1
|
Yang L, Zhang W, Fan N, Cao P, Cheng Y, Zhu L, Luo S, Zong H, Bai Y, Zhou J, Deng Y, Ba Y, Liu T, Aili M, Yin X, Gu K, Dai G, Ying J, Shi J, Gao Y, Li W, Yu G, Xie L, Gai W, Wang Y, Meng P, Shi Y. Efficacy, safety and genomic analysis of SCT200, an anti-EGFR monoclonal antibody, in patients with fluorouracil, irinotecan and oxaliplatin refractory RAS and BRAF wild-type metastatic colorectal cancer: a phase Ⅱ study. EBioMedicine 2024; 100:104966. [PMID: 38217945 PMCID: PMC10826138 DOI: 10.1016/j.ebiom.2024.104966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Limited therapeutic options are available for metastatic colorectal cancer (mCRC) patients after failure of first- and second-line therapies, representing an unmet medical need for novel therapies. METHODS This is an open-label, single arm, multicenter, phase Ⅱ study aiming to perform the efficacy, safety and genomic analysis of SCT200, a noval fully humanized IgG1 anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in patients with fluorouracil, irinotecan and oxaliplatin refractory RAS and BRAF wild-type mCRC. SCT200 (6 mg/kg) was given weekly for the first six weeks, followed by a higher dose of 8 mg/kg every two weeks until disease progression or unacceptable toxicity. Primary endpoint was independent review committee (IRC)-assessed objective response rate (ORR) and secondary endpoints included ORR in patients with left-sided tumor, disease control rate (DCR), duration of response (DoR), time to response (TTR), progression-free survival (PFS), overall survival (OS) and safety. FINDINGS From February 12, 2018 to December 1, 2019, a total of 110 patients aged between 26 and 77 years (median: 55; interquartile range [IQR]: 47-63) with fluorouracil, oxaliplatin, and irinotecan refractory RAS and BRAF wild-type mCRC were enrolled from 22 hospitals in China. As the data cut-off date on May 15, 2020, the IRC-assessed ORR and DCR was 31% (34/110, 95% confidence interval [CI] 22-40%) and 75% (82/110, 95% CI 65-82%), respectively. Thirty one percent (34/110) patients achieved confirmed partial response (PR). The median PFS and median OS were 5.1 months (95% CI 3.4-5.2) and 16.2 months (95% CI 11.1-not available [NA]), respectively. The most common ≥ grade 3 treatment-related adverse events (TRAEs) were hypomagnesemia (17%, 19/110) and acneiform dermatitis (11%, 12/110). No deaths occurred. Genomic analysis suggested positive association between MYC amplification and patients' response (P = 0.0058). RAS/RAF mutation and MET amplification were the most frequently detected resistance mechanisms. Patients with high circulating tumor DNA (ctDNA) at baseline or without ctDNA clearance at the 7th week after the first dose of SCT200 administration before receiving SCT200 had worse PFS and OS. INTERPRETATION SCT200 exhibited promising clinical efficacy and manageable safety profiles in RAS and BRAF wild-type mCRC patients progressed on fluorouracil, irinotecan and oxaliplatin treatment. The baseline ctDNA and ctDNA clearance status at the 7th week after the first dose of SCT200 administration before receiving SCT200 could be a potential prognostic biomarker for RAS and BRAF wild-type mCRC patients with SCT200 therapy. FUNDING This study was sponsored by Sinocelltech Ltd., Beijing, China and partly supported by the National Science and Technology Major Project for Key New Drug Development (2019ZX09732001-006, 2017ZX09304015).
Collapse
Affiliation(s)
- Lin Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Wen Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Nanfeng Fan
- Department of Abdominal Oncology, Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Peiguo Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ying Cheng
- Department of Oncology, Cancer Hospital of Jilin Province, Changchun, China
| | - Lingjun Zhu
- Department of Oncology, Jiangsu Province Hospital, Nanjing, China
| | - Suxia Luo
- Department of Medical Oncology, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxian Bai
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianfeng Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanhong Deng
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Ba
- Department of Gastroenterology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Mayinuer Aili
- The Third Department of Oncology, Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xianli Yin
- Department of Gastroenterology, Hunan Cancer Hospital, Changsha, China
| | - Kangsheng Gu
- Department of Medical Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghai Dai
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jieer Ying
- Department of Abdominal Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jianhua Shi
- Department of Medical Oncology, Linyi Cancer Hospital, Linyi, China
| | - Yajie Gao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Guohua Yu
- Department of Oncology, Weifang People's Hospital, Weifang, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Wenlin Gai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yan Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Peng Meng
- Burning Rock Biotech, Shanghai, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| |
Collapse
|
2
|
Sibilio P, Belardinilli F, Licursi V, Paci P, Giannini G. An integrative in-silico analysis discloses a novel molecular subset of colorectal cancer possibly eligible for immune checkpoint immunotherapy. Biol Direct 2022; 17:10. [PMID: 35534873 PMCID: PMC9082922 DOI: 10.1186/s13062-022-00324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Historically, the molecular classification of colorectal cancer (CRC) was based on the global genomic status, which identified microsatellite instability in mismatch repair (MMR) deficient CRC, and chromosomal instability in MMR proficient CRC. With the introduction of immune checkpoint inhibitors, the microsatellite and chromosomal instability classification regained momentum as the microsatellite instability condition predicted sensitivity to immune checkpoint inhibitors, possibly due to both high tumor mutation burden (TMB) and high levels of infiltrating lymphocytes. Conversely, proficient MMR CRC are mostly resistant to immunotherapy. To better understand the relationship between the microsatellite and chromosomal instability classification, and eventually discover additional CRC subgroups relevant for therapeutic decisions, we developed a computational pipeline that include molecular integrative analysis of genomic, epigenomic and transcriptomic data. RESULTS The first step of the pipeline was based on unsupervised hierarchical clustering analysis of copy number variations (CNVs) versus hypermutation status that identified a first CRC cluster with few CNVs enriched in Hypermutated and microsatellite instability samples, a second CRC cluster with a high number of CNVs mostly including non-HM and microsatellite stable samples, and a third cluster (7.8% of the entire dataset) with low CNVs and low TMB, which shared clinical-pathological features with Hypermutated CRCs and thus defined Hypermutated-like CRCs. The mutational features, DNA methylation profile and base substitution fingerprints of these tumors revealed that Hypermutated-like patients are molecularly distinct from Hypermutated and non-Hypermutated tumors and are likely to develop and progress through different genetic events. Transcriptomic analysis highlighted further differences amongst the three groups and revealed an inflamed tumor microenvironment and modulation Immune Checkpoint Genes in Hypermutated-like CRCs. CONCLUSION Therefore, our work highlights Hypermutated-like tumors as a distinct and previously unidentified CRC subgroup possibly responsive to immune checkpoint inhibitors. If further validated, these findings can lead to expanding the fraction of patients eligible to immunotherapy.
Collapse
Affiliation(s)
- Pasquale Sibilio
- Department of Translational and Precision Medicine, University La Sapienza, 00161, Rome, Italy.,Institute for Systems Analysis and Computer Science Antonio Ruberti, National Research Council, 00185, Rome, Italy
| | | | - Valerio Licursi
- Department of Biology and Biotechnologies "Charles Darwin", University La Sapienza, 00185, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council of Italy, Via degli Apuli, 4, 00185, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science Antonio Ruberti, National Research Council, 00185, Rome, Italy.,Department of Computer Engineering, Automation and Management, University La Sapienza, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy. .,Istituto Pasteur-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
3
|
Nicolazzo C, Barault L, Caponnetto S, De Renzi G, Belardinilli F, Bottillo I, Bargiacchi S, Macagno M, Grammatico P, Giannini G, Cortesi E, Di Nicolantonio F, Gazzaniga P. True conversions from RAS mutant to RAS wild-type in circulating tumor DNA from metastatic colorectal cancer patients as assessed by methylation and mutational signature. Cancer Lett 2021; 507:89-96. [PMID: 33744389 DOI: 10.1016/j.canlet.2021.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023]
Abstract
The paucity of targeted treatments available in patients with RAS mutant colorectal cancers contributes to the poor prognosis of this patient group compared to those with RAS wild-type disease. Recent liquid biopsy-driven studies have demonstrated that RAS mutant clones might disappear in plasma during the clonal evolution of the disease, opening new unforeseen perspectives for EGFR blockade in these patients. Nevertheless, the lack of detection of RAS mutations in plasma might depend on the low amount of released circulating tumor DNA (ctDNA), making it necessary a more accurate selection of patients with true RAS mutation conversions. In this liquid biopsy-based study, we assessed RAS mutational status in initially RAS-mutant patients at the time of progressive disease from any line of therapy and investigated the incidence of true conversions to plasma RAS wild-type, comparing a colon cancer specific methylation profile with a mutational signature of ctDNA. Globally, considering either mutational panel or methylation profile as reliable tests to confirm or exclude the presence of ctDNA, the percentage of "true RAS converters" was 37.5%. In our series we observed a trend toward a better PFS in patients who received anti-EGFR as second or subsequent treatment lines compared to those who did not.
Collapse
Affiliation(s)
- Chiara Nicolazzo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| | - Ludovic Barault
- Department of Oncology, University of Torino, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy.
| | - Salvatore Caponnetto
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Gianluigi De Renzi
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| | - Francesca Belardinilli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161, Rome, Italy.
| | - Irene Bottillo
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152, Rome, Italy.
| | - Simone Bargiacchi
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152, Rome, Italy.
| | - Marco Macagno
- Department of Oncology, University of Torino, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy.
| | - Paola Grammatico
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152, Rome, Italy.
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161, Rome, Italy.
| | - Enrico Cortesi
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy.
| | - Paola Gazzaniga
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| |
Collapse
|
4
|
Belardinilli F, Pernazza A, Mahdavian Y, Cerbelli B, Bassi M, Gradilone A, Coppa A, Pignataro MG, Anile M, Venuta F, Della Rocca C, Giannini G, d'Amati G. A multidisciplinary approach for the differential diagnosis between multiple primary lung adenocarcinomas and intrapulmonary metastases. Pathol Res Pract 2021; 220:153387. [PMID: 33647865 DOI: 10.1016/j.prp.2021.153387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/13/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The distinction between multiple primary lung cancers (MPLCs) and intrapulmonary metastases has a significant impact on tumor staging and therapeutic choices. Several criteria have been proposed to solve this diagnostic issue, but a definitive consensus is still missing. We tested the efficacy of a combined clinical, histopathological and molecular ("real world") approach for the correct classification of multiple lung tumors in a selected cohort of patients. METHODS 24 multiple lung tumors with a diagnosis of adenocarcinoma from 10 patients were retrospectively reviewed. Radiological, pathological and clinical information, including follow-up, were integrated with molecular profiling via a routine multigene panel sequencing. RESULTS Comprehensive histologic assessment revealed readily distinguishable histologic patterns between multiple tumors suggesting unrelated lesions in 7 cases, in agreement with clinical, radiological and molecular data, thus leading to final diagnosis of MPLCs. In the remaining 3 cases, the differential diagnosis between MPLCs and intrapulmonary metastases was challenging, since the histologic features of the lesions were similar or identical. The final interpretation (2 MPLCs and 1 most likely intrapulmonary metastases) was reached thanks to the integration of all available data, and was confirmed by follow-up. CONCLUSIONS A multidisciplinary approach including a routinely affordable multigene panel sequencing is a useful tool to discriminate MPLCs from intrapulmonary metastases in multiple lung nodules sharing the adenocarcinoma histotype.
Collapse
Affiliation(s)
- Francesca Belardinilli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Angelina Pernazza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, 04100, Italy
| | - Yasaman Mahdavian
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Bruna Cerbelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, 04100, Italy
| | - Massimiliano Bassi
- Department of General and Specialist Surgery "P. Stefanini" Sapienza University, Rome, 00161, Italy
| | - Angela Gradilone
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, 00161, Italy
| | - Marco Anile
- Department of General and Specialist Surgery "P. Stefanini" Sapienza University, Rome, 00161, Italy
| | - Federico Venuta
- Department of General and Specialist Surgery "P. Stefanini" Sapienza University, Rome, 00161, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, 04100, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, 00161, Italy.
| |
Collapse
|
5
|
Coni S, Serrao SM, Yurtsever ZN, Di Magno L, Bordone R, Bertani C, Licursi V, Ianniello Z, Infante P, Moretti M, Petroni M, Guerrieri F, Fatica A, Macone A, De Smaele E, Di Marcotullio L, Giannini G, Maroder M, Agostinelli E, Canettieri G. Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation. Cell Death Dis 2020; 11:1045. [PMID: 33303756 PMCID: PMC7729396 DOI: 10.1038/s41419-020-03174-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Eukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APCMin/+ mice, a model of human familial adenomatous polyposis (FAP). Together, these data illustrate an unprecedented mechanism, whereby the tumor-promoting properties of hypusinated EIF5A are linked to its ability to regulate MYC elongation and provide a rationale for the use of DHPS/EIF5A inhibitors in CRC therapy.
Collapse
Affiliation(s)
- Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Silvia Maria Serrao
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Zuleyha Nihan Yurtsever
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Camilla Bertani
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marialaura Petroni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, Lyon, France
| | - Alessandro Fatica
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Enzo Agostinelli
- International Polyamines Foundation-ONLUS, Via del Forte Tiburtino 98, 00159, Rome, Italy
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
- International Polyamines Foundation-ONLUS, Via del Forte Tiburtino 98, 00159, Rome, Italy.
| |
Collapse
|
6
|
Mezi S, Pomati G, Botticelli A, De Felice F, Musio D, della Monaca M, Amirhassankhani S, Vullo F, Cerbelli B, Carletti R, Di Gioia C, Catalano C, Valentini V, Tombolini V, Della Rocca C, Marchetti P. Primary squamous cell carcinoma of major salivary gland: "Sapienza Head and Neck Unit" clinical recommendations. Rare Tumors 2020; 12:2036361320973526. [PMID: 33282162 PMCID: PMC7691911 DOI: 10.1177/2036361320973526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/23/2020] [Indexed: 12/03/2022] Open
Abstract
Primary squamous cell carcinoma of salivary gland (SCG) is an extremely rare type of malignant salivary gland tumor, which in turn results in scarcity of data available regarding both its treatment and associated genetic alterations. A retrospective analysis of 12 patients with primary SCG was conducted, along with analysis of the association between treatment, clinical/pathological characteristics, and outcomes. Most patients (8) were staged IVa, with the majority of them (10) having G3 fast growing cancer. Local and systemic recurrence were reported in only three out of nine parotid cases (0 out of 2 submandibular SCGs). In two out of eight patients local relapse occurred after integrated treatment, while recurrence occurred in two out of three patients undergoing exclusive surgery. Five patients eventually died. Treatment of resectable disease must be aggressive and multimodal, with achievement of loco-regional control in order to reduce rate of recurrence and improve outcomes. Metastatic disease would require a therapeutic strategy tailored to the molecular profile in order to improve the currently disappointing results.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular
Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Daniela Musio
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Marco della Monaca
- Department of Odontostomatological and
Maxillo-Facial Science “Sapienza” University of Rome, Rome, Italy
| | | | - Francesco Vullo
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Bruna Cerbelli
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Raffaella Carletti
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Valentino Valentini
- Department of Odontostomatological and
Maxillo-Facial Science “Sapienza” University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medical-Surgical Sciences
and Biotechnologies, “Sapienza” University of Rome, Latina, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular
Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
7
|
PIK3CA somatic mutation in sinonasal teratocarcinosarcoma. Auris Nasus Larynx 2020; 48:530-534. [PMID: 32389511 DOI: 10.1016/j.anl.2020.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 11/23/2022]
Abstract
Sinonasal Teratocarcinosarcoma (SNTCS) is a rare and histologically heterogeneous tumor of uncertain origin and unknown molecular pathogenesis. Its location and aggressiveness, with frequent recurrences, high rate for metastasis and short mean survival, make SNTCS a tumor highly difficult to treat. Thus, the identification of underlying genetic changes could potentially provide successful adjuvant or alternative precision medicine treatment options for patients with this tumor. We report here a 55-year-old male with a naso-ethmoidal SNTCS that invaded right maxillary sinus, orbital cavity and cranial anterior fossa and that was treated with surgery followed by radiotherapy and chemotherapy in which we evaluated the mutational profile by multigene panel sequencing. Tumor and adjacent normal mucosa were screened for hotspots and targeted regions of 22 cancer related genes by multigene panel sequencing. The analysis revealed a somatic pathogenic mutations in the PIK3CA gene (p.His1047Leu) and a germline alteration in the DDR2 gene (p.Pro476Leu) whose oncogenic function is considered unknown. This study suggests the involvement of PIK3CA gene mutation in SNTCS tumorigenesis highlighting a potential target for individualized molecular therapy for patients with this tumor.
Collapse
|
8
|
Belardinilli F, Capalbo C, Malapelle U, Pisapia P, Raimondo D, Milanetti E, Yasaman M, Liccardi C, Paci P, Sibilio P, Pepe F, Bonfiglio C, Mezi S, Magri V, Coppa A, Nicolussi A, Gradilone A, Petroni M, Di Giulio S, Fabretti F, Infante P, Coni S, Canettieri G, Troncone G, Giannini G. Clinical Multigene Panel Sequencing Identifies Distinct Mutational Association Patterns in Metastatic Colorectal Cancer. Front Oncol 2020; 10:560. [PMID: 32457828 PMCID: PMC7221020 DOI: 10.3389/fonc.2020.00560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Extensive molecular characterization of human colorectal cancer (CRC) via Next Generation Sequencing (NGS) indicated that genetic or epigenetic dysregulation of a relevant, but limited, number of molecular pathways typically occurs in this tumor. The molecular picture of the disease is significantly complicated by the frequent occurrence of individually rare genetic aberrations, which expand tumor heterogeneity. Inter- and intratumor molecular heterogeneity is very likely responsible for the remarkable individual variability in the response to conventional and target-driven first-line therapies, in metastatic CRC (mCRC) patients, whose median overall survival remains unsatisfactory. Implementation of an extensive molecular characterization of mCRC in the clinical routine does not yet appear feasible on a large scale, while multigene panel sequencing of most commonly mutated oncogene/oncosuppressor hotspots is more easily achievable. Here, we report that clinical multigene panel sequencing performed for anti-EGFR therapy predictive purposes in 639 formalin-fixed paraffin-embedded (FFPE) mCRC specimens revealed previously unknown pairwise mutation associations and a high proportion of cases carrying actionable gene mutations. Most importantly, a simple principal component analysis directed the delineation of a new molecular stratification of mCRC patients in eight groups characterized by non-random, specific mutational association patterns (MAPs), aggregating samples with similar biology. These data were validated on a The Cancer Genome Atlas (TCGA) CRC dataset. The proposed stratification may provide great opportunities to direct more informed therapeutic decisions in the majority of mCRC cases.
Collapse
Affiliation(s)
| | - Carlo Capalbo
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | | | - Pasquale Pisapia
- Department of Public Health, University Federico II, Naples, Italy
| | - Domenico Raimondo
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | | | - Mahdavian Yasaman
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Carlotta Liccardi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Paola Paci
- Institute for System Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Pasquale Sibilio
- Institute for System Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II, Naples, Italy
| | - Caterina Bonfiglio
- National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis", Bari, Italy
| | - Silvia Mezi
- Department of Radiological Oncological and Pathological Sciences, University La Sapienza, Rome, Italy
| | - Valentina Magri
- Department of Surgery Pietro Valdoni, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, University La Sapienza, Rome, Italy
| | - Arianna Nicolussi
- Department of Experimental Medicine, University La Sapienza, Rome, Italy
| | - Angela Gradilone
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Marialaura Petroni
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Stefano Di Giulio
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | | | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, University La Sapienza, Rome, Italy.,Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| | | | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy.,Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| |
Collapse
|
9
|
Matsuoka T, Yashiro M. Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol 2020; 12:1-20. [PMID: 31966910 PMCID: PMC6960076 DOI: 10.4251/wjgo.v12.i1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/12/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer has a high tumor incidence and mortality rate worldwide. Despite significant improvements in radiotherapy, chemotherapy, and targeted therapy for GI cancer over the last decade, GI cancer is characterized by high recurrence rates and a dismal prognosis. There is an urgent need for new diagnostic and therapeutic approaches. Recent technological advances and the accumulation of clinical data are moving toward the use of precision medicine in GI cancer. Here we review the application and status of precision medicine in GI cancer. Analyses of liquid biopsy specimens provide comprehensive real-time data of the tumor-associated changes in an individual GI cancer patient with malignancy. With the introduction of gene panels including next-generation sequencing, it has become possible to identify a variety of mutations and genetic biomarkers in GI cancer. Although the genomic aberration of GI cancer is apparently less actionable compared to other solid tumors, novel informative analyses derived from comprehensive gene profiling may lead to the discovery of precise molecular targeted drugs. These progressions will make it feasible to incorporate clinical, genome-based, and phenotype-based diagnostic and therapeutic approaches and apply them to individual GI cancer patients for precision medicine.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| |
Collapse
|