1
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
2
|
Xu M, Lu X, Zhu F, Sun X, Yao H, Zhang J, Chen W, Zhu H, Liu F, Shi SL, Deng X. BRG1 mediates epigenetic regulation of TNFα-induced CCL2 expression in oral tongue squamous cell carcinoma cells. J Cell Biochem 2024; 125:e30535. [PMID: 38348687 DOI: 10.1002/jcb.30535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 04/11/2024]
Abstract
Strong evidence has indicated that upregulation of chemokine (CC motif) ligand-2 (CCL2) expression and the presence of an inflammatory tumor microenvironment significantly contribute to the migratory and invasive properties of oral squamous cell carcinoma, specifically oral tongue squamous cell carcinoma (OTSCC). However, the precise epigenetic mechanism responsible for enhanced CCL2 expression in response to the inflammatory mediator tumor necrosis factor alpha (TNF-α) in OTSCC remains inadequately elucidated. We have demonstrated that the production of CCL2 can be induced by TNF-α, and this induction is mediated by the chromatin remodel protein BRG1. Through the use of a chromatin immunoprecipitation (ChIP) assay, we have found that BRG1 was involved in the recruitment of acetylated histones H3 and H4 at the CCL2 promoter, thereby activating TNF-α-induced CCL2 transcription. Furthermore, we have observed that recruitment of NF-κB p65 to the CCL2 promoter was increased following BRG1 overexpression and decreased after BRG1 knockdown in OTSCC cells. Our Re-ChIP assay has shown that BRG1 knockdown completely inhibits the recruitment of both acetylated histone H3 or H4 and NF-κB to the CCL2 promoter. In summary, the findings of our study demonstrate that BRG1 plays a significant role in mediating the production of CCL2 in OTSCC cells in response to TNF-α stimulation. This process involves the cooperative action of acetylated histone and NF-κB recruitment to the CCL2 promoter site. Our data suggest that BRG1 serves as a critical epigenetic mediator in the regulation of TNF-α-induced CCL2 transcription in OTSCC cells.
Collapse
Affiliation(s)
- Mingyan Xu
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Implantology, Stomatological Hospital of Xiamen Medical College & Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, Fujian, China
| | - Xuemei Lu
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Feixiang Zhu
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xue Sun
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongfa Yao
- Department of Implantology, Stomatological Hospital of Xiamen Medical College & Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, Fujian, China
| | - Junling Zhang
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Weishi Chen
- Department of Stomatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Haohao Zhu
- Department of Pathology, The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, Jiangxi, China
| | - Fan Liu
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Song Lin Shi
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoling Deng
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
4
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
5
|
Cheng M, Zheng Y, Fan Y, Yan P, Zhao W. The contribution of IL-17A-dependent low LCN2 levels to Helicobacter pylori infection: Insights from clinical and experimental studies. Int Immunopharmacol 2023; 124:110960. [PMID: 37722259 DOI: 10.1016/j.intimp.2023.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a common bacterial infection that is widespread globally. It is crucial to comprehend the molecular mechanisms that underlie the infection caused by H. pylori in order to devise successful therapeutic approaches. The objective of this study was to examine the involvement of Lipocalin-2 (LCN2) in the development of H. pylori infection. METHODS LCN2 expression levels in human gastric mucosa and H. pylori-infected mouse models were analyzed using quantitative PCR and immunohistochemistry methods. The effects of LCN2 on the attachment of H. pylori to gastric mucosa cells were assessed using bacterial culture and fluorescence intensity tests. To investigate the correlation between LCN2, CCL20, and IL-17A, we performed gene expression analysis and measured serum levels. RESULTS The findings indicated an increase in LCN2 levels in the gastric mucosa of both patients and mice infected with H. pylori. Blocking the natural LCN2 resulted in an increased attachment of H. pylori to cells in the gastric mucosa. In addition, we noticed that reduced levels of LCN2 promoted the attachment of H. pylori to cells in the gastric mucosa. Furthermore, H. pylori-infected patients exhibited increased expression of both LCN2 and CCL20, and there was a positive correlation between serum levels of CCL20 and LCN2. LCN2 expression was found to depend on the presence of IL-17A, and inhibiting IL-17A led to a higher H. pylori colonization. CONCLUSION The persistence of H. pylori infection is facilitated by the presence of low levels of LCN2, which is dependent on IL-17A. This finding offers valuable perspectives for the development of novel therapeutic approaches for H. pylori infection.
Collapse
Affiliation(s)
- Mingjing Cheng
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yong Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yujuan Fan
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Ping Yan
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali, Yunnan, China.
| | - Weidong Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China; Department of Clinical Laboratory, Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| |
Collapse
|
6
|
Zhu J, Chen H, Cui J, Zhang X, Liu G. Oroxylin A inhibited autoimmune hepatitis-induced liver injury and shifted Treg/Th17 balance to Treg differentiation. Exp Anim 2023; 72:367-378. [PMID: 36927981 PMCID: PMC10435359 DOI: 10.1538/expanim.22-0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a kind of autoimmune disease mediated by T cells, and its incidence is gradually increasing in the world. Oroxylin A (OA) is one of the major bioactive flavonoids that has been reported to inhibit inflammatory. Here, an AIH model of mouse was induced by Concanavalin A (Con A). It found that serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were decreased in mice with the treatment of OA. Hematoxylin-eosin staining showed that the liver injury was attenuated by OA, and TUNEL staining indicated that the cells apoptosis of liver was weakened in mice with OA treatment. ELISA analysis of cytokines and chemokines suggested that OA reduced the expression of IL-6, IL-17A, chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 1 (CXCL1) and CXCL10, but promoted the expression of IL-10 and TGF-β in mice. The mRNA levels of Il-17a in liver and spleen tissues were also significantly decreased, on the contrary, the mRNA levels of Il-10 in liver and spleen tissues were increased. The proportion of Treg/Th17 detected by flow cytometry revealed that OA promoted the differentiation of Treg and inhibited the differentiation of Th17 both in the liver and spleen. The results of this study demonstrated the inhibitory effects of OA on AIH-induced liver injury and the inflammatory response of AIH, and revealed that OA affected the balance of Treg/Th17 and shifted the balance toward Treg differentiation. It provided new potential drugs for the prevention of AIH.
Collapse
Affiliation(s)
- Jinxia Zhu
- The First Clinical Medical College, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, P.R. China
| | - Hongxiu Chen
- The First Clinical Medical College, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, P.R. China
| | - Jianjiao Cui
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, Henan, 450003, P.R. China
| | - Xiaorui Zhang
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, Henan, 450003, P.R. China
| | - Guangwei Liu
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, Henan, 450003, P.R. China
| |
Collapse
|
7
|
Metastasis prevention: How to catch metastatic seeds. Biochim Biophys Acta Rev Cancer 2023; 1878:188867. [PMID: 36842768 DOI: 10.1016/j.bbcan.2023.188867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Despite considerable advances in the evolution of anticancer therapies, metastasis still remains the main cause of cancer mortality. Therefore, current strategies for cancer cure should be redirected towards prevention of metastasis. Targeting metastatic pathways represents a promising therapeutic opportunity aimed at obstructing tumor cell dissemination and metastatic colonization. In this review, we focus on preclinical studies and clinical trials over the last five years that showed high efficacy in suppressing metastasis through targeting lymph node dissemination, tumor cell extravasation, reactive oxygen species, pre-metastatic niche, exosome machinery, and dormancy.
Collapse
|
8
|
Sajeev A, Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sil SK, Sethi G, Chen JT, Kunnumakkara AB. Oroxylin A: A Promising Flavonoid for Prevention and Treatment of Chronic Diseases. Biomolecules 2022; 12:1185. [PMID: 36139025 PMCID: PMC9496116 DOI: 10.3390/biom12091185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
There have been magnificent advancements in the understanding of molecular mechanisms of chronic diseases over the past several years, but these diseases continue to be a considerable cause of death worldwide. Most of the approved medications available for the prevention and treatment of these diseases target only a single gene/protein/pathway and are known to cause severe side effects and are less effective than they are anticipated. Consequently, the development of finer therapeutics that outshine the existing ones is far-reaching. Natural compounds have enormous applications in curbing several disastrous and fatal diseases. Oroxylin A (OA) is a flavonoid obtained from the plants Oroxylum indicum, Scutellaria baicalensis, and S. lateriflora, which have distinctive pharmacological properties. OA modulates the important signaling pathways, including NF-κB, MAPK, ERK1/2, Wnt/β-catenin, PTEN/PI3K/Akt, and signaling molecules, such as TNF-α, TGF-β, MMPs, VEGF, interleukins, Bcl-2, caspases, HIF-1α, EMT proteins, Nrf-2, etc., which play a pivotal role in the molecular mechanism of chronic diseases. Overwhelming pieces of evidence expound on the anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer potentials of this flavonoid, which makes it an engrossing compound for research. Numerous preclinical and clinical studies also displayed the promising potential of OA against cancer, cardiovascular diseases, inflammation, neurological disorders, rheumatoid arthritis, osteoarthritis, etc. Therefore, the current review focuses on delineating the role of OA in combating different chronic diseases and highlighting the intrinsic molecular mechanisms of its action.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Center, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Samir Kumar Sil
- Cell Physiology and Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar 799022, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
9
|
CD30L is involved in the regulation of the inflammatory response through inducing homing and differentiation of monocytes via CCL2/CCR2 axis and NF-κB pathway in mice with colitis. Int Immunopharmacol 2022; 110:108934. [PMID: 35834956 DOI: 10.1016/j.intimp.2022.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The pathogenesis of inflammatory bowel diseases (IBD) is complex, and dysregulated immune responses play a pivotal role in its occurrence and development. Our previous studies indicated that CD30L may participate in monocyte-mediated inflammation in patients with UC through the activation of circulating monocytes. However, it remains unclear how CD30L participates in monocyte-mediated inflammation in IBD by activation of circulating monocytes. In this study, we observed an increase in the expression of CD30L and chemokine receptor type 2 (CCR2) on circulating monocytes and pro-inflammatory monocytes in the colon lamina propria in mice with dextran sulfate sodium salt (DSS)-induced colitis. Moreover, there was a positive correlation between the expression levels of CCR2 and CD30L (r = 0.8817, p = 0.0480) in monocytes. In Cd30l-/- mice with DSS-induced colitis, the percentage and absolute number of circulating monocytes and pro-inflammatory monocytes decreased with the downregulation of CCR2. Stimulation via CD30L by immobilized anti-CD30L mAb suppressed the expression of pNF-κB p65, pIκBα, p65 and CCR2 and up-regulated the expression of IκBα in the sorted pro-inflammatory monocytes in Cd30l-/- mice with DSS-induced colitis. The mRNA levels of Ccr2 in the sorted pro-inflammatory monocytes were significantly down-regulated with the presence of immobilized RM153 and inhibitors of NF-κB (BAY 11-7082) in WT mice with DSS-induced colitis. Our results suggested that CD30L could promote the inflammatory response by inducing the homing and differentiation of monocytes via the chemokine ligand 2 (CCL2)/CCR2 axis and NF-κB signaling pathway in mice with colitis. These findings provide a novel target for monocyte-based immunotherapy against IBD.
Collapse
|
10
|
Lai KC, Hong ZX, Hsieh JG, Lee HJ, Yang MH, Hsieh CH, Yang CH, Chen YR. IFIT2-depleted metastatic oral squamous cell carcinoma cells induce muscle atrophy and cancer cachexia in mice. J Cachexia Sarcopenia Muscle 2022; 13:1314-1328. [PMID: 35170238 PMCID: PMC8977969 DOI: 10.1002/jcsm.12943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Interferon-induced protein with tetratricopeptide repeat 2 (IFIT2) is a reported metastasis suppressor in oral squamous cell carcinoma (OSCC). Metastases and cachexia may coexist. The effect of cancer metastasis on cancer cachexia is largely unknown. We aimed to address this gap in knowledge by characterizing the cachectic phenotype of an IFIT2-depleted metastatic OSCC mouse model. METHODS Genetically engineered and xenograft tumour models were used to explore the effect of IFIT2-depleted metastatic OSCC on cancer cachexia. Muscle and organ weight changes, tumour burden, inflammatory cytokine profiles, body composition, food intake, serum albumin and C-reactive protein (CRP) levels, and survival were assessed. The activation of the IL6/p38 pathway in atrophied muscle was measured. RESULTS IFIT2-depleted metastatic tumours caused marked body weight loss (-18.2% vs. initial body weight, P < 0.001) and a poor survival rate (P < 0.01). Skeletal muscles were markedly smaller in IFIT2-depleted metastatic tumour-bearing mice (quadriceps: -28.7%, gastrocnemius: -29.4%, and tibialis: -24.3%, all P < 0.001). Tumour-derived circulating granulocyte-macrophage colony-stimulating factor (+772.2-fold, P < 0.05), GROα (+1283.7-fold, P < 0.05), IL6 (+245.8-fold, P < 0.001), IL8 (+616.9-fold, P < 0.001), IL18 (+24-fold, P < 0.05), IP10 (+18.8-fold, P < 0.001), CCL2 (+439.2-fold, P < 0.001), CCL22 (+9.1-fold, P < 0.01) and tumour necrosis factor α (+196.8-fold, P < 0.05) were elevated in IFIT2-depleted metastatic tumour-bearing mice. Murine granulocyte colony-stimulating factor (+61.4-fold, P < 0.001) and IL6 (+110.9-fold, P < 0.01) levels were significantly increased in IFIT2-depleted metastatic tumour-bearing mice. Serum CRP level (+82.1%, P < 0.05) was significantly increased in cachectic shIFIT2 mice. Serum albumin level (-26.7%, P < 0.01) was significantly decreased in cachectic shIFIT2 mice. An assessment of body composition revealed decreased fat (-81%, P < 0.001) and lean tissue (-21.7%, P < 0.01), which was consistent with the reduced food intake (-19.3%, P < 0.05). Muscle loss was accompanied by a smaller muscle cross-sectional area (-23.3%, P < 0.05). Muscle atrophy of cachectic IFIT2-depleted metastatic tumour-bearing mice (i.v.-shIFIT2 group) was associated with elevated IL6 (+2.7-fold, P < 0.05), phospho-p38 (+2.8-fold, P < 0.05), and atrogin-1 levels (+2.3-fold, P < 0.05) in the skeletal muscle. Neutralization of IL6 rescued shIFIT2 conditioned medium-induced myotube atrophy (+24.6%, P < 0.01). CONCLUSIONS Our results suggest that the development of shIFIT2 metastatic OSCC lesions promotes IL6 production and is accompanied by the loss of fat and lean tissue, anorexia, and muscle atrophy. This model is appropriate for the study of OSCC cachexia, especially in linking metastasis with cachexia.
Collapse
Affiliation(s)
- Kuo-Chu Lai
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Zi-Xuan Hong
- Masters Program in Pharmacology & Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jyh-Gang Hsieh
- Department of Family Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Humanities, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hui-Ju Lee
- Department of Research and Development, Immunwork, Inc., Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Husu Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan.,Division of Hematology and Oncology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Cheng-Han Yang
- Deportment of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yan-Ru Chen
- Masters Program in Pharmacology & Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Sha T, Li J, Sun S, Li J, Zhao X, Li Z, Cui Z. YEATS domain-containing 2 (YEATS2), targeted by microRNA miR-378a-5p, regulates growth and metastasis in head and neck squamous cell carcinoma. Bioengineered 2021; 12:7286-7296. [PMID: 34587874 PMCID: PMC8806651 DOI: 10.1080/21655979.2021.1977553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with poor prognosis and the development of HNSCC is a complex process. Some research have found that YEATS domain-containing 2 (YEATS2) is highly expressed in non-small cell lung cancer and pancreatic cancer, whereas its function in HNSCC is left to be studied. The primary aim was to investigate the role of YEATS2 in proliferation, apoptosis, invasion and migration in HNSCC cells and explore the possible mechanisms. We found YEATS2 expression was elevated in HNSCC clinical samples. Our work also indicated YEATS2 knockdown inhibited cell proliferation, induced apoptosis, and diminished the migration and invasion capability in HNSCC cell lines, including Detroit562 and FaDu cells. Besides, these inhibiting effects of YEATS2 knockdown could be crippled by microRNA-378a-5p (miR-378a-5p) inhibitor. In conclusion, our data suggested that YEATS2 expression was regulated by miR-378a-5p and YEATS2 knockdown inhibited proliferation and metastasis while induced apoptosis in HNSCC cells.
Collapse
Affiliation(s)
- Tong Sha
- The Third Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Jia Li
- Department of Oral and Maxillofacial Surgery Clinic, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Shiqun Sun
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Xuetao Zhao
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Zehua Li
- Department of Pedodontics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Zhi Cui
- The Third Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
12
|
Meng X, Wang ZF, Lou QY, Rankine AN, Zheng WX, Zhang ZH, Zhang L, Gu H. Long non-coding RNAs in head and neck squamous cell carcinoma: Diagnostic biomarkers, targeted therapies, and prognostic roles. Eur J Pharmacol 2021; 902:174114. [PMID: 33901464 DOI: 10.1016/j.ejphar.2021.174114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
At present, emerging evidence shows that non-coding RNAs (ncRNAs) play crucial roles for development of multiple tumors. Amongst these ncRNAs, long non-coding RNAs (lncRNAs) play prominent roles in physiological and pathological processes. LncRNAs are RNA transcripts larger than 200 nucleotides and have been shown to serve important regulatory roles in different types of cancer via interactions with DNA, RNA and proteins. Head and neck squamous cell carcinoma (HNSCC) is one of the most malignant tumors with low survival rates in advanced stages. Recently, lncRNAs have been demonstrated to be involved in a wide range of biological processes, including proliferation, metastasis, and prognosis of HNSCC. Therefore, this review describes molecular mechanisms of up- or down-regulation of lncRNAs and expounds their functions in pathology and clinical practices in HNSCC. It also highlights their potential clinical applications as biomarkers for the diagnosis, prognosis, and treatment of HNSCC. However, studies on lncRNAs are still not comprehensive, and more investigations are needed in the future.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Zi-Fei Wang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Qiu-Yue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Abigail N Rankine
- Clinical Medicine in Chinese (MBBS), Anhui Medical University, Hefei, 230032, China.
| | - Wan-Xin Zheng
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Zi-Hao Zhang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; Periodontal Department, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Feng R, Zhang X, Yin J, Zhang Y, Ma Y, Zhang X, Zhang L, Li D. A comprehensive study of the metabolism of flavonoid oroxin B in vivo and in vitro by UHPLC-Q-TOF-MS/MS. J Pharm Biomed Anal 2021; 197:113905. [PMID: 33636644 DOI: 10.1016/j.jpba.2021.113905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 01/14/2021] [Indexed: 01/26/2023]
Abstract
Oroxin B, a flavonoid, is a major bioactive component form Oroxylum indicum (L.) Vent. with enormous anti-hepatoma effects. To data, the oroxin B metabolism studies remain underexplored. This study was designed to characterize oroxin B metabolism in vivo and in vitro by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Consequently, 30 metabolites in rats, 8 metabolites in liver microsomes and 18 metabolites in intestinal bacteria were identified, and 9 metabolites were recognized by comparison with standards. The biotransformation processes involved ketone, acetylation, loss of C12H20O10, and loss of C6H10O5. And baicalein and oroxin A were generated after loss of C12H20O10, and loss of C6H10O5, respectively, and further went through some other reactions, such as oxidation, methylation, internal hydrolysis, hydrogenation, loss of O, ketone, glycine conjugation, glucuronide conjugation and their composite reactions. The results provide valuable evidence for elucidation the potential mechanism of oroxin B pharmacological action, and offer reasonable guidelines for further investigations of oroxin B safety and efficacy.
Collapse
Affiliation(s)
- Rui Feng
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Xiaowei Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Jintuo Yin
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yuqian Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Yinling Ma
- Hebei General Hospital, Shijiazhuang, Hebei, 050051, PR China
| | - Xia Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Deqiang Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
| |
Collapse
|
14
|
Lien MY, Chang AC, Tsai HC, Tsai MH, Hua CH, Cheng SP, Wang SW, Tang CH. Monocyte Chemoattractant Protein 1 Promotes VEGF-A Expression in OSCC by Activating ILK and MEK1/2 Signaling and Downregulating miR-29c. Front Oncol 2020; 10:592415. [PMID: 33330077 PMCID: PMC7729166 DOI: 10.3389/fonc.2020.592415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive tumor that has a poor prognosis, with high levels of local invasion and lymph node metastasis. Vascular endothelial growth factor A (VEGF-A) plays essential roles in OSCC tumor angiogenesis and metastasis. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is implicated in various inflammatory conditions and pathological processes, including oral cancer. The existing evidence has failed to confirm any correlation between MCP-1 or VEGF-A expression and OSCC angiogenesis. In this study, high expression levels of MCP-1 and VEGF-A were positively correlated with disease stage in patients with OSCC. In oral cancer cells, MCP-1 increased VEGF-A expression and subsequently promoted angiogenesis; miR-29c mimic reversed MCP-1 activity. We also found that MCP-1 modulated VEGF-A expression and angiogenesis through CCR2/ILK/MEK1/2 signaling. Ex vivo results of the chick embryo chorioallantoic membrane (CAM) assay revealed the angiogenic qualities of MCP-1, with increased numbers of visible blood vessel branches. Our data suggest that MCP-1 is a new molecular therapeutic target for the inhibition of angiogenesis and metastasis in OSCC.
Collapse
Affiliation(s)
- Ming-Yu Lien
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Chi Tsai
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Hsui Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,College of Pharmacy, Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
16
|
Tomita R, Sasabe E, Tomomura A, Yamamoto T. Macrophage‑derived exosomes attenuate the susceptibility of oral squamous cell carcinoma cells to chemotherapeutic drugs through the AKT/GSK‑3β pathway. Oncol Rep 2020; 44:1905-1916. [PMID: 32901850 PMCID: PMC7551207 DOI: 10.3892/or.2020.7748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Although chemotherapy is initially effective in debulking tumor mass in a number of different types of malignancy, tumor cells gradually acquire chemoresistance and frequently progress to advanced clinical stage. Accumulating evidence has indicated that the tumor sensitivity to several chemotherapeutic drugs is regulated by tumor stromal cells including macrophages. However, the role of macrophages in the efficacy of chemotherapeutics on oral squamous cell carcinoma (OSCC) cells is poorly understood. In the present study, the effects of macrophage-secreted exosomes on the sensitivity of OSCC cells towards chemotherapeutic agents were examined. Specifically, the effects of exosomes derived from THP-1 cells and primary human macrophages (PHM) were assessed on the chemosensitivity of OSC-4 cells treated with 5-fluorouracil (5-FU) and cis-diamminedichloroplatinum (CDDP). The THP-1- and PHM-derived exosomes promoted dose-dependent proliferation, decreased the proliferative inhibitory effects of 5-FU and CDDP and decreased apoptosis in OSC-4 cells through activation of the AKT/glycogen synthase kinase-3β signaling pathway. LY294002, a PI3K inhibitor, and MK-2206, an AKT inhibitor, were both able to suppress the observed decrease in sensitivity to chemotherapeutic agents induced by exosomes. Overall, the data from the present study suggested that the macrophage-derived exosomes may decrease the sensitivity to chemotherapeutic agents in OSCC cells. Thus, targeting the interaction between OSCC cells and macrophage-derived exosomes may be considered as a therapeutic approach to improve the chemosensitivity of the tumor microenvironment in oral cancer.
Collapse
Affiliation(s)
- Riki Tomita
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783‑8505, Japan
| | - Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783‑8505, Japan
| | - Ayumi Tomomura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783‑8505, Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi 783‑8505, Japan
| |
Collapse
|
17
|
Xu T, Wang Q, Liu M. A Network Pharmacology Approach to Explore the Potential Mechanisms of Huangqin-Baishao Herb Pair in Treatment of Cancer. Med Sci Monit 2020; 26:e923199. [PMID: 32609659 PMCID: PMC7346753 DOI: 10.12659/msm.923199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of this study was to identify the bioactive ingredients of Huangqin-Baishao herb pair and to reveal its anti-cancer mechanisms through a pharmacology approach. MATERIAL AND METHODS Detailed information on compounds in the HQ-BS herb pair was obtained from the Traditional Chinese medicine systems pharmacology (TCMSP) and screened by the criteria of OB ≥30% and DL ≥0.18. A systematic drug targeting model (SysDT) was used for compound targets prediction, and then the targets were analyzed for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) network of HQ-BS targets was constructed, after identifying core networks through Cytoscape plugins. RESULTS We found 47 bioactive compounds of HQ-BS and 107 human-derived targets. A compound target network and a target signal pathway network were constructed and used for topological analysis. Kaempferol, beta-sitosterol, stigmasterol, wogonin, and oroxylin-a were identified as core compounds and pathways in cancer. The calcium signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, chemical carcinogenesis, estrogen signaling pathway, proteoglycans in cancer, HIF-1 signaling pathway, thyroid hormone signaling pathway, VEGF signaling pathway, small cell lung cancer, prostate cancer, colorectal cancer, NOD-like receptor signaling pathway, and T cell receptor signaling pathway were found to be potential signals of HQ-BS in treating cancer. Through PPI network analysis, TNF signaling pathway, tryptophan metabolism, proteoglycans in cancer, cell cycle, and chemical carcinogenesis sub-networks were obtained. CONCLUSIONS HQ-BS contains various bioactive compounds, including flavonoids, phytosterols, and other compounds, and these compounds can inhibit or activate multiple targets and pathways against cancer.
Collapse
Affiliation(s)
- Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
18
|
Flavonoids in Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12061498. [PMID: 32521759 PMCID: PMC7352928 DOI: 10.3390/cancers12061498] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metastasis represents a serious complication in the treatment of cancer. Flavonoids are plant secondary metabolites exerting various health beneficiary effects. The effects of flavonoids against cancer are associated not only with early stages of the cancer process, but also with cancer progression and spread into distant sites. Flavonoids showed potent anti-cancer effects against various cancer models in vitro and in vivo, mediated via regulation of key signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of epithelial-mesenchymal transition or regulatory molecules such as MMPs, uPA/uPAR, TGF-β and other contributors of the complex process of metastatic spread. Moreover, flavonoids modulated also the expression of genes associated with the progression of cancer and improved inflammatory status, a part of the complex process involved in the development of metastasis. Flavonoids also documented clear potential to improve the anti-cancer effectiveness of conventional chemotherapeutic agents. Most importantly, flavonoids represent environmentally-friendly and cost-effective substances; moreover, a wide spectrum of different flavonoids demonstrated safety and minimal side effects during long-termed administration. In addition, the bioavailability of flavonoids can be improved by their conjugation with metal ions or structural modifications by radiation. In conclusion, anti-cancer effects of flavonoids, targeting all phases of carcinogenesis including metastatic progression, should be implemented into clinical cancer research in order to strengthen their potential use in the future targeted prevention and therapy of cancer in high-risk individuals or patients with aggressive cancer disease with metastatic potential.
Collapse
|
19
|
Triticum vulgare Extract Modulates Protein-Kinase B and Matrix Metalloproteinases 9 Protein Expression in BV-2 Cells: Bioactivity on Inflammatory Pathway Associated with Molecular Mechanism Wound Healing. Mediators Inflamm 2020; 2020:2851949. [PMID: 32189993 PMCID: PMC7063223 DOI: 10.1155/2020/2851949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/04/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a large family of ubiquitously expressed zinc-dependent enzymes with proteolitic activities. They are expressed in physiological situations and pathological conditions involving inflammatory processes including epithelial to mesenchymal transition (EMT), neuronal injury, and cancer. There is also evidence that MMPs regulate inflammation in tumor microenvironment, which plays an important role in healing tissue processes. Looking at both inflammatory and neuronal damages, MMP9 is involved in both processes and their modulation seems to be regulated by two proteins: tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6). However other important genes are involved in molecular regulation of transcription factors, protein-kinase B (AKT), and p65. In addition, Triticum vulgare extract (TVE) modulated the biological markers associated with inflammatory processes, including p65 protein. While there are no evidence that TVE might be involved in the biological modulation of other inflammatory marker as AKT, we would like to assess whether TVE is able to (1) modulate phosphorylation of AKT (pAKT) as an early marker of inflammatory process in vitro and (2) affect MMP9 protein expression in an in vitro model. The BV-2 cells (microglial of mouse) have been used as an in vitro model to simulate both inflammatory and neuronal injury pathologies. Here, MMP9 seems to be involved in cellular migration through inflammatory marker activation. We simulate an inflammatory preclinical model treating BV-2 cells with lipopolysaccharide (LPS) to induce proinflammatory activation affecting pAKT and p65 proteins. TVE is revealed to restore the native expression of AKT and p65. Additionally, TVE extract modulates also the protein concentration of MMP9. Nevertheless, immunofluorescence confocal analyses revealed that both AKT and MMP9 are regulated together, synchronously. This work seems to demonstrate that two important genes can be used to monitor the beginning of an inflammatory process, AKT and MMP9, in which TVE seems able to modulate their expression of inflammation-associated molecules.
Collapse
|
20
|
Bauer D, Mazzio E, Hilliard A, Oriaku ET, Soliman KFA. Effect of apigenin on whole transcriptome profile of TNFα-activated MDA-MB-468 triple negative breast cancer cells. Oncol Lett 2020; 19:2123-2132. [PMID: 32194710 PMCID: PMC7038999 DOI: 10.3892/ol.2020.11327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of hormone receptors in triple negative breast cancer (TNBC) is associated with the inefficacy of anti-estrogen chemotherapies, leaving fewer options for patient treatment and higher mortality rates. Additionally, as with numerous types of inflammatory breast cancer, infiltration of tumor associated macrophages and other leukocyte sub-populations within the tumor inevitably lead to aggressive, chemo-resistant, metastatic and invasive types of cancer which escape immune surveillance. These processes are orchestrated by the release of potent cytokines, including TNFα, IL-6 and CCL2 from the stroma, tumor and immune cells within the tumor microenvironment. The present study evaluated apigenin modulating effects on the pro-inflammatory activating action of TNFα in TNBC MDA-MB-468 cells, derived from an African American woman. Initially, cell viability was determined to establish an optimal sub-lethal dose of TNFα and apigenin in MDA-MB-468 cells. Subsequently, various treatments effects were evaluated using whole transcriptomic analysis of mRNA and long intergenic non-coding RNA with Affymetrix HuGene-2.1-st human microarrays. Gene level differential expression analysis was conducted on 48,226 genes where TNFα caused significant upregulation of 53 transcripts and downregulation of 11 transcripts. The largest upward differential shift was for CCL2 [+61.86 fold change (FC); false discovery rate (FDR), P<0.0001]; which was down regulated by apigenin (to +10.71 FC vs. Control; FDR P-value <0.001), equivalent to an 83% reduction. Several TNFα deferentially upregulated transcripts were reduced by apigenin, including CXCL10, C3, PGLYRP4, IL22RA2, KMO, IL7R, ROS1, CFB, IKBKe, SLITRK6 (a checkpoint target) and MMP13. Confirmation of CCL2 experimentally induced transcript alterations was corroborated at the protein level by ELISA assays. The high level of CCL2 transcript in the cell line was comparable to that in our previous studies in MDA-MB-231 cells. The differential effects of TNFα were corroborated by ELISA, where the data revealed a >10-fold higher releasing rate of CCL2 in MDA-MB-468 cells compared with in MDA-MB-231 cells, both of which were attenuated by apigenin. The data obtained in the present study demonstrated a high level of CCL2 in MDA-MB-468 cells and a possible therapeutic role for apigenin in downregulating TNFα-mediated processes in these TNBC cells.
Collapse
Affiliation(s)
- David Bauer
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Elizabeth Mazzio
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron Hilliard
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ebenezer T Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
21
|
Zhang Z, Guo M, Shen M, Li Y, Tan S, Shao J, Zhang F, Chen A, Wang S, Zheng S. Oroxylin A regulates the turnover of lipid droplet via downregulating adipose triglyceride lipase (ATGL) in hepatic stellate cells. Life Sci 2019; 238:116934. [PMID: 31610205 DOI: 10.1016/j.lfs.2019.116934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Proliferation and differentiation of hepatic stellate cells (HSCs) are the most noticeable events in hepatic fibrosis, in which the loss of lipid droplets (LDs) is the most important feature. However, the complex mechanisms of LD disappearance have not been fully elucidated. In the current study, we investigated whether oroxylin A has the pharmacological activity of reversing LDs in activated HSCs, and further examined its potential molecular mechanisms. Using genetic, pharmacological, and molecular biological measure, we found that LD content significantly decreased during HSC activation, whereas oroxylin A markedly reversed LD content in activated HSCs. Interestingly, oroxylin A treatment observably decreased the expression of adipose triglyceride lipase (ATGL) without large differences in classical LD synthesis pathway, LD-related transcription factors, and autophagy pathway. ATGL overexpression could completely impair the effect of oroxylin A on reversing LD content. Importantly, reactive oxygen species (ROS) signaling pathway mediated oroxylin A-induced ATGL downregulation and LD revision in activated HSCs. ROS specific stimulant buthionine sulfoximine (BSO) could dramatically diminish the antioxidant effect of oroxylin A, and in turn, abolish reversal effect of oroxylin A on LD content. Conversely, ROS specific scavenger N-acetyl cystenine (NAC) can significantly enhance the pharmacological effect of oroxylin A on LD revision. Taken together, our study reveals the important molecular mechanism of anti-fibrosis effect of oroxylin A, and also suggests that ROS-ATGL pathway is a potential target for reversing LDs.
Collapse
Affiliation(s)
- Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Guo
- Department of Pathogenic biology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanzhong Tan
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO, 63104, USA
| | - Shijun Wang
- Shandong co-innovation center of TCM formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|