1
|
Lill CB, Fitter S, Zannettino ACW, Vandyke K, Noll JE. Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia. Cancer Metastasis Rev 2024; 43:1385-1399. [PMID: 39102101 PMCID: PMC11554931 DOI: 10.1007/s10555-024-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Caleb B Lill
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
2
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Ovejero S, Viziteu E, Dutrieux L, Devin J, Lin YL, Alaterre E, Jourdan M, Basbous J, Requirand G, Robert N, de Boussac H, Seckinger A, Hose D, Vincent L, Herbaux C, Constantinou A, Pasero P, Moreaux J. The BLM helicase is a new therapeutic target in multiple myeloma involved in replication stress survival and drug resistance. Front Immunol 2022; 13:983181. [PMID: 36569948 PMCID: PMC9780552 DOI: 10.3389/fimmu.2022.983181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elena Viziteu
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Laure Dutrieux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elina Alaterre
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Michel Jourdan
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jihane Basbous
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laure Vincent
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Clinical Hematology, CHU Montpellier, Montpellier, France,*Correspondence: Jérôme Moreaux,
| |
Collapse
|
4
|
Nair R, Gupta P, Shanmugam M. Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy. Front Oncol 2022; 12:1000106. [PMID: 36185202 PMCID: PMC9523312 DOI: 10.3389/fonc.2022.1000106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by the clonal proliferation of antibody producing plasma cells. Despite the use of next generation proteasome inhibitors (PI), immunomodulatory agents (IMiDs) and immunotherapy, the development of therapy refractory disease is common, with approximately 20% of MM patients succumbing to aggressive treatment-refractory disease within 2 years of diagnosis. A large emphasis is placed on understanding inter/intra-tumoral genetic, epigenetic and transcriptomic changes contributing to relapsed/refractory disease, however, the contribution of cellular metabolism and intrinsic/extrinsic metabolites to therapy sensitivity and resistance mechanisms is less well understood. Cancer cells depend on specific metabolites for bioenergetics, duplication of biomass and redox homeostasis for growth, proliferation, and survival. Cancer therapy, importantly, largely relies on targeting cellular growth, proliferation, and survival. Thus, understanding the metabolic changes intersecting with a drug's mechanism of action can inform us of methods to elicit deeper responses and prevent acquired resistance. Knowledge of the Warburg effect and elevated aerobic glycolysis in cancer cells, including MM, has allowed us to capitalize on this phenomenon for diagnostics and prognostics. The demonstration that mitochondria play critical roles in cancer development, progression, and therapy sensitivity despite the inherent preference of cancer cells to engage aerobic glycolysis has re-invigorated deeper inquiry into how mitochondrial metabolism regulates tumor biology and therapy efficacy. Mitochondria are the sole source for coupled respiration mediated ATP synthesis and a key source for the anabolic synthesis of amino acids and reducing equivalents. Beyond their core metabolic activities, mitochondria facilitate apoptotic cell death, impact the activation of the cytosolic integrated response to stress, and through nuclear and cytosolic retrograde crosstalk maintain cell fitness and survival. Here, we hope to shed light on key mitochondrial functions that shape MM development and therapy sensitivity.
Collapse
|
5
|
Panghal A, Sahu C, Singla S, Jena G. Juvenile exposure and adult risk assessment with single versus repeated exposure of melphalan in the germ cells of male SD rat: Deciphering the molecular mechanisms. Reprod Toxicol 2022; 113:71-84. [PMID: 35961530 DOI: 10.1016/j.reprotox.2022.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Melphalan significantly contributes to the increase in childhood cancer survival rate. It acts as a gonadotoxic agent and leads to testes damage, dysbalance in gonadal hormones, and impairment in the germ cell proliferation. Therefore, it might be a potent threat to male fertility in individuals who have undergone melphalan treatment during childhood cancer. However, the molecular mechanisms of melphalan-induced gonadal damage are not yet fully explored and they need to be investigated to determine the benefit-risk profile. In the present study, juvenile male SD rats were subjected to single and intermittent cycles of melphalan exposure in a dose-dependent (0.375, 0.75 and 1.5 mg/kg) manner. Methods of end-points evaluations were quantification of micronuclei formation in peripheral blood, sperm count, sperm motility and head morphology, sperm and testicular DNA damage, histological studies in testes, oxidative/nitrosative stress parameters. A single cycle of exposure at high dose (1.5 mg/kg) produced significant effect on micronuclei formation only after the first week of exposure, whereas failed to produce significant effect at the end of the sixth week. Intermittent cycles of exposure at the dose of 1.5 mg/kg produced significant alterations in all the parameters (micronuclei in peripheral blood, testes and epididymides weight and length, MDA, GSH and nitrite levels, sperm count and motility, sperm head morphology, testicular and sperm DNA damage, protein expression in testes and histological parameters). So, time of exposure as well as the amount of exposure (total dosage administered) is critical in determining the magnitude of the damage in germ cell risk assessment.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| |
Collapse
|
6
|
Metabolic Vulnerabilities in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14081905. [PMID: 35454812 PMCID: PMC9029117 DOI: 10.3390/cancers14081905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) remains an incurable malignancy with eventual emergence of refractory disease. Metabolic shifts, which ensure the availability of sufficient energy to support hyperproliferation of malignant cells, are a hallmark of cancer. Deregulated metabolic pathways have implications for the tumor microenvironment, immune cell function, prognostic significance in MM and anti-myeloma drug resistance. Herein, we summarize recent findings on metabolic abnormalities in MM and clinical implications driven by metabolism that may consequently inspire novel therapeutic interventions. We highlight some future perspectives on metabolism in MM and propose potential targets that might revolutionize the field.
Collapse
|
7
|
Visualizing Time-Varying Effect in Survival Analysis: 5 Complementary Plots to Kaplan-Meier Curve. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3934901. [PMID: 35391933 PMCID: PMC8983224 DOI: 10.1155/2022/3934901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
Background Kaplan-Meier (KM) curve has been widely used in the field of oxidative medicine and cellular longevity. However, time-varying effect might be presented in KM curve and cannot be intuitively observed. Complementary plots might promote clear insights in time-varying effect from KM curve. Methods Three KM curves were identified from published randomized control trials: (a) curves diverged immediately; (b) intersected curves with statistical significance; and (c) intersected curves without statistical significance. We reconstructed individual patient data, and plotted 5 complementary plots (difference in survival probability and risk difference, difference in restricted mean survival time, landmark analyses, and hazard ratio over time), along with KM curve. Results Entanglement and intersection of two KM curves would make the 5 complementary plots to fluctuate over time intuitively. Absolute effects were presented in the 3 plots of difference in survival probability, risk, and restricted mean survival time. Changed P values from landmark analyses were used to inspect conditional treatment effect; the turning points could be identified for further landmark analysis. When proportional hazard assumption was not met, estimated hazard ratio from traditional Cox regression was not appropriate, and time-varying hazard ratios could be presented instead of an average and single value. Conclusions The 5 complementary plots with KM curve give a broad and straightforward picture of potential time-varying effect. They will provide clear insight in treatment effect and assist clinicians to make decision comprehensively.
Collapse
|
8
|
Sambamoorthy U, Manjappa AS, Eswara BRM, Sanapala AK, Nagadeepthi N. Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: Approach to Obtain Improved Physicochemical Characteristics of Hydrolysable Melphalan and Anticancer Activity in Combination with Simvastatin Against Multiple Myeloma. AAPS PharmSciTech 2021; 23:23. [PMID: 34907484 DOI: 10.1208/s12249-021-02177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The objective of this research was to develop vitamin E oil (VEO)-loaded liposomes for intravenous delivery and to study the VEO effect on melphalan (MLN) loading, release, and stability. Further, the research aim was to determine the in vitro anticancer activity and in vivo systemic toxicity of MLN and simvastatin (SVN) combinations, for repurposing SVN in multiple myeloma. The liposomes were prepared by thin-film hydration technique. The optimized liposomes were surface modified with Pluronic F108, lyophilized, and evaluated for mean particle size, MLN content and release behavior, and in vitro hemolysis, cytotoxicity, and macrophage uptake characteristics. Further, in vivo acute toxicity of plain MLN + SVN combination was determined in comparison to their liposomal combination. The VEO alone and in combination with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) has significantly increased the MLN and SVN loading. The reconstituted liposomes showed the mean particle size below 200 nm (cryo-transmission electron microscope analysis also revealed the liposome formation). In presence of VEO, the liposomes have shown substantially controlled drug release, lower hemolysis, sustained cytotoxicity, lower phagocytosis, and moderately improved chemical stability. Besides, the effect of liposomal combination on mice bodyweight is found substantially lower than the plain drug combination. In conclusion, the VEO could be used along with phospholipids and cholesterol to develop liposomal drugs with improved physicochemical characteristics. Further, the interesting cytotoxicity study results indicated that SVN could be repurposed in combination with anticancer drug MLN against multiple myeloma; liposomal drugs could be preferred to obtain improved efficacy with decreased systemic toxicity.
Collapse
|
9
|
Methods to Analyse Time-to-Event Data: The Kaplan-Meier Survival Curve. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2290120. [PMID: 34594473 PMCID: PMC8478547 DOI: 10.1155/2021/2290120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
Studies performed in the field of oxidative medicine and cellular longevity frequently focus on the association between biomarkers of cellular and molecular mechanisms of oxidative stress as well as of aging, immune function, and vascular biology with specific time to event data, such as mortality and organ failure. Indeed, time-to-event analysis is one of the most important methodologies used in clinical and epidemiological research to address etiological and prognostic hypotheses. Survival data require adequate methods of analyses. Among these, the Kaplan-Meier analysis is the most used one in both observational and interventional studies. In this paper, we describe the mathematical background of this technique and the concept of censoring (right censoring, interval censoring, and left censoring) and report some examples demonstrating how to construct a Kaplan-Meier survival curve and how to apply this method to provide an answer to specific research questions.
Collapse
|
10
|
Alaterre E, Vikova V, Kassambara A, Bruyer A, Robert N, Requirand G, Bret C, Herbaux C, Vincent L, Cartron G, Elemento O, Moreaux J. RNA-Sequencing-Based Transcriptomic Score with Prognostic and Theranostic Values in Multiple Myeloma. J Pers Med 2021; 11:jpm11100988. [PMID: 34683129 PMCID: PMC8541503 DOI: 10.3390/jpm11100988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is the second most frequent hematological cancer and is characterized by the clonal proliferation of malignant plasma cells. Genome-wide expression profiling (GEP) analysis with DNA microarrays has emerged as a powerful tool for biomedical research, generating a huge amount of data. Microarray analyses have improved our understanding of MM disease and have led to important clinical applications. In MM, GEP has been used to stratify patients, define risk, identify therapeutic targets, predict treatment response, and understand drug resistance. In this study, we built a gene risk score for 267 genes using RNA-seq data that demonstrated a prognostic value in two independent cohorts (n = 674 and n = 76) of newly diagnosed MM patients treated with high-dose Melphalan and autologous stem cell transplantation. High-risk patients were associated with the expression of genes involved in several major pathways implicated in MM pathophysiology, including interferon response, cell proliferation, hypoxia, IL-6 signaling pathway, stem cell genes, MYC, and epigenetic deregulation. The RNA-seq-based risk score was correlated with specific MM somatic mutation profiles and responses to targeted treatment including EZH2, MELK, TOPK/PBK, and Aurora kinase inhibitors, outlining potential utility for precision medicine strategies in MM.
Collapse
Affiliation(s)
- Elina Alaterre
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
| | - Veronika Vikova
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
| | - Alboukadel Kassambara
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Diag2Tec, 34395 Montpellier, France
| | - Angélique Bruyer
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Diag2Tec, 34395 Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
| | - Caroline Bret
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
| | - Guillaume Cartron
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
- IGMM, UMR CNRS-UM 5535, 34090 Montpellier, France
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- IUF, Institut Universitaire de France, 75005 Paris, France
- Correspondence: ; Tel.: +33-(0)4-67-33-79-03
| |
Collapse
|
11
|
Koomen DC, Meads MB, Magaletti DM, Guingab-Cagmat JD, Oliveira PS, Fang B, Liu M, Welsh EA, Meke LE, Jiang Z, Hampton OA, Tungesvik A, DeAvila G, Alugubelli RR, Nishihori T, Silva AS, Eschrich SA, Garrett TJ, Koomen JM, Shain KH. Metabolic Changes Are Associated with Melphalan Resistance in Multiple Myeloma. J Proteome Res 2021; 20:3134-3149. [PMID: 34014671 PMCID: PMC11636643 DOI: 10.1021/acs.jproteome.1c00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple myeloma is an incurable hematological malignancy that impacts tens of thousands of people every year in the United States. Treatment for eligible patients involves induction, consolidation with stem cell rescue, and maintenance. High-dose therapy with a DNA alkylating agent, melphalan, remains the primary drug for consolidation therapy in conjunction with autologous stem-cell transplantation; as such, melphalan resistance remains a relevant clinical challenge. Here, we describe a proteometabolomic approach to examine mechanisms of acquired melphalan resistance in two cell line models. Drug metabolism, steady-state metabolomics, activity-based protein profiling (ABPP, data available at PRIDE: PXD019725), acute-treatment metabolomics, and western blot analyses have allowed us to further elucidate metabolic processes associated with melphalan resistance. Proteometabolomic data indicate that drug-resistant cells have higher levels of pentose phosphate pathway metabolites. Purine, pyrimidine, and glutathione metabolisms were commonly altered, and cell-line-specific changes in metabolite levels were observed, which could be linked to the differences in steady-state metabolism of naïve cells. Inhibition of selected enzymes in purine synthesis and pentose phosphate pathways was evaluated to determine their potential to improve melphalan's efficacy. The clinical relevance of these proteometabolomic leads was confirmed by comparison of tumor cell transcriptomes from newly diagnosed MM patients and patients with relapsed disease after treatment with high-dose melphalan and autologous stem-cell transplantation. The observation of common and cell-line-specific changes in metabolite levels suggests that omic approaches will be needed to fully examine melphalan resistance in patient specimens and define personalized strategies to optimize the use of high-dose melphalan.
Collapse
Affiliation(s)
- David C. Koomen
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mark B. Meads
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | | | - Paula S. Oliveira
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Bin Fang
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Min Liu
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric A. Welsh
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Laurel E. Meke
- University of Florida College of Medicine, Gainesville, FL 32610
| | | | | | | | - Gabriel DeAvila
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | - Taiga Nishihori
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Ariosto S. Silva
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | | | | | - John M. Koomen
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kenneth H. Shain
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
12
|
Targeting Reactive Oxygen Species Metabolism to Induce Myeloma Cell Death. Cancers (Basel) 2021; 13:cancers13102411. [PMID: 34067602 PMCID: PMC8156203 DOI: 10.3390/cancers13102411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors.
Collapse
|
13
|
Poczta A, Rogalska A, Marczak A. Treatment of Multiple Myeloma and the Role of Melphalan in the Era of Modern Therapies-Current Research and Clinical Approaches. J Clin Med 2021; 10:1841. [PMID: 33922721 PMCID: PMC8123041 DOI: 10.3390/jcm10091841] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) accounts for 10% of all hematological malignancies, and it is the second most common hematological neoplasm for which chemotherapy is an important pharmacological treatment. High dose melphalan followed by autologous stem cell transplantation remains the standard of treatment for transplant-eligible patients with MM. In this review, we describe aspects of the pharmacokinetics and pharmacodynamics of melphalan therapy and related compounds. In addition, we describe the use of melphalan in innovative therapies for the treatment of MM, including the development of drug carriers to reduce systemic toxicity, combination therapy to improve the effectiveness of cancer therapy, and the chemical modification of the melphalan molecule to improve antitumor activity.
Collapse
Affiliation(s)
- Anastazja Poczta
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.R.); (A.M.)
| | | | | |
Collapse
|
14
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021. [DOI: 10.37349/etat.2020.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3University of Montpellier, UFR Medicine, 34093 Montpellier, France 4 Institut Universitaire de France (IUF), 75000 Paris France
| |
Collapse
|
15
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:65-106. [PMID: 36046090 PMCID: PMC9400753 DOI: 10.37349/etat.2021.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3UFR Medicine, University of Montpellier, 34093 Montpellier, France 4Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
16
|
Investigating the Thioredoxin and Glutathione Systems' Response in Lymphoma Cells after Treatment with [Au(d2pype)2]CL. Antioxidants (Basel) 2021; 10:antiox10010104. [PMID: 33451071 PMCID: PMC7828567 DOI: 10.3390/antiox10010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/19/2023] Open
Abstract
Lymphoma is a blood cancer comprising various subtypes. Although effective therapies are available, some patients fail to respond to treatment and can suffer from side effects. Antioxidant systems, especially the thioredoxin (Trx) and glutathione (GSH) systems, are known to enhance cancer cell survival, with thioredoxin reductase (TrxR) recently reported as a potential anticancer target. Since the GSH system can compensate for some Trx system functions, we investigated its response in three lymphoma cell lines after inhibiting TrxR activity with [Au(d2pype)2]Cl, a known TrxR inhibitor. [Au(d2pype)2]Cl increased intracellular reactive oxygen species (ROS) levels and induced caspase-3 activity leading to cell apoptosis through inhibiting both TrxR and glutathione peroxidase (Gpx) activity. Expression of the tumour suppresser gene TXNIP increased, while GPX1 and GPX4 expression, which are related to poor prognosis of lymphoma patients, decreased. Unlike SUDHL2 and SUDHL4 cells, which exhibited a decreased GSH/GSSG ratio after treatment, in KMH2 cells the ratio remained unchanged, while glutathione reductase and glutaredoxin expression increased. Since KMH2 cells were less sensitive to treatment with [Au(d2pype)2]Cl, the GSH system may play a role in protecting cells from apoptosis after TrxR inhibition. Overall, our study demonstrates that inhibition of TrxR represents a valid therapeutic approach for lymphoma.
Collapse
|
17
|
ROS Overproduction Sensitises Myeloma Cells to Bortezomib-Induced Apoptosis and Alleviates Tumour Microenvironment-Mediated Cell Resistance. Cells 2020; 9:cells9112357. [PMID: 33114738 PMCID: PMC7693395 DOI: 10.3390/cells9112357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that remains incurable due to innate or acquired resistance. Although MM cells produce high intracellular levels of reactive oxygen species (ROS), we hypothesised that they could remain sensitive to ROS unbalance. We tested if the inhibition of ROS, on one hand, or the overproduction of ROS, on the other, could (re)sensitise cells to bortezomib (BTZ). Two drugs were used in a panel of MM cell lines with various responses to BTZ: VAS3947 (VAS), an inhibitor of NADPH oxidase and auranofin (AUR), an inhibitor of thioredoxin reductase (TXNRD1), an antioxidant enzyme overexpressed in MM cells. We used several culture models: in suspension, on a fibronectin layer, in coculture with HS-5 mesenchymal cells, and/or in 3-D culture (or spheroids) to study the response of MM primary cells and cell lines. Several MM cell lines were sensitive to VAS but the combination with BTZ showed antagonistic or additive effects at best. By contrast, in all culture systems studied, the combined AUR/BTZ treatment showed synergistic effects on cell lines, including those less sensitive to BTZ and primary cells. MM cell death is due to the activation of apoptosis and autophagy. Modulating the redox balance of MM cells could be an effective therapy for refractory or relapse post-BTZ patients.
Collapse
|
18
|
Li B, Yang L, Peng X, Fan Q, Wei S, Yang S, Li X, Jin H, Wu B, Huang M, Tang S, Liu J, Li H. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomed Pharmacother 2020; 130:110710. [PMID: 33568263 DOI: 10.1016/j.biopha.2020.110710] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/09/2023] Open
Abstract
The development of chemotherapy drugs has promoted anticancer treatment, but the effect on tumours is not clear because of treatment resistance; thus, it is necessary to further understand the mechanism of cell death to explore new therapeutic targets. As a new type of programmed cell death, ferroptosis is increasingly being targeted in the treatment of many cancers with clinical drugs and experimental compounds. Ferroptosis is stimulated in tumours with inherently high levels of ferrous ions by a reaction with abundant polyunsaturated fatty acids and the inhibition of antioxidant enzymes, which can overcome treatment resistance in cancers mainly through GPX4. In this review, we focus on the intrinsic cellular regulators against ferroptosis in cancer resistance, such as GPX4, NRF2 and the thioredoxin system. We summarize the application of novel compounds and drugs to circumvent treatment resistance. We also introduce the application of nanoparticles for the treatment of resistant cancers. In conclusion, targeting ferroptosis represents a considerable strategy for resistant cancer treatment.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Fan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
19
|
Proteomic analysis identifies mechanism(s) of overcoming bortezomib resistance via targeting ubiquitin receptor Rpn13. Leukemia 2020; 35:550-561. [PMID: 32424294 DOI: 10.1038/s41375-020-0865-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Our prior study showed that inhibition of 19S proteasome-associated ubiquitin receptor Rpn13 can overcome bortezomib resistance in MM cells. Here, we performed proteomic analysis of Rpn13 inhibitor (RA190)-treated MM cells and identified an antioxidant enzyme superoxide dismutase (SOD1) as a mediator of Rpn13 signaling. SOD1 levels are higher in MM patient cells versus normal PBMCs; and importantly, SOD1 expression correlates with the progression of disease and shorter survival. Functional validation studies show that RA190-induced cytotoxicity in bortezomib-sensitive and -resistant MM cells is associated with decrease in SOD1 levels; conversely, forced expression of SOD1 inhibits RA190-induced cell death. Genetic knockdown and biochemical blockade of SOD1 with LCS-1 sensitizes bortezomib-resistant MM cells to bortezomib. SOD1 inhibitor LCS-1 decreases viability in MM cell lines and patient cells. LCS-1-induced cell death is associated with: (1) increase in superoxide and ROS levels; (2) activation of caspases, and p53/p21 signaling; (3) decrease in MCL-1, BCLxL, CDC2, cyclin-B1, and c-Myc; (4) ER stress response; and (5) inhibition of proteasome function. In animal model studies, LCS-1 inhibits xenografted bortezomib-resistant human MM cell growth and prolongs host survival. Our studies therefore show that targeting Rpn13 overcomes bortezomib resistance by decreasing cellular SOD1 levels, and provide the rationale for novel therapeutics targeting SOD1 to improve patient outcome in MM.
Collapse
|
20
|
Manni S, Fregnani A, Barilà G, Zambello R, Semenzato G, Piazza F. Actionable Strategies to Target Multiple Myeloma Plasma Cell Resistance/Resilience to Stress: Insights From "Omics" Research. Front Oncol 2020; 10:802. [PMID: 32500036 PMCID: PMC7243738 DOI: 10.3389/fonc.2020.00802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
While the modern therapeutic armamentarium to treat multiple myeloma (MM) patients allows a longer control of the disease, this second-most-frequent hematologic cancer is still uncurable in the vast majority of cases. Since MM plasma cells are subjected to various types of chronic cellular stress and the integrity of specific stress-coping pathways is essential to ensure MM cell survival, not surprisingly the most efficacious anti-MM therapy are those that make use of proteasome inhibitors and/or immunomodulatory drugs, which target the biochemical mechanisms of stress management. Based on this notion, the recently realized discoveries on MM pathobiology through high-throughput techniques (genomic, transcriptomic, and other "omics"), in order for them to be clinically useful, should be elaborated to identify novel vulnerabilities in this disease. This groundwork of information will likely allow the design of novel therapies against targetable molecules/pathways, in an unprecedented opportunity to change the management of MM according to the principle of "precision medicine." In this review, we will discuss some examples of therapeutically actionable molecules and pathways related to the regulation of cellular fitness and stress resistance in MM.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Anna Fregnani
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| |
Collapse
|
21
|
Gajek A, Poczta A, Łukawska M, Cecuda-Adamczewska V, Tobiasz J, Marczak A. Chemical modification of melphalan as a key to improving treatment of haematological malignancies. Sci Rep 2020; 10:4479. [PMID: 32161295 PMCID: PMC7066245 DOI: 10.1038/s41598-020-61436-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/24/2020] [Indexed: 01/18/2023] Open
Abstract
Chemical modification of known, effective drugs is one method to improve chemotherapy. Thus, the object of this study was to generate melphalan derivatives with improved cytotoxic activity in human cancer cells (RPMI8226, HL60 and THP1). Several melphalan derivatives were synthesised, modified in their two important functional groups. Nine analogues were tested, including melphalan compounds modified: only at the amino group, by replacing the amine with an amidine group containing a morpholine ring (MOR-MEL) or with an amidino group and dipropyl chain (DIPR-MEL); only at the carboxyl group to form methyl and ethyl esters of melphalan (EM-MEL, EE-MEL); and in a similar manner at both functional groups (EM-MOR-MEL, EE-MOR-MEL, EM-DIPR-MEL, EE-DIPR-MEL). Melphalan derivatives were evaluated for cytotoxicity (resazurin viability assay), genotoxicity (comet assay) and the ability to induce apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labelling, TUNEL, phosphatidylserine externalisation, chromatin condensation, activity of caspases 3/7, 8 and 9 and intracellular concentration of calcium ions) in comparison with the parent drug. Almost all derivatives, with the exception of MOR-MEL and DIPR-MEL, were found to be more toxic than melphalan in all cell lines evaluated. Treatment of cultures with the derivatives generated a significant higher level of DNA breaks compared to those treated with melphalan, especially after longer incubation times. In addition, all the melphalan derivatives demonstrated a high apoptosis-inducing ability in acute monocytic and promyelocytic leukemia cells. This study showed that the mechanism of action of the tested compounds differed depending on the cell line, and allowed the selection of the most active compounds for further, more detailed investigations.
Collapse
Affiliation(s)
- Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Anastazja Poczta
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Małgorzata Łukawska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, 5 Staroscinska St., 02-516, Warsaw, Poland
| | - Violetta Cecuda-Adamczewska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, 5 Staroscinska St., 02-516, Warsaw, Poland
| | - Joanna Tobiasz
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, 5 Staroscinska St., 02-516, Warsaw, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
22
|
Persaud AK, Li J, Johnson JA, Seligson N, Sborov DW, Duah E, Cho YK, Wang D, Phelps MA, Hofmeister CC, Poi MJ. XRCC1‐mediated DNA repair is associated with progression‐free survival of multiple myeloma patients after autologous stem cell transplant. Mol Carcinog 2019; 58:2327-2339. [DOI: 10.1002/mc.23121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Avinash K. Persaud
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State University Columbus Ohio
| | - Junan Li
- Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State University Columbus Ohio
- Comprehensive Cancer CenterThe Ohio State University Columbus Ohio
| | - Jasmine A. Johnson
- Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State University Columbus Ohio
| | - Nathan Seligson
- Department of PharmacyThe Ohio State University Wexner Medical Center Columbus Ohio
| | - Douglas W. Sborov
- Division of Hematology and Hematologic MalignanciesUniversity of Utah—Huntsman Cancer Institute Salt Lake City Utah
| | - Ernest Duah
- Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State University Columbus Ohio
| | - Yu Kyoung Cho
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State University Columbus Ohio
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of PharmacyUniversity of Florida Gainesville Florida
| | - Mitch A. Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State University Columbus Ohio
- Comprehensive Cancer CenterThe Ohio State University Columbus Ohio
| | - Craig C. Hofmeister
- Department of Hematology and OncologyWinship Cancer Institute of Emory University Atlanta Georgia
| | - Ming J. Poi
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State University Columbus Ohio
- Division of Pharmacy Practice and Science, College of PharmacyThe Ohio State University Columbus Ohio
- Department of PharmacyThe Ohio State University Wexner Medical Center Columbus Ohio
| |
Collapse
|
23
|
Gourzones C, Bret C, Moreaux J. Treatment May Be Harmful: Mechanisms/Prediction/Prevention of Drug-Induced DNA Damage and Repair in Multiple Myeloma. Front Genet 2019; 10:861. [PMID: 31620167 PMCID: PMC6759943 DOI: 10.3389/fgene.2019.00861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy characterized by accumulation of malignant plasma cells within the bone marrow (BM). MM is considered mostly without definitive treatment because of the inability of standard of care therapies to overcome drug-resistant relapse. Genotoxic agents are used in the treatment of MM and exploit the fact that DNA double-strand breaks are highly cytotoxic for cancer cells. However, their mutagenic effects are well-established and described. According to these effects, chemotherapy could cause harmful DNA damage associated with new driver genomic abnormalities providing selective advantage, drug resistance, and higher relapse risk. Several mechanisms associated with MM cell (MMC) resistance to genotoxic agents have been described, underlining MM heterogeneity. The understanding of these mechanisms provides several therapeutic strategies to overcome drug resistance and limit mutagenic effects of treatment in MM. According to this heterogeneity, adopting precision medicine into clinical practice, with the development of biomarkers, has the potential to improve MM disease management and treatment.
Collapse
Affiliation(s)
| | - Caroline Bret
- IGH, CNRS, Univ Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Univ Montpellier, UFR de Médecine, Montpellier, France
| | - Jerome Moreaux
- IGH, CNRS, Univ Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Univ Montpellier, UFR de Médecine, Montpellier, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|