1
|
Asante DB, Mohan GRKA, Acheampong E, Ziman M, Calapre L, Meniawy TM, Gray ES, Beasley AB. Genetic analysis of heterogeneous subsets of circulating tumour cells from high grade serous ovarian carcinoma patients. Sci Rep 2023; 13:2552. [PMID: 36781954 PMCID: PMC9925814 DOI: 10.1038/s41598-023-29416-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Circulating tumour cells (CTCs) are heterogenous and contain genetic information from the tumour of origin. They bear specific intra- and extra-cellular protein markers aiding in their detection. However, since these markers may be shared with other rare cells in the blood, only genetic testing can confirm their malignancy. Herein, we analyse different CTC subsets using single cell whole genome DNA sequencing to validate their malignant origin. We randomly selected putative CTCs identified by immunostaining that were isolated from 4 patients with high grade serous ovarian cancer (HGSOC) and one with benign cystadenoma. We specifically targeted CTCs positive for epithelial (CK/EpCAMpos), mesenchymal (vimentinpos), and pseudoendothelial (CK/EpCAMpos plus CD31pos) markers. We isolated these cells and performed whole genome amplification (WGA) and low-pass whole-genome sequencing (LP-WGS) for analysis of copy number alterations (CNA). Of the CK/EpCAMpos cells analysed from the HGSOC patients, 2 of 3 cells showed diverse chromosomal CNAs. However, the 4 pseudoendothelial cells (CK/EpCAMpos plus CD31pos) observed in the HGSOC cases did not carry any CNA. Lastly, two of the clusters of vimentin positive cells sequenced from those found in the benign cystadenoma case had CNA. Despite the low number of cells analysed, our results underscore the importance of genetic analysis of putative CTCs to confirm their neoplastic origin. In particular, it highlights the presence of a population of CK/EpCAMpos cells that are not tumour cells in patients with HGSOC, which otherwise would be counted as CTCs.
Collapse
Affiliation(s)
- Du-Bois Asante
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | | | - Emmanuel Acheampong
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
- School of Biomedical Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Tarek M Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
- School of Medicine, University of Western Australia, Crawley, WA, 6009, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| | - Aaron B Beasley
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| |
Collapse
|
2
|
Xiao Z, Xingjie S, Yiming L, Xu L, Ma S. A General Framework for Identifying Hierarchical Interactions and Its Application to Genomics Data. J Comput Graph Stat 2023; 32:873-883. [PMID: 38009111 PMCID: PMC10671243 DOI: 10.1080/10618600.2022.2152034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
The analysis of hierarchical interactions has long been a challenging problem due to the large number of candidate main effects and interaction effects, and the need for accommodating the "main effects, interactions" hierarchy. The two-stage analysis methods enjoy simplicity and low computational cost, but contradict the fact that the outcome of interest is attributable to the joint effects of multiple main factors and their interactions. The existing joint analysis methods can accurately describe the underlying data generating process, but suffer from prohibitively high computational cost. And it is not straightforward to extend their optimization algorithms to general loss functions. To address this need, we develop a new computational method that is much faster than the existing joint analysis methods and rivals the runtimes of two-stage analysis. The proposed method, HierFabs, adopts the framework of the forward and backward stagewise algorithm and enjoys computational efficiency and broad applicability. To accommodate hierarchy without imposing additional constraints, it has newly developed forward and backward steps. It naturally accommodates the strong and weak hierarchy, and makes optimization much simpler and faster than in the existing studies. Optimality of HierFabs sequences is investigated theoretically. Simulations show that it outperforms the existing methods. The analysis of TCGA data on melanoma demonstrates its competitive practical performance.
Collapse
Affiliation(s)
- Zhang Xiao
- KLATASDS-MOE, Academy of Statistics and Interdisciplinary Sciences, East China Normal University, China
| | - Shi Xingjie
- KLATASDS-MOE, Academy of Statistics and Interdisciplinary Sciences, East China Normal University, China
| | - Liu Yiming
- School of Statistics and Management, Shanghai University of Finance and Economics, China
| | - Liu Xu
- School of Statistics and Management, Shanghai University of Finance and Economics, China
| | - Shuangge Ma
- Department of Biostatistics, Yale University, United States
| |
Collapse
|
3
|
Marsavela G, McEvoy AC, Pereira MR, Reid AL, Al-Ogaili Z, Warburton L, Khattak MA, Abed A, Meniawy TM, Millward M, Ziman MR, Calapre L, Gray ES. Detection of clinical progression through plasma ctDNA in metastatic melanoma patients: a comparison to radiological progression. Br J Cancer 2022; 126:401-408. [PMID: 34373567 PMCID: PMC8810871 DOI: 10.1038/s41416-021-01507-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The validity of circulating tumour DNA (ctDNA) as an indicator of disease progression compared to medical imaging in patients with metastatic melanoma requires detailed evaluation. METHODS Here, we carried out a retrospective ctDNA analysis of 108 plasma samples collected at the time of disease progression. We also analysed a validation cohort of 66 metastatic melanoma patients monitored prospectively after response to systemic therapy. RESULTS ctDNA was detected in 62% of patients at the time of disease progression. For 67 patients that responded to treatment, the mean ctDNA level at progressive disease was significantly higher than at the time of response (P < 0.0001). However, only 30 of these 67 (45%) patients had a statistically significant increase in ctDNA by Poisson test. A validation cohort of 66 metastatic melanoma patients monitored prospectively indicated a 56% detection rate of ctDNA at progression, with only two cases showing increased ctDNA prior to radiological progression. Finally, a correlation between ctDNA levels and metabolic tumour burden was only observed in treatment naïve patients but not at the time of progression in a subgroup of patients failing BRAF inhibition (N = 15). CONCLUSIONS These results highlight the low efficacy of ctDNA to detect disease progression in melanoma when compared mainly to standard positron emission tomography imaging.
Collapse
Affiliation(s)
- Gabriela Marsavela
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Ashleigh C McEvoy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Michelle R Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anna L Reid
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Zeyad Al-Ogaili
- Department of Molecular Imaging and Therapy Service, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Lydia Warburton
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Muhammad A Khattak
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Afaf Abed
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Tarek M Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Michael Millward
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Melanie R Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Biomedical Science, University of Western Australia, Crawley, WA, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
4
|
Rapanotti MC, Cugini E, Nuccetelli M, Terrinoni A, Di Raimondo C, Lombardo P, Costanza G, Cosio T, Rossi P, Orlandi A, Campione E, Bernardini S, Blot-Chabaud M, Bianchi L. MCAM/MUC18/CD146 as a Multifaceted Warning Marker of Melanoma Progression in Liquid Biopsy. Int J Mol Sci 2021; 22:12416. [PMID: 34830300 PMCID: PMC8623757 DOI: 10.3390/ijms222212416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning" marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- CD146 Antigen/blood
- CD146 Antigen/chemistry
- CD146 Antigen/genetics
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Liquid Biopsy
- Longitudinal Studies
- Male
- Melanoma/blood
- Melanoma/genetics
- Melanoma/pathology
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Neoplasm, Residual/blood
- Neoplasm, Residual/genetics
- Neoplastic Cells, Circulating/metabolism
- Skin Neoplasms/blood
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Solubility
- Young Adult
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marzia Nuccetelli
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Alessandro Terrinoni
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Paolo Lombardo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Piero Rossi
- Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Augusto Orlandi
- Anatomic Pathology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marcel Blot-Chabaud
- Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 13005 Marseille, France;
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| |
Collapse
|
5
|
Belotti Y, Lim CT. Microfluidics for Liquid Biopsies: Recent Advances, Current Challenges, and Future Directions. Anal Chem 2021; 93:4727-4738. [DOI: 10.1021/acs.analchem.1c00410] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuri Belotti
- Institute for Health Innovation and Technology, National University of Singapore, 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology, National University of Singapore, 117599 Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| |
Collapse
|
6
|
Piaszinski K, Rincic M, Liehr T, Azawi S. Molecular Cytogenetic Characterization of the Murine Melanoma Cell Lines S91 Clone M3 and B16-F1 with Variant B16-4A5. Cytogenet Genome Res 2021; 161:82-92. [PMID: 33596583 DOI: 10.1159/000513174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022] Open
Abstract
Melanoma is considered to be one of the most aggressive human tumors. Thus, early molecular diagnosis with risk factor stratification could be an efficacious strategy to increase the survival rates in affected patients. Murine cell lines B16-F1, B16-4A5, and S91 clone M3 are the ones most commonly applied in melanoma research. However, genetic peculiarities of these 3 cell lines have not been studied in detail before. Here, we closed this gap by molecular cytogenetic and array-comparative genomic hybridization studies and the translation of the characterized imbalances into the human genome. This study revealed severely rearranged karyotypes with in parts similar imbalances for all 3 cell lines. Interestingly, they involve genes known to play major roles in human melanoma. These are specifically the oncogenes and tumor suppressor genes, being associated with aggressive forms of melanoma. B16-F1, B16-4A5, and S91 clone M3 revealed aberrations which were similarly observed in human eye and skin but not in human uveal melanoma. Thus, they can be considered as model systems for advanced eye and skin melanoma.
Collapse
Affiliation(s)
- Katja Piaszinski
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany,
| | - Shaymaa Azawi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
Morici M, Lin W, Gray ES. Transcript-Based Detection of Circulating Melanoma Cells. Methods Mol Biol 2021; 2265:235-245. [PMID: 33704719 DOI: 10.1007/978-1-0716-1205-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells shed by the primary tumor or its metastases that circulate in the peripheral blood. CTCs are potential seeds for metastases, and their detection may allow early uncovering of metastatic dissemination and disease prognostication. To fully ascertain the biomarker potential of melanoma CTCs, sensitive and reliable methods are required. Melanoma-specific transcript analysis has been widely utilized as a standard approach for measuring the presence of CTCs. Here we describe a method for the analysis of CTCs through the detection of specific transcripts in CTC-enriched fractions.
Collapse
Affiliation(s)
- Michael Morici
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Weitao Lin
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
8
|
Ahrens TD, Bang-Christensen SR, Jørgensen AM, Løppke C, Spliid CB, Sand NT, Clausen TM, Salanti A, Agerbæk MØ. The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Front Cell Dev Biol 2020; 8:749. [PMID: 32984308 PMCID: PMC7479181 DOI: 10.3389/fcell.2020.00749] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are accessible by liquid biopsies via an easy blood draw. They represent not only the primary tumor site, but also potential metastatic lesions, and could thus be an attractive supplement for cancer diagnostics. However, the analysis of rare CTCs in billions of normal blood cells is still technically challenging and novel specific CTC markers are needed. The formation of metastasis is a complex process supported by numerous molecular alterations, and thus novel CTC markers might be found by focusing on this process. One example of this is specific changes in the cancer cell glycocalyx, which is a network on the cell surface composed of carbohydrate structures. Proteoglycans are important glycocalyx components and consist of a protein core and covalently attached long glycosaminoglycan chains. A few CTC assays have already utilized proteoglycans for both enrichment and analysis of CTCs. Nonetheless, the biological function of proteoglycans on clinical CTCs has not been studied in detail so far. Therefore, the present review describes proteoglycan functions during the metastatic cascade to highlight their importance to CTCs. We also outline current approaches for CTC assays based on targeting proteoglycans by their protein cores or their glycosaminoglycan chains. Lastly, we briefly discuss important technical aspects, which should be considered for studying proteoglycans.
Collapse
Affiliation(s)
- Theresa D. Ahrens
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sara R. Bang-Christensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| | | | - Caroline Løppke
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte B. Spliid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Nicolai T. Sand
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas M. Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| |
Collapse
|
9
|
Rapanotti MC, Campione E, Suarez Viguria TM, Spallone G, Costanza G, Rossi P, Orlandi A, Valenti P, Bernardini S, Bianchi L. Stem-Mesenchymal Signature Cell Genes Detected in Heterogeneous Circulating Melanoma Cells Correlate With Disease Stage in Melanoma Patients. Front Mol Biosci 2020; 7:92. [PMID: 32548126 PMCID: PMC7272706 DOI: 10.3389/fmolb.2020.00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of metastasis, cancer cells dissociate from primary tumors, migrate to distal sites, and finally colonize, eventually leading to the formation of metastatic tumors. These cancer cells, defined circulating tumor cells (CTCs) spreading through the blood stream, may develop metastatic lesions or remain dormant. Some emerging clinical evidence supports that some tumor cells may possess metastatic properties already in the earlier stages of tumorigenesis. Because the initiation and progression of vertical growth in human melanoma is fundamental to the notion of tumor virulence and progression, we decided to immune-magnetic collect and molecularly characterize circulating melanoma cells (CMCs) from melanoma patients AJCC staged = pT1b (i.e., transition from radial to vertical phase). CMCs are phenotypically and molecularly heterogeneous, thus we performed a "home-made Liquid-Biopsy," by targeting the melanoma-associated-antigen, MCAM/MUC18/CD146, and/or the melanoma-initiating marker, ABCB5. We assessed a biomarker qualitative expression panel, contemplating the angiogenic-potential, melanoma-initiating and melanoma-differentiation drivers, cell-cell adhesion molecules, matrix-metallo-proteinases, which was performed on three enriched subpopulations from a total of 61 blood-samples from 21 melanoma patients. At first, a significant differential expression of the specific transcripts was documented between and within the CMC fractions enriched with MCAM-, ABCB5-, and both MCAM/ABCB5-coated beads, when analyzing two distinct groups: early AJCC- (stage I-II) and advanced- staged patients (stage II-IV). Moreover, in the early-AJCC staged-group, we could distinguish "endothelial," CD45-MCAM+ enriched-, "stem" S-CMCs, CD45-ABCB5+ enriched- and a third hybrid bi-phenotypic CD45-MCAM+/ABCB5+ enriched-fractions, due to three distinct gene-expression profiles. In particular, the endothelial-CMCs were characterized by positive expression of genes involved in migration and invasion, whilst the stem CMC-fraction only expressed stem and differentiation markers. The third subpopulation isolated based on concurrent MCAM and ABCB5 protein expression showed an invasive phenotype. All three distinct CMCs sub-populations, exhibited a primitive, "stem-mesenchymal" profile suggesting a highly aggressive and metastasizing phenotype. This study confirms the phenotypic and molecular heterogeneity observed in melanoma and highlights those putative genes involved in early melanoma spreading and disease progression.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Elena Campione
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Tara Mayte Suarez Viguria
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Giulia Spallone
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Gaetana Costanza
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
10
|
Schneegans S, Lück L, Besler K, Bluhm L, Stadler JC, Staub J, Greinert R, Volkmer B, Kubista M, Gebhardt C, Sartori A, Irwin D, Serkkola E, Af Hällström T, Lianidou E, Sprenger-Haussels M, Hussong M, Mohr P, Schneider SW, Shaffer J, Pantel K, Wikman H. Pre-analytical factors affecting the establishment of a single tube assay for multiparameter liquid biopsy detection in melanoma patients. Mol Oncol 2020; 14:1001-1015. [PMID: 32246814 PMCID: PMC7191195 DOI: 10.1002/1878-0261.12669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
The combination of liquid biomarkers from a single blood tube can provide more comprehensive information on tumor development and progression in cancer patients compared to single analysis. Here, we evaluated whether a combined analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating cell-free microRNA (miRNA) in total plasma and extracellular vesicles (EV) from the same blood sample is feasible and how the results are influenced by the choice of different blood tubes. Peripheral blood from 20 stage IV melanoma patients and five healthy donors (HD) was collected in EDTA, Streck, and Transfix tubes. Peripheral blood mononuclear cell fraction was used for CTC analysis, whereas plasma and EV fractions were used for ctDNA mutation and miRNA analysis. Mutations in cell-free circulating DNA were detected in 67% of patients, with no significant difference between the tubes. CTC was detected in only EDTA blood and only in 15% of patients. miRNA NGS (next-generation sequencing) results were highly influenced by the collection tubes and could only be performed from EDTA and Streck tubes due to hemolysis in Transfix tubes. No overlap of significantly differentially expressed miRNA (patients versus HD) could be found between the tubes in total plasma, whereas eight miRNA were commonly differentially regulated in the EV fraction. In summary, high-quality CTCs, ctDNA, and miRNA data from a single blood tube can be obtained. However, the choice of blood collection tubes is a critical pre-analytical variable.
Collapse
Affiliation(s)
- Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Lelia Lück
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Besler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Leonie Bluhm
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Julia-Christina Stadler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | - Janina Staub
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Beate Volkmer
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Mikael Kubista
- TATAA Biocenter AB, Gothenburg, Sweden.,Department of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | | | - Melanie Hussong
- QIAGEN Inc/GmbH, Frederick, MD, USA.,QIAGEN Inc/GmbH, Hilden, Germany
| | - Peter Mohr
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jonathan Shaffer
- QIAGEN Inc/GmbH, Frederick, MD, USA.,QIAGEN Inc/GmbH, Hilden, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
11
|
Tucci M, D'Oronzo S, Mannavola F, Felici C, Lovero D, Cafforio P, Palmirotta R, Silvestris F. Dual-procedural separation of CTCs in cutaneous melanoma provides useful information for both molecular diagnosis and prognosis. Ther Adv Med Oncol 2020; 12:1758835920905415. [PMID: 32206092 PMCID: PMC7074504 DOI: 10.1177/1758835920905415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Circulating tumor cells (CTCs) have recently emerged as a new dynamic soluble marker for several malignancies including cutaneous melanoma (CM) and are suitable for prognostic evaluations and treatment monitoring. However, to date many limitations still hamper the wide-scale application of CTCs in CM setting, including the lack of standardized methods as well as both low levels and heterogeneity of these cells. Methods: We developed a protocol for CTC detection in CM based on immune-magnetic sorting to deplete CD45-, CD31- or CD34-positive cells, followed by dielectrophoretic DEPArray separation according to cell morphology and immunophenotype. To this end, we explored the expression of melanoma stem cell antigens (CD271, ABCB5, and RANK) and the epithelial-to-mesenchymal transition markers (N-Cad, -CD44, and -MCAM/CD146) on CTCs from 17 stage IV CM patients, and investigated their BRAF mutational status by droplet digital PCR. Results: The number of CTCs isolated from CM patients ranged from 2 to 91 cells (38 ± 6.4) with respect to healthy donors (p < 0.0002). To confirm the melanoma origin of isolated cells, we observed an 80% agreement between their BRAFV600 mutational status and matched primary tumors. The characterization of the immune phenotype of isolated cells revealed high interindividual and intraindividual heterogeneity that was found to correlate with the clinical outcome. Conclusions: The dual-step protocol of immune-magnetic sorting and subsequent dielectrophoretic DEPArray separation, turned out to be a suitable method to isolate viable CTCs from stage IV melanoma patients and enabled quantitative and qualitative analyses on these cells, which may deserve prospective evaluation for potential use in the clinical practice.
Collapse
Affiliation(s)
- Marco Tucci
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11, Bari, 70124, Italy
| | - Stella D'Oronzo
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro' Italy
| | - Francesco Mannavola
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro' Italy
| | - Claudia Felici
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro' Italy
| | - Domenica Lovero
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro' Italy
| | - Paola Cafforio
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro' Italy
| | - Raffaele Palmirotta
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro' Italy
| | - Franco Silvestris
- DIMO, Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro' Italy
| |
Collapse
|
12
|
Khattak MA, Reid A, Freeman J, Pereira M, McEvoy A, Lo J, Frank MH, Meniawy T, Didan A, Spencer I, Amanuel B, Millward M, Ziman M, Gray E. PD-L1 Expression on Circulating Tumor Cells May Be Predictive of Response to Pembrolizumab in Advanced Melanoma: Results from a Pilot Study. Oncologist 2020; 25:e520-e527. [PMID: 32162809 PMCID: PMC7066715 DOI: 10.1634/theoncologist.2019-0557] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND PD-1 inhibitors are routinely used for the treatment of advanced melanoma. This study sought to determine whether PD-L1 expression on circulating tumor cells (CTCs) can serve as a predictive biomarker of clinical benefit and response to treatment with the PD-1 inhibitor pembrolizumab. METHODS Blood samples were collected from patients with metastatic melanoma receiving pembrolizumab, prior to treatment and 6-12 weeks after initiation of therapy. Multiparametric flow cytometry was used to identify CTCs and evaluate the expression of PD-L1. RESULTS CTCs were detected in 25 of 40 patients (63%). Patients with detectable PD-L1+ CTCs (14/25, 64%) had significantly longer progression-free survival (PFS) compared with patients with PD-L1- CTCs (26.6 months vs. 5.5 months; p = .018). The 12-month PFS rates were 76% versus 22% in the PD-L1+ versus PD-L1- CTCs groups (p = .012), respectively. A multivariate linear regression analysis confirmed that PD-L1+ CTC is an independent predictive biomarker of PFS (hazard ratio, 0.229; 95% confidence interval, 0.052-1.012; p = .026). CONCLUSION Our results reveal the potential of CTCs as a noninvasive real-time biopsy to evaluate PD-L1 expression in patients with melanoma. PD-L1 expression on CTCs may be predictive of response to pembrolizumab and longer PFS. IMPLICATIONS FOR PRACTICE The present data suggest that PD-L1 expression on circulating tumor cells may predict response to pembrolizumab in advanced melanoma. This needs further validation in a larger trial and, if proven, might be a useful liquid biopsy tool that could be used to stratify patients into groups more likely to respond to immunotherapy, hence leading to health cost savings.
Collapse
Affiliation(s)
- Muhammad A. Khattak
- Department of Medical Oncology, Fiona Stanley HospitalAustralia
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
- Faculty of Health and Medical Sciences, University of Western AustraliaCrawleyAustralia
| | - Anna Reid
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | - James Freeman
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | - Michelle Pereira
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | - Ashleigh McEvoy
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | - Johnny Lo
- School of Engineering, Edith Cowan UniversityJoondalupAustralia
| | - Markus H. Frank
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
- Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell Institute, Harvard UniversityCambridgeMassachusettsUSA
| | - Tarek Meniawy
- Faculty of Health and Medical Sciences, University of Western AustraliaCrawleyAustralia
- Department of Medical Oncology, Sir Charles Gairdner HospitalNedlandsAustralia
| | - Ali Didan
- Department of Medical Oncology, Fiona Stanley HospitalAustralia
| | - Isaac Spencer
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| | | | - Michael Millward
- Faculty of Health and Medical Sciences, University of Western AustraliaCrawleyAustralia
- Department of Medical Oncology, Sir Charles Gairdner HospitalNedlandsAustralia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
- Faculty of Health and Medical Sciences, University of Western AustraliaCrawleyAustralia
| | - Elin Gray
- School of Medical and Health Sciences, Edith Cowan UniversityPerthAustralia
| |
Collapse
|
13
|
Detection of Gene Mutations in Liquid Biopsy of Melanoma Patients: Overview and Future Perspectives. Curr Treat Options Oncol 2020; 21:19. [PMID: 32048063 DOI: 10.1007/s11864-020-0708-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Liquid biopsies are still far from widely implanted in the clinical arena. Issues related to the added sensitivity of this test beyond conventional methods have not been fully resolved. Additionally, issues related to the specificity of these results especially as many cancers may share common mutation need further investigations. One way to resolve this may include the development and testing of large gene panels to add higher specificity. On the other hand, further studies are needed to support the idea that ctDNA or circulating tumor cells may constitute a better representation of the tumor subpopulation that is capable of metastasizing, which will strongly support its clinical value. Finally, survival studies showing a positive impact of this technology will also justify its widespread implementation in clinical practice.
Collapse
|