1
|
Belloni A, Pugnaloni A, Rippo MR, Di Valerio S, Giordani C, Procopio AD, Bronte G. The cell line models to study tyrosine kinase inhibitors in non-small cell lung cancer with mutations in the epidermal growth factor receptor: A scoping review. Crit Rev Oncol Hematol 2024; 194:104246. [PMID: 38135018 DOI: 10.1016/j.critrevonc.2023.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) represents ∼85% of all lung cancers and ∼15-20% of them are characterized by mutations affecting the Epidermal Growth Factor Receptor (EGFR). For several years now, a class of tyrosine kinase inhibitors was developed, targeting sensitive mutations affecting the EGFR (EGFR-TKIs). To date, the main burden of the TKIs employment is due to the onset of resistance mutations. This scoping review aims to resume the current situation about the cell line models employed for the in vitro evaluation of resistance mechanisms induced by EGFR-TKIs in oncogene-addicted NSCLC. Adenocarcinoma results the most studied NSCLC histotype with the H1650, H1975, HCC827 and PC9 mutated cell lines, while Gefitinib and Osimertinib the most investigated inhibitors. Overall, data collected frame the current advancement of this topic, showing a plethora of approaches pursued to overcome the TKIs resistance, from RNA-mediated strategies to the innovative combination therapies.
Collapse
Affiliation(s)
- Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Di Valerio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
2
|
Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:28-41. [PMID: 38230275 PMCID: PMC10789132 DOI: 10.1021/acsptsci.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Unit
of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Opa Vajragupta
- Research
Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute
of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Chihara Y, Takeda T, Goto Y, Nakamura Y, Tsuchiya-Kawano Y, Nakao A, Onoi K, Hibino M, Fukuda M, Honda R, Yamada T, Taniguchi R, Sakamoto S, Date K, Nagashima S, Tanzawa S, Minato K, Nakatani K, Izumi M, Shimose T, Kishimoto J, Uchino J, Takayama K. A Phase II Trial on Osimertinib as a First-Line Treatment for EGFR Mutation-Positive Advanced NSCLC in Elderly Patients: The SPIRAL-0 Study. Oncologist 2022; 27:903-e834. [PMID: 36181763 PMCID: PMC9632307 DOI: 10.1093/oncolo/oyac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Osimertinib is one of the standard first-line treatments for advanced non-small cell lung cancer in patients with epidermal growth factor receptor (EGFR) mutations, because it achieves significantly longer progression-free survival (PFS) than conventional first-line treatments (hazard ratio: 0.46). However, the efficacy and safety of osimertinib as a first-line treatment for patients aged ≥75 years remain unclear. METHODS This phase II study was performed to prospectively investigate the efficacy and safety of osimertinib for elderly patients with EGFR mutation-positive advanced non-small cell lung cancer. The primary endpoint was 1-year PFS rate; secondary endpoints were overall response rate (ORR), PFS, overall survival (OS), and safety. RESULTS Thirty-eight patients were included in the analysis. The 1-year PFS rate was 59.4% (95% confidence interval [CI], 46.1%-72.7%), which did not meet the primary endpoint (the threshold 1-year PFS rate of 50% predicted using data from the NEJ003 study). The most common grade 3/4 adverse events were rash/dermatitis acneiform/ALT increased/hypokalemia (2 patients, 5%). Seven patients developed pneumonitis (17.5%). There were no other cases of treatment discontinuation due to adverse events other than pneumonitis. CONCLUSION Although this study did not meet the primary endpoint, osimertinib was tolerable for elderly patients with EGFR mutation-positive advanced non-small cell lung cancer. (Japan Registry of Clinical Trials [JRCT] ID number: jRCTs071180007).
Collapse
Affiliation(s)
- Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoichi Nakamura
- Division of Thoracic Oncology, Tochigi Cancer Center, Utsunomiya, Japan
| | - Yuko Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Akira Nakao
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Keisuke Onoi
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Japan
| | - Minoru Fukuda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Ryoichi Honda
- Department of Respiratory Medicine, Asahi General Hospital, Asahi, Japan
| | - Takahiro Yamada
- Department of Pulmonary Medicine, Matsushita Memorial Hospital, Moriguchi, Japan
| | | | - Sinjiro Sakamoto
- Department of Respiratory Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Date
- Department of Pulmonary Medicine, Kyoto Chubu Medical Center, Nantan, Japan
| | - Seiji Nagashima
- Department of Respiratory Medicine, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Shigeru Tanzawa
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Koichi Minato
- Division of Respiratory Medicine, Gunma Prefectural Cancer Center, Ota, Japan
| | - Koichi Nakatani
- Division of Respiratory Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Miiru Izumi
- Department of Respiratory Medicine, National Hospital Organization Omuta National Hospital, Omuta, Japan
| | - Takayuki Shimose
- Department of Statistics and Data Center, Clinical Research Support Center Kyushu, Fukuoka, Japan
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Español A, Sanchez Y, Salem A, Obregon J, Sales ME. Nicotinic receptors modulate antitumor therapy response in triple negative breast cancer cells. World J Clin Oncol 2022; 13:505-519. [PMID: 35949430 PMCID: PMC9244968 DOI: 10.5306/wjco.v13.i6.505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Triple negative breast cancer is more aggressive than other breast cancer subtypes and constitutes a public health problem worldwide since it has high morbidity and mortality due to the lack of defined therapeutic targets. Resistance to chemotherapy complicates the course of patients’ treatment. Several authors have highlighted the participation of nicotinic acetylcholine receptors (nAChR) in the modulation of conventional chemotherapy treatment in cancers of the airways. However, in breast cancer, less is known about the effect of nAChR activation by nicotine on chemotherapy treatment in smoking patients.
AIM To investigate the effect of nicotine on paclitaxel treatment and the signaling pathways involved in human breast MDA-MB-231 tumor cells.
METHODS Cells were treated with paclitaxel alone or in combination with nicotine, administered for one or three 48-h cycles. The effect of the addition of nicotine (at a concentration similar to that found in passive smokers’ blood) on the treatment with paclitaxel (at a therapeutic concentration) was determined using the 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The signaling mediators involved in this effect were determined using selective inhibitors. We also investigated nAChR expression, and ATP “binding cassette” G2 drug transporter (ABCG2) expression and its modulation by the different treatments with Western blot. The effect of the treatments on apoptosis induction was determined by flow cytometry using annexin-V and 7AAD markers.
RESULTS Our results confirmed that treatment with paclitaxel reduced MDA-MB-231 cell viability in a concentration-dependent manner and that the presence of nicotine reversed the cytotoxic effect induced by paclitaxel by involving the expression of functional α7 and α9 nAChRs in these cells. The action of nicotine on paclitaxel treatment was linked to modulation of the protein kinase C, mitogen-activated protein kinase, extracellular signal-regulated kinase, and NF-κB signaling pathways, and to an up-regulation of ABCG2 protein expression. We also detected that nicotine significantly reduced the increase in cell apoptosis induced by paclitaxel treatment. Moreover, the presence of nicotine reduced the efficacy of paclitaxel treatment administered in three cycles to MDA-MB-231 tumor cells.
CONCLUSION Our findings point to nAChRs as responsible for the decrease in the chemotherapeutic effect of paclitaxel in triple negative tumors. Thus, nAChRs should be considered as targets in smoking patients.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jaqueline Obregon
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Maria Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
5
|
Zhang L, Bing S, Dong M, Lu X, Xiong Y. Targeting ion channels for the treatment of lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188629. [PMID: 34610420 DOI: 10.1016/j.bbcan.2021.188629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer is caused by several environmental and genetic variables and is globally associated with elevated morbidity and mortality. Among these variables, membrane-bound ion channels have a key role in regulating multiple signaling pathways in tumor cells and dysregulation of ion channel expression and function is closely related to proliferation, migration, and metastasis of lung cancer. This work reviews and summarizes current knowledge about the role of ion channels in lung cancer, focusing on the changes in the expression and function of various ion channels in lung cancer and how these changes affect lung cancer cell biology both in vitro and in vivo as evidenced by both genetic and pharmacological studies. It can help understand the molecular mechanisms of various ion channels influencing the initiation and progression of lung cancer and shed new insights into their roles in the development and treatment of this deadly disease.
Collapse
Affiliation(s)
- Liqin Zhang
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China.
| | - Shuya Bing
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Mo Dong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Xiaoqiu Lu
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Yuancheng Xiong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| |
Collapse
|
6
|
Papini F, Sundaresan J, Leonetti A, Tiseo M, Rolfo C, Peters GJ, Giovannetti E. Hype or hope - Can combination therapies with third-generation EGFR-TKIs help overcome acquired resistance and improve outcomes in EGFR-mutant advanced/metastatic NSCLC? Crit Rev Oncol Hematol 2021; 166:103454. [PMID: 34455092 DOI: 10.1016/j.critrevonc.2021.103454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
Three generations of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs) have been developed for treating advanced/metastatic non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations, while a fourth generation is undergoing preclinical assessment. Although initially effective, acquired resistance to EGFR-TKIs usually arises within a year due to the emergence of clones harboring multiple resistance mechanisms. Therefore, the combination of EGFR-TKIs with other therapeutic agents has emerged as a potential strategy to overcome resistance and improve clinical outcomes. However, results obtained so far are ambiguous and ideal therapies for patients who experience disease progression during treatment with EGFR-TKIs remain elusive. This review provides an updated landscape of EGFR-TKIs, along with a description of the mechanisms causing resistance to these drugs. Moreover, it discusses the current knowledge, limitations, and future perspective regarding the use of EGFR-TKIs in combination with other anticancer agents, supporting the need for bench-to-bedside approaches in selected populations.
Collapse
Affiliation(s)
- Filippo Papini
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Janani Sundaresan
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alessandro Leonetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Christian Rolfo
- The Center of Thoracic Oncology at the Tisch Cancer Institute, Mount Sinai, NYC, United States
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
7
|
Afrashteh Nour M, Hajiasgharzadeh K, Kheradmand F, Asadzadeh Z, Bolandi N, Baradaran B. Nicotinic acetylcholine receptors in chemotherapeutic drugs resistance: An emerging targeting candidate. Life Sci 2021; 278:119557. [PMID: 33930371 DOI: 10.1016/j.lfs.2021.119557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
There is no definitive cure for cancer, and most of the current chemotherapy drugs have limited effects due to the development of drug resistance and toxicity at high doses. Therefore, there is an ongoing need for identifying the causes of chemotherapeutic resistance, and it will be possible to develop innovative treatment approaches based on these novel targeting candidates. Cigarette smoking is known to be one of the main causes of resistance to chemotherapeutic agents. Nicotine as a component of cigarette smoke is an exogenous activator of nicotinic acetylcholine receptors (nAChRs). It can inhibit apoptosis, increase cell proliferation and cell survival, reducing the cytotoxic effects of chemotherapy drugs and cause a reduced therapeutic response. Recent studies have demonstrated that nAChRs and their downstream signaling pathways have considerable implications in different cancer's initiation, progression, and chemoresistance. In some previous studies, nAChRs have been targeted to obtain better efficacies for chemotherapeutics. Besides, nAChRs-based therapies have been used in combination with chemotherapy drugs to reduce the side effects. This strategy requires lower doses of chemotherapy drugs compared to the conditions that must be used alone. Here, we discussed the experimental and clinical studies that show the nAChRs involvement in response to chemotherapy agents. Also, controversies relating to the effects of nAChR on chemotherapy-induced apoptosis are in our focus in this review article. Delineating the complex influences of nAChRs would be of great interest in establishing new effective chemotherapy regimens.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Role of the parasympathetic nervous system in cancer initiation and progression. Clin Transl Oncol 2020; 23:669-681. [PMID: 32770391 DOI: 10.1007/s12094-020-02465-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The nervous system plays an important role in cancer initiation and progression. Accumulated evidences clearly show that the sympathetic nervous system exerts stimulatory effects on carcinogenesis and cancer growth. However, the role of the parasympathetic nervous system in cancer has been much less elucidated. Whereas retrospective studies in vagotomized patients and experiments employing vagotomized animals indicate the parasympathetic nervous system has an inhibitory effect on cancer, clinical studies in patients with prostate cancer indicate it has stimulatory effects. Therefore, the aim of this paper is a critical evaluation of the available data related to the role of the parasympathetic nervous system in cancer.
Collapse
|
9
|
Hajiasgharzadeh K, Somi MH, Mansoori B, Khaze Shahgoli V, Derakhshani A, Mokhtarzadeh A, Shanehbandi D, Baradaran B. Small interfering RNA targeting alpha7 nicotinic acetylcholine receptor sensitizes hepatocellular carcinoma cells to sorafenib. Life Sci 2020; 244:117332. [PMID: 31962133 DOI: 10.1016/j.lfs.2020.117332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
AIMS It has been demonstrated that reduced expression of alpha7 nicotinic acetylcholine receptor (α7nAChR) led to reduced chemotherapeutic drugs resistance in various cancer cells. However, whether small interfering RNA (siRNA) mediated knockdown of α7nAChR can reduce sorafenib (SOR) resistance in HCC cells remains to be determined. MATERIALS AND METHODS The effects of α7nAChR-siRNA in combination with SOR treatment was analyzed in human (HepG2) and mouse (Hepa 1-6) HCC cell lines. The MTT, DAPI staining and flow cytometry assays were applied to measure the cell viability, apoptosis and cell cycle progression of the cells. Also, the changes in the mRNA and protein levels of the α7nAChR were measured by quantitative real-time PCR and western blot analysis, respectively. KEY FINDINGS The results revealed that SOR increased both mRNA and protein levels of α7nAChR in HCC cells. Treatment with α7nAChR-siRNA abolished these effects. Also, SOR treatment in combination with α7nAChR-siRNA significantly sensitizes HCC cells to SOR cytotoxicity. This combination therapy significantly induced HCC cells apoptosis compared to SOR alone. SIGNIFICANCE These experimental results indicate that knockdown of α7nAChR by siRNA increased the SOR antitumor activity of HCC cells and suggests that this additive combination is a promising drug candidate for HCC therapy.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Cheng WL, Chen KY, Lee KY, Feng PH, Wu SM. Nicotinic-nAChR signaling mediates drug resistance in lung cancer. J Cancer 2020; 11:1125-1140. [PMID: 31956359 PMCID: PMC6959074 DOI: 10.7150/jca.36359] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Cigarette smoking is the most common risk factor for lung carcinoma; other risks include genetic factors and exposure to radon gas, asbestos, secondhand smoke, and air pollution. Nicotine, the primary addictive constituent of cigarettes, contributes to cancer progression through activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated ion channels. Activation of nicotine/nAChR signaling is associated with lung cancer risk and drug resistance. We focused on nAChR pathways activated by nicotine and its downstream signaling involved in regulating apoptotic factors of mitochondria and drug resistance in lung cancer. Increasing evidence suggests that several sirtuins play a critical role in multiple aspects of cancer drug resistance. Thus, understanding the consequences of crosstalk between nicotine/nAChRs and sirtuin signaling pathways in the regulation of drug resistance could be a critical implication for cancer therapy.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Mravec B, Tibensky M, Horvathova L, Babal P. E-Cigarettes and Cancer Risk. Cancer Prev Res (Phila) 2019; 13:137-144. [PMID: 31619443 DOI: 10.1158/1940-6207.capr-19-0346] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022]
Abstract
From the time of their introduction, the popularity of e-cigarettes (electronic nicotine-delivery systems) has been rising. This trend may reflect the general belief that e-cigarettes are a less hazardous alternative to combustible cigarettes. However, the potential cancer-related effects of increased activation of the sympathoadrenal system induced by the inhalation of nicotine, the primary component of the e-cigarettes, are completely overlooked. Therefore, the aim of this review is to describe mechanisms that may connect the use of e-cigarettes and an increased risk for cancer development, as well as their stimulatory effect on cancer progression. Available preclinical data indicate that activation of the sympathetic nervous system by nicotine inhaled from e-cigarettes may stimulate cancer development and growth by several mechanisms. This issue might be especially important for oncological patients as they may have the misconception that compared with combustible cigarettes, e-cigarettes represent a risk-free alternative.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia. .,Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Tibensky
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia.,Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubica Horvathova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavel Babal
- Institute of Pathology, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| |
Collapse
|