpf D, Sahm F, König L, Harrabi SB, Hörner-Rieber J, Verma V, Bewerunge-Hudler M, Unterberg A, Sturm D, Jungk C, Herold-Mende C, Wick W, von Deimling A, Debus J, Rieken S, Abdollahi A. DNA-methylome-assisted classification of patients with poor prognostic subventricular zone associated IDH-wildtype glioblastoma. Acta Neuropathol 2022; 144:129-142. [PMID: 35660939 PMCID: PMC9217840 DOI: 10.1007/s00401-022-02443-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) derived from the “stem cell” rich subventricular zone (SVZ) may constitute a therapy-refractory subgroup of tumors associated with poor prognosis. Risk stratification for these cases is necessary but is curtailed by error prone imaging-based evaluation. Therefore, we aimed to establish a robust DNA methylome-based classification of SVZ GBM and subsequently decipher underlying molecular characteristics. MRI assessment of SVZ association was performed in a retrospective training set of IDH-wildtype GBM patients (n = 54) uniformly treated with postoperative chemoradiotherapy. DNA isolated from FFPE samples was subject to methylome and copy number variation (CNV) analysis using Illumina Platform and cnAnalysis450k package. Deep next-generation sequencing (NGS) of a panel of 130 GBM-related genes was conducted (Agilent SureSelect/Illumina). Methylome, transcriptome, CNV, MRI, and mutational profiles of SVZ GBM were further evaluated in a confirmatory cohort of 132 patients (TCGA/TCIA). A 15 CpG SVZ methylation signature (SVZM) was discovered based on clustering and random forest analysis. One third of CpG in the SVZM were associated with MAB21L2/LRBA. There was a 14.8% (n = 8) discordance between SVZM vs. MRI classification. Re-analysis of these patients favored SVZM classification with a hazard ratio (HR) for OS of 2.48 [95% CI 1.35–4.58], p = 0.004 vs. 1.83 [1.0–3.35], p = 0.049 for MRI classification. In the validation cohort, consensus MRI based assignment was achieved in 62% of patients with an intraclass correlation (ICC) of 0.51 and non-significant HR for OS (2.03 [0.81–5.09], p = 0.133). In contrast, SVZM identified two prognostically distinct subgroups (HR 3.08 [1.24–7.66], p = 0.016). CNV alterations revealed loss of chromosome 10 in SVZM– and gains on chromosome 19 in SVZM– tumors. SVZM– tumors were also enriched for differentially mutated genes (p < 0.001). In summary, SVZM classification provides a novel means for stratifying GBM patients with poor prognosis and deciphering molecular mechanisms governing aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Sebastian Adeberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Maximilian Knoll
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Denise Bernhardt
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Laila König
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Semi Ben Harrabi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Vivek Verma
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center Houston, Houston, TX, USA
| | - Melanie Bewerunge-Hudler
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dominik Sturm
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Angelika Lautenschläger Children's Hospital, University Medical Center for Children and Adolescents, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Christine Jungk
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurooncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas von Deimling
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juergen Debus
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Rieken
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Brighi C, Keall PJ, Holloway LC, Walker A, Whelan B, de Witt Hamer PC, Verburg N, Aly F, Chen C, Koh ES, Waddington DEJ. An investigation of the conformity, feasibility, and expected clinical benefits of multiparametric MRI-guided dose painting radiotherapy in glioblastoma. Neurooncol Adv 2022; 4:vdac134. [PMID: 36105390 PMCID: PMC9466270 DOI: 10.1093/noajnl/vdac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background New technologies developed to improve survival outcomes for glioblastoma (GBM) continue to have limited success. Recently, image-guided dose painting (DP) radiotherapy has emerged as a promising strategy to increase local control rates. In this study, we evaluate the practical application of a multiparametric MRI model of glioma infiltration for DP radiotherapy in GBM by measuring its conformity, feasibility, and expected clinical benefits against standard of care treatment. Methods Maps of tumor probability were generated from perfusion/diffusion MRI data from 17 GBM patients via a previously developed model of GBM infiltration. Prescriptions for DP were linearly derived from tumor probability maps and used to develop dose optimized treatment plans. Conformity of DP plans to dose prescriptions was measured via a quality factor. Feasibility of DP plans was evaluated by dose metrics to target volumes and critical brain structures. Expected clinical benefit of DP plans was assessed by tumor control probability. The DP plans were compared to standard radiotherapy plans. Results The conformity of the DP plans was >90%. Compared to the standard plans, DP (1) did not affect dose delivered to organs at risk; (2) increased mean and maximum dose and improved minimum dose coverage for the target volumes; (3) reduced minimum dose within the radiotherapy treatment margins; (4) improved local tumor control probability within the target volumes for all patients. Conclusions A multiparametric MRI model of GBM infiltration can enable conformal, feasible, and potentially beneficial dose painting radiotherapy plans.
Collapse
Affiliation(s)
- Caterina Brighi
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney , Australia
- Ingham Institute for Applied Medical Research , Sydney , Australia
| | - Paul J Keall
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney , Australia
- Ingham Institute for Applied Medical Research , Sydney , Australia
| | - Lois C Holloway
- Ingham Institute for Applied Medical Research , Sydney , Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
- Centre for Medical Radiation Physics, University of Wollongong , Wollongong, Australia
| | - Amy Walker
- Ingham Institute for Applied Medical Research , Sydney , Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
- Centre for Medical Radiation Physics, University of Wollongong , Wollongong, Australia
| | - Brendan Whelan
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney , Australia
- Ingham Institute for Applied Medical Research , Sydney , Australia
| | - Philip C de Witt Hamer
- Brain Tumor Center Amsterdam , Amsterdam UMC, Amsterdam , The Netherlands
- Department of Neurosurgery , Amsterdam UMC, Amsterdam , The Netherlands
| | - Niels Verburg
- Brain Tumor Center Amsterdam , Amsterdam UMC, Amsterdam , The Netherlands
- Department of Neurosurgery , Amsterdam UMC, Amsterdam , The Netherlands
| | - Farhannah Aly
- Ingham Institute for Applied Medical Research , Sydney , Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
| | - Cathy Chen
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
| | - Eng-Siew Koh
- Ingham Institute for Applied Medical Research , Sydney , Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres , Liverpool , Australia
| | - David E J Waddington
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney , Sydney , Australia
- Ingham Institute for Applied Medical Research , Sydney , Australia
| |
Collapse
|
13
|
Curtin L, Whitmire P, White H, Bond KM, Mrugala MM, Hu LS, Swanson KR. Shape matters: morphological metrics of glioblastoma imaging abnormalities as biomarkers of prognosis. Sci Rep 2021; 11:23202. [PMID: 34853344 PMCID: PMC8636508 DOI: 10.1038/s41598-021-02495-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Lacunarity, a quantitative morphological measure of how shapes fill space, and fractal dimension, a morphological measure of the complexity of pixel arrangement, have shown relationships with outcome across a variety of cancers. However, the application of these metrics to glioblastoma (GBM), a very aggressive primary brain tumor, has not been fully explored. In this project, we computed lacunarity and fractal dimension values for GBM-induced abnormalities on clinically standard magnetic resonance imaging (MRI). In our patient cohort (n = 402), we connect these morphological metrics calculated on pretreatment MRI with the survival of patients with GBM. We calculated lacunarity and fractal dimension on necrotic regions (n = 390), all abnormalities present on T1Gd MRI (n = 402), and abnormalities present on T2/FLAIR MRI (n = 257). We also explored the relationship between these metrics and age at diagnosis, as well as abnormality volume. We found statistically significant relationships to outcome for all three imaging regions that we tested, with the shape of T2/FLAIR abnormalities that are typically associated with edema showing the strongest relationship with overall survival. This link between morphological and survival metrics could be driven by underlying biological phenomena, tumor location or microenvironmental factors that should be further explored.
Collapse
Affiliation(s)
- Lee Curtin
- Mathematical Neuro-Oncology Lab, Precision Neurotherapeutics Innovation Program, Department of Neurological Surgery, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Paula Whitmire
- Mathematical Neuro-Oncology Lab, Precision Neurotherapeutics Innovation Program, Department of Neurological Surgery, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Haylye White
- Mathematical Neuro-Oncology Lab, Precision Neurotherapeutics Innovation Program, Department of Neurological Surgery, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Kamila M Bond
- Mathematical Neuro-Oncology Lab, Precision Neurotherapeutics Innovation Program, Department of Neurological Surgery, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
- Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Maciej M Mrugala
- Department of Neurology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Leland S Hu
- Department of Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Kristin R Swanson
- Mathematical Neuro-Oncology Lab, Precision Neurotherapeutics Innovation Program, Department of Neurological Surgery, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| |
Collapse
|
14
|
Kim KH, Yoo J, Kim N, Moon JH, Byun HK, Kang SG, Chang JH, Yoon HI, Suh CO. Efficacy of Whole-Ventricular Radiotherapy in Patients Undergoing Maximal Tumor Resection for Glioblastomas Involving the Ventricle. Front Oncol 2021; 11:736482. [PMID: 34621677 PMCID: PMC8490925 DOI: 10.3389/fonc.2021.736482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Patients with glioblastoma (GBM) involving the ventricles are at high risk of ventricle opening during surgery and potential ventricular tumor spread. We evaluated the effectiveness of whole-ventricular radiotherapy (WVRT) in reducing intraventricular seeding in patients with GBM and identified patients who could benefit from this approach. Methods and Materials We retrospectively reviewed the data of 382 patients with GBM who underwent surgical resection and temozolomide-based chemoradiotherapy. Propensity score matching was performed to compensate for imbalances in characteristics between patients who did [WVRT (+); n=59] and did not [WVRT (–); n=323] receive WVRT. Local, outfield, intraventricular, and leptomeningeal failure rates were compared. Results All patients in the WVRT (+) group had tumor ventricular involvement and ventricle opening during surgery. In the matched cohort, the WVRT (+) group exhibited a significantly lower 2-year intraventricular failure rate than the WVRT (–) group (2.1% vs. 11.8%; P=0.045), with no difference in other outcomes. Recursive partitioning analysis stratified the patients in the WVRT (–) group at higher intraventricular failure risk (2-year survival, 14.2%) due to tumor ventricular involvement, MGMT unmethylation, and ventricle opening. WVRT reduced the intraventricular failure rate only in high-risk patients (0% vs. 14.2%; P=0.054) or those with MGMT-unmethylated GBM in the matched cohort (0% vs. 17.3%; P=0.036). Conclusions WVRT reduced the intraventricular failure rate in patients with tumor ventricular involvement and ventricle opening during surgery. The MGMT-methylation status may further stratify patients who could benefit from WVRT. Further prospective evaluation of WVRT in GBM is warranted.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihwan Yoo
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| |
Collapse
|
15
|
Rationally designed drug delivery systems for the local treatment of resected glioblastoma. Adv Drug Deliv Rev 2021; 177:113951. [PMID: 34461201 DOI: 10.1016/j.addr.2021.113951] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is a particularly aggressive brain cancer associated with high recurrence and poor prognosis. The standard of care, surgical resection followed by concomitant radio- and chemotherapy, leads to low survival rates. The local delivery of active agents within the tumor resection cavity has emerged as an attractive means to initiate oncological treatment immediately post-surgery. This complementary approach bypasses the blood-brain barrier, increases the local concentration at the tumor site while reducing or avoiding systemic side effects. This review will provide a global overview on the local treatment for GBM with an emphasis on the lessons learned from past clinical trials. The main parameters to be considered to rationally design fit-of-purpose biomaterials and develop drug delivery systems for local administration in the GBM resection cavity to prevent the tumor recurrence will be described. The intracavitary local treatment of GBM should i) use materials that facilitate translation to the clinic; ii) be characterized by easy GMP effective scaling up and easy-handling application by the neurosurgeons; iii) be adaptable to fill the tumor-resected niche, mold to the resection cavity or adhere to the exposed brain parenchyma; iv) be biocompatible and possess mechanical properties compatible with the brain; v) deliver a therapeutic dose of rationally-designed or repurposed drug compound(s) into the GBM infiltrative margin. Proof of concept with high translational potential will be provided. Finally, future perspectives to facilitate the clinical translation of the local perisurgical treatment of GBM will be discussed.
Collapse
|
16
|
Sun R, Cuthbert H, Watts C. Fluorescence-Guided Surgery in the Surgical Treatment of Gliomas: Past, Present and Future. Cancers (Basel) 2021; 13:cancers13143508. [PMID: 34298721 PMCID: PMC8304525 DOI: 10.3390/cancers13143508] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Gliomas are aggressive central nervous system tumours. The emergence and recent widespread adoption of 5-aminolevulinic acid and fluorescence guided surgery have improved the extent of resection, with implications for improved survival and progression-free survival. This review describes the history, rationale and mechanism behind the use of 5-aminolevulinic acid and fluorescence-guided surgery. We also discuss current limitations and future directions for this important adjunct to glioma surgery. This review aims to provide readers with an up-to-date overview and evidence base on this important topic. Abstract Gliomas are central nervous systems tumours which are diffusely infiltrative and difficult to treat. The extent of surgical resection is correlated with improved outcomes, including survival and disease-free progression. Cancerous tissue can be directly visualised intra-operatively under fluorescence by administration of 5-aminolevulinic acid to the patient. The adoption of this technique has allowed surgeons worldwide to achieve greater extents of resection, with implications for improved prognosis. However, there are practical limitations to use of 5-aminolevulinic acid. New adjuncts in the field of fluorescence-guided surgery aim to improve recognition of the interface between tumour and brain with the objective of improving resection and patient outcomes.
Collapse
Affiliation(s)
- Rosa Sun
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
- Correspondence: (R.S.); (H.C.)
| | - Hadleigh Cuthbert
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
- Correspondence: (R.S.); (H.C.)
| | - Colin Watts
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| |
Collapse
|
17
|
Singh R, Lehrer EJ, Wang M, Perlow HK, Zaorsky NG, Trifiletti DM, Bovi J, Navarria P, Scoccianti S, Gondi V, Brown PD, Palmer JD. Dose Escalated Radiation Therapy for Glioblastoma Multiforme: An International Systematic Review and Meta-Analysis of 22 Prospective Trials. Int J Radiat Oncol Biol Phys 2021; 111:371-384. [PMID: 33991621 DOI: 10.1016/j.ijrobp.2021.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Limited evidence is available on the utility of dose-escalated radiation therapy (DE-RT) with or without temozolomide (TMZ) versus standard-of-care radiation therapy (SoC-RT) for patients with newly diagnosed glioblastoma multiforme. We performed a systematic review/meta-analysis to compare overall survival (OS) and progression-free survival (PFS) between DE-RT and SoC-RT. METHODS AND MATERIALS We used a Population, Intervention, Control, Outcomes, Study Design/Preferred Reporting Items for Systematic Reviews and Meta-analyses/Meta-analysis of Observational Studies in Epidemiology selection criterion to identify studies. The primary and secondary outcomes were 1-year OS and 1-year PFS, respectively. Outcomes and comparisons were subdivided based on receipt of TMZ and MGMT status. DE-RT was defined based on equivalent dose calculations. Random effects meta-analyses using the Knapp-Hartung correction, arcsine transformation, and restricted maximum likelihood method were conducted. Meta-regression was used to compare therapeutic (eg, DE-RT or TMZ) and pathologic characteristics (eg, MGMT methylation status) using the Wald-type test. RESULTS Across 22 published studies, 2198 patients with glioblastoma multiforme were included; 507 received DE-RT. One-year OS after DE-RT alone was higher than SoC-RT alone (46.3% vs 23.4%; P = .02) as was 1-year PFS (17.9% vs 5.3%; P = .02). No significant difference in 1-year OS (73.2% vs 64.4%; P = .23) or 1-year PFS (44.5% vs 44.3%; P = .33) between DE-RT + TMZ and SoC-RT + TMZ was noted. No difference in 1-year OS was noted between DE-RT + TMZ and SoC-RT + TMZ in either MGMT methylated (83.2% vs 73.2%; P = .23) or MGMT unmethylated (72.6% vs 50.6%; P = .16) patients. CONCLUSIONS DE-RT alone resulted in superior PFS and OS versus SoC-RT alone. DE-RT + TMZ did not lead to improved outcomes versus SoC-RT + TMZ. No differential benefit based on MGMT status was found. Future studies are warranted to define which subgroups benefit most from DE-RT.
Collapse
Affiliation(s)
- Raj Singh
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ming Wang
- Department of Public Health Sciences, Penn State University, Hershey, Pennsylvania
| | - Haley K Perlow
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Nicholas G Zaorsky
- Department of Public Health Sciences, Penn State University, Hershey, Pennsylvania; Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania
| | | | - Joseph Bovi
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano (MI), Italy
| | - Silvia Scoccianti
- Radiation Oncology Unit, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Joshua D Palmer
- Department of Radiation Oncology and Neurosurgery, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, Virginia.
| |
Collapse
|
18
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021; 171:108-138. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers of the brain. Despite extensive research over the last several decades, the survival rates for GBM have not improved and prognosis remains poor. To date, only a few therapies are approved for the treatment of GBM with the main reasons being: 1) significant tumour heterogeneity which promotes the selection of resistant subpopulations 2) GBM induced immunosuppression and 3) fortified location of the tumour in the brain which hinders the delivery of therapeutics. Existing therapies for GBM such as radiotherapy, surgery and chemotherapy have been unable to reach the clinical efficacy necessary to prolong patient survival more than a few months. This comprehensive review evaluates the current and emerging therapies including those in clinical trials that may potentially improve both targeted delivery of therapeutics directly to the tumour site and the development of agents that may specifically target GBM. Particular focus has also been given to emerging delivery technologies such as focused ultrasound, cellular delivery systems nanomedicines and immunotherapy. Finally, we discuss the importance of developing novel materials for improved delivery efficacy of nanoparticles and therapeutics to reduce the suffering of GBM patients.
Collapse
|
19
|
Scheufele K, Subramanian S, Biros G. Fully Automatic Calibration of Tumor-Growth Models Using a Single mpMRI Scan. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:193-204. [PMID: 32931431 PMCID: PMC8565678 DOI: 10.1109/tmi.2020.3024264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Our objective is the calibration of mathematical tumor growth models from a single multiparametric scan. The target problem is the analysis of preoperative Glioblastoma (GBM) scans. To this end, we present a fully automatic tumor-growth calibration methodology that integrates a single-species reaction-diffusion partial differential equation (PDE) model for tumor progression with multiparametric Magnetic Resonance Imaging (mpMRI) scans to robustly extract patient specific biomarkers i.e., estimates for (i) the tumor cell proliferation rate, (ii) the tumor cell migration rate, and (iii) the original, localized site(s) of tumor initiation. Our method is based on a sparse reconstruction algorithm for the tumor initial location (TIL). This problem is particularly challenging due to nonlinearity, ill-posedeness, and ill conditioning. We propose a coarse-to-fine multi-resolution continuation scheme with parameter decomposition to stabilize the inversion. We demonstrate robustness and practicality of our method by applying the proposed method to clinical data of 206 GBM patients. We analyze the extracted biomarkers and relate tumor origin with patient overall survival by mapping the former into a common atlas space. We present preliminary results that suggest improved accuracy for prediction of patient overall survival when a set of imaging features is augmented with estimated biophysical parameters. All extracted features, tumor initial positions, and biophysical growth parameters are made publicly available for further analysis. To our knowledge, this is the first fully automatic scheme that can handle multifocal tumors and can localize the TIL to a few millimeters.
Collapse
|
20
|
Birzu C, French P, Caccese M, Cerretti G, Idbaih A, Zagonel V, Lombardi G. Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. Cancers (Basel) 2020; 13:E47. [PMID: 33375286 PMCID: PMC7794906 DOI: 10.3390/cancers13010047] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most frequent and aggressive form among malignant central nervous system primary tumors in adults. Standard treatment for newly diagnosed glioblastoma consists in maximal safe resection, if feasible, followed by radiochemotherapy and adjuvant chemotherapy with temozolomide; despite this multimodal treatment, virtually all glioblastomas relapse. Once tumors progress after first-line therapy, treatment options are limited and management of recurrent glioblastoma remains challenging. Loco-regional therapy with re-surgery or re-irradiation may be evaluated in selected cases, while traditional systemic therapy with nitrosoureas and temozolomide rechallenge showed limited efficacy. In recent years, new clinical trials using, for example, regorafenib or a combination of tyrosine kinase inhibitors and immunotherapy were performed with promising results. In particular, molecular targeted therapy could show efficacy in selected patients with specific gene mutations. Nonetheless, some molecular characteristics and genetic alterations could change during tumor progression, thus affecting the efficacy of precision medicine. We therefore reviewed the molecular and genomic landscape of recurrent glioblastoma, the strategy for clinical management and the major phase I-III clinical trials analyzing recent drugs and combination regimens in these patients.
Collapse
Affiliation(s)
- Cristina Birzu
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (C.B.); (A.I.)
| | - Pim French
- Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (C.B.); (A.I.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| |
Collapse
|
21
|
Subramanian S, Scheufele K, Mehl M, Biros G. WHERE DID THE TUMOR START? AN INVERSE SOLVER WITH SPARSE LOCALIZATION FOR TUMOR GROWTH MODELS. INVERSE PROBLEMS 2020; 36:045006. [PMID: 33746330 PMCID: PMC7971430 DOI: 10.1088/1361-6420/ab649c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a numerical scheme for solving an inverse problem for parameter estimation in tumor growth models for glioblastomas, a form of aggressive primary brain tumor. The growth model is a reaction-diffusion partial differential equation (PDE) for the tumor concentration. We use a PDE-constrained optimization formulation for the inverse problem. The unknown parameters are the reaction coefficient (proliferation), the diffusion coefficient (infiltration), and the initial condition field for the tumor PDE. Segmentation of Magnetic Resonance Imaging (MRI) scans drive the inverse problem where segmented tumor regions serve as partial observations of the tumor concentration. Like most cases in clinical practice, we use data from a single time snapshot. Moreover, the precise time relative to the initiation of the tumor is unknown, which poses an additional difficulty for inversion. We perform a frozen-coefficient spectral analysis and show that the inverse problem is severely ill-posed. We introduce a biophysically motivated regularization on the structure and magnitude of the tumor initial condition. In particular, we assume that the tumor starts at a few locations (enforced with a sparsity constraint on the initial condition of the tumor) and that the initial condition magnitude in the maximum norm is equal to one. We solve the resulting optimization problem using an inexact quasi-Newton method combined with a compressive sampling algorithm for the sparsity constraint. Our implementation uses PETSc and AccFFT libraries. We conduct numerical experiments on synthetic and clinical images to highlight the improved performance of our solver over a previously existing solver that uses standard two-norm regularization for the calibration parameters. The existing solver is unable to localize the initial condition. Our new solver can localize the initial condition and recover infiltration and proliferation. In clinical datasets (for which the ground truth is unknown), our solver results in qualitatively different solutions compared to the two-norm regularized solver.
Collapse
Affiliation(s)
- Shashank Subramanian
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E. 24th Street, Austin, Texas, USA
| | - Klaudius Scheufele
- Institute for Parallel and Distributed Systems, Universität Stuttgart, Universitatsstraßë38, Stuttgart, Germany
| | - Miriam Mehl
- Institute for Parallel and Distributed Systems, Universität Stuttgart, Universitatsstraßë38, Stuttgart, Germany
| | - George Biros
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E. 24th Street, Austin, Texas, USA
| |
Collapse
|
22
|
Saito T, Muragaki Y, Maruyama T, Komori T, Nitta M, Tsuzuki S, Fukui A, Kawamata T. Influence of wide opening of the lateral ventricle on survival for supratentorial glioblastoma patients with radiotherapy and concomitant temozolomide-based chemotherapy. Neurosurg Rev 2019; 43:1583-1593. [PMID: 31705405 DOI: 10.1007/s10143-019-01185-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023]
Abstract
The prognosis for glioblastoma (GBM) varies among patients. Ventricular opening during surgery has been reported as a prognostic factor for GBM patients, but the influence of ventricular opening itself on patient prognosis remains controversial. We presumed that the degree of ventricular opening would correlate with the degree of subventricular zone (SVZ) resection and with prognosis in GBM patients. This study therefore investigated whether the degree of ventricular opening correlates with prognosis in GBM patients treated with the standard protocol of chemo-radiotherapy. Participants comprised 111 patients with newly diagnosed GBM who underwent surgery and received postoperative radiotherapy and temozolomide-based chemotherapy from 2005 to 2018. We classified 111 patients into "No ventricular opening (NVO)", "Ventricular opening, small (VOS; distance < 23.2 mm)", and "Ventricular opening, wide (VOW; distance ≥ 23.2 mm)" groups. We evaluated the relationship between degree of ventricular opening and prognosis using survival analyses that included other clinicopathological factors. Log-rank testing revealed age, Karnofsky performance status (KPS), extent of resection, O6-methylguanine-DNA methyltransferase (MGMT) status, isocitrate dehydrogenase (IDH)1 mutation, and degree of ventricular opening correlated significantly with overall survival. Multivariate analysis identified the degree of ventricular opening (small vs. wide) as the most significant prognostic factor (hazard ratio = 3.674; p < 0.0001). We demonstrated that wide opening of the lateral ventricle (LV) contributes to longer survival compared with small opening among GBM patients. Our results indicate that wide opening of the LV may correlate with the removal of a larger proportion of tumor stem cells from the SVZ.
Collapse
Affiliation(s)
- Taiichi Saito
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
23
|
Berendsen S, van Bodegraven E, Seute T, Spliet WGM, Geurts M, Hendrikse J, Schoysman L, Huiszoon WB, Varkila M, Rouss S, Bell EH, Kroonen J, Chakravarti A, Bours V, Snijders TJ, Robe PA. Adverse prognosis of glioblastoma contacting the subventricular zone: Biological correlates. PLoS One 2019; 14:e0222717. [PMID: 31603915 PMCID: PMC6788733 DOI: 10.1371/journal.pone.0222717] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The subventricular zone (SVZ) in the brain is associated with gliomagenesis and resistance to treatment in glioblastoma. In this study, we investigate the prognostic role and biological characteristics of subventricular zone (SVZ) involvement in glioblastoma. METHODS We analyzed T1-weighted, gadolinium-enhanced MR images of a retrospective cohort of 647 primary glioblastoma patients diagnosed between 2005-2013, and performed a multivariable Cox regression analysis to adjust the prognostic effect of SVZ involvement for clinical patient- and tumor-related factors. Protein expression patterns of a.o. markers of neural stem cellness (CD133 and GFAP-δ) and (epithelial-) mesenchymal transition (NF-κB, C/EBP-β and STAT3) were determined with immunohistochemistry on tissue microarrays containing 220 of the tumors. Molecular classification and mRNA expression-based gene set enrichment analyses, miRNA expression and SNP copy number analyses were performed on fresh frozen tissue obtained from 76 tumors. Confirmatory analyses were performed on glioblastoma TCGA/TCIA data. RESULTS Involvement of the SVZ was a significant adverse prognostic factor in glioblastoma, independent of age, KPS, surgery type and postoperative treatment. Tumor volume and postoperative complications did not explain this prognostic effect. SVZ contact was associated with increased nuclear expression of the (epithelial-) mesenchymal transition markers C/EBP-β and phospho-STAT3. SVZ contact was not associated with molecular subtype, distinct gene expression patterns, or markers of stem cellness. Our main findings were confirmed in a cohort of 229 TCGA/TCIA glioblastomas. CONCLUSION In conclusion, involvement of the SVZ is an independent prognostic factor in glioblastoma, and associates with increased expression of key markers of (epithelial-) mesenchymal transformation, but does not correlate with stem cellness, molecular subtype, or specific (mi)RNA expression patterns.
Collapse
Affiliation(s)
- Sharon Berendsen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Emma van Bodegraven
- UMC Utrecht Brain Center, Department of Translational Neuroscience, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Tatjana Seute
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Wim G. M. Spliet
- Department of Pathology, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Marjolein Geurts
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Laurent Schoysman
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
- Department of Radiology, Liège University Hospital, Liège, Belgium
| | - Willemijn B. Huiszoon
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Meri Varkila
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Soufyan Rouss
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Erica H. Bell
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - Jérôme Kroonen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
| | - Arnab Chakravarti
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - Vincent Bours
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
| | - Tom J. Snijders
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Pierre A. Robe
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tabatabai G, Wakimoto H. Glioblastoma: State of the Art and Future Perspectives. Cancers (Basel) 2019; 11:cancers11081091. [PMID: 31370300 PMCID: PMC6721299 DOI: 10.3390/cancers11081091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Accepted: 01/01/1970] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ghazaleh Tabatabai
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, Boston, MA 02114, USA.
| |
Collapse
|