1
|
Wang H, Mei Q, Mei P. Comprehensive analysis of the role of Caspases in glioma. Brain Res 2025; 1855:149529. [PMID: 40032044 DOI: 10.1016/j.brainres.2025.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Caspases (CASPs) are attractive targets for cancer therapy. Many prognostic models based on gene signatures include genes from the CASPs family in diffuse glioma. CASP3, CASP4 and CASP6 in glioma have been studied individually. However, specialized comprehensive analysis of the roles of CASPs family in glioma is lacking. Therefore, this study utilized bioinformatics methods to investigate this issue. CASP1-10 expressionlevels were significantly up-regulated in LGG and GBM and glioma, and varied significantly across different clinical subgroups of glioma and LGG and various cell types, and most of CASP1-10 members showed significant differences in recurrence status of LGG. 10 signatures (CASP1-10) were associated with poor overall survival (OS) in glioma and LGG and GBM. However, pan-cancer survival analysis showed that CASP1-10 were associated with the prognosis of LGG, but not GBM. CASP1-10 were related to poor prognosis of glioma and LGG, except for CASP9, which was the opposite of a protective factor. CASP1-10 were independent prognostic factors for OS in glioma and LGG, except for CASP5, and also for recurrence-free survival (RFS) in LGG. Most of CASP1-10 were also independent prognostic factors for disease-specific survival (DSS) and progression-free interval (PFI) and had diagnostic value in glioma and LGG. Genetic alterations of CASP1-10 genes set were associated with poor prognosis in LGG. CASP1-10 were involved in immune infiltration and programmed cell death in glioma and LGG and GBM, and might promote the apoptosis of immune cells. Compared to GBM, CASP1-10 had a more significant impact on the prognosis, cancer-related pathways, and immune infiltration in LGG, indicating that CASP1-10 might play important roles in the recurrence and progression of LGG, and might be promising therapeutic targets for LGG. Therefore, it is speculated that natural caspase inhibitor p35 may be a promising drug for the treatment of glioma, especially for LGG.
Collapse
Affiliation(s)
- Heming Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, China
| | - Qunfang Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01051-y. [PMID: 39998754 DOI: 10.1007/s13402-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs), which encompass tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated dendritic cells (TADCs), are of great importance in tumor microenvironment (TME) and are integral to both pro- and anti-tumor immunity. Nevertheless, the phenotypic heterogeneity and functional plasticity of TIMs have posed challenges in fully understanding their complexity roles within the TME. Emerging evidence suggested that the presence of TIMs is frequently linked to prevention of cancer treatment and improvement of patient outcomes and survival. Given their pivotal function in the TME, TIMs have recently been recognized as critical targets for therapeutic approaches aimed at augmenting immunostimulatory myeloid cell populations while depleting or modifying those that are immunosuppressive. This review will explore the important properties of TIMs related to immunity, angiogenesis, and metastasis. We will also document the latest therapeutic strategies targeting TIMs in preclinical and clinical settings. Our objective is to illustrate the potential of TIMs as immunological targets that may improve the outcomes of existing cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Sadat Toghraie
- Institute of Biotechnology, Faculty of the Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany
| | - Maryam Bayat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sadat Hosseini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Fiore G, Weckwarth W, Paetzold K, Albertí Servera L, Gies M, Rosenhauer J, Antoniolli M, Nassiri S, Schmeing S, Dettling S, Soni B, Majety M, Krug AB, Hoves S, Wolf MJ. Human CD34 +-derived plasmacytoid dendritic cells as surrogates for primary pDCs and potential cancer immunotherapy. Front Immunol 2024; 15:1433119. [PMID: 39575246 PMCID: PMC11578708 DOI: 10.3389/fimmu.2024.1433119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) are capable of triggering broad immune responses, yet, their scarcity in blood coupled to their reduced functionality in cancer, makes their therapeutic use for in situ activation or vaccination challenging. Methods We designed an in vitro differentiation protocol tailored for human pDCs from cord blood (CB) hematopoietic stem cells (HSCs) with StemRegenin 1 (SR-1) and GM-CSF supplementation. Next, we evaluated the identity and function of CB-pDCs compared to human primary pDCs. Furthermore, we tested the potential of CB-pDCs to support anti-tumor immune responses in co-culture with tumor explants from CRC patients. Results Here, we report an in vitro differentiation protocol enabling the generation of 200 pDCs per HSC and highlight the role of GM-CSF and SR-1 in CB-pDC differentiation and function. CB-pDCs exhibited a robust resemblance to primary pDCs phenotypically and functionally. Transcriptomic analysis confirmed strong homology at both, baseline and upon TLR9 or TLR7 stimulation. Further, we could confirm the potential of CB-pDCs to promote inflammation in the tumor microenvironment by eliciting cytokines associated with NK and T cell recruitment and function upon TLR7 stimulation ex vivo in patient tumor explants. Discussion This study highlights CB-pDCs as surrogates for primary pDCs to investigate their biology and for their potential use as cell therapy in cancer.
Collapse
Affiliation(s)
- Giovanna Fiore
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang Weckwarth
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Kerstin Paetzold
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Llucia Albertí Servera
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Manuela Gies
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Jakob Rosenhauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Martina Antoniolli
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Sina Nassiri
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Schmeing
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Steffen Dettling
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Bhavesh Soni
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Zurich, Switzerland
| | - Meher Majety
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Anne B. Krug
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sabine Hoves
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Monika Julia Wolf
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
Li C, Yu X, Han X, Lian C, Wang Z, Shao S, Shao F, Wang H, Ma S, Liu J. Innate immune cells in tumor microenvironment: A new frontier in cancer immunotherapy. iScience 2024; 27:110750. [PMID: 39280627 PMCID: PMC11399700 DOI: 10.1016/j.isci.2024.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Innate immune cells, crucial in resisting infections and initiating adaptive immunity, play diverse and significant roles in tumor development. These cells, including macrophages, granulocytes, dendritic cells (DCs), innate lymphoid cells, and innate-like T cells, are pivotal in the tumor microenvironment (TME). Innate immune cells are crucial components of the TME, based on which various immunotherapy strategies have been explored. Immunotherapy strategies, such as novel immune checkpoint inhibitors, STING/CD40 agonists, macrophage-based surface backpack anchoring, ex vivo polarization approaches, DC-based tumor vaccines, and CAR-engineered innate immune cells, aim to enhance their anti-tumor potential and counteract cancer-induced immunosuppression. The proximity of innate immune cells to tumor cells in the TME also makes them excellent drug carriers. In this review, we will first provide a systematic overview of innate immune cells within the TME and then discuss innate cell-based therapeutic strategies. Furthermore, the research obstacles and perspectives within the field will also be addressed.
Collapse
Affiliation(s)
- Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Shao
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Hao X, Jiang B, Wu J, Xiang D, Xiong Z, Li C, Li Z, He S, Tu C, Li Z. Nanomaterials for bone metastasis. J Control Release 2024; 373:640-651. [PMID: 39084467 DOI: 10.1016/j.jconrel.2024.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Bone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases. While cancer therapies have made advancements, the available options for addressing bone metastases remain insufficient. The advent of nanotechnology has ushered in a new era for managing and preventing bone metastases because of the physicochemical and adaptable advantages of nanoplatforms. In this review, we make an introduction of the underlying mechanisms and the current clinical therapies of bone metastases, highlighting the advances of intelligent nanosystems that can stimulate vascular regeneration, promote bone regeneration, eliminate tumor cells, minimize bone damage, and expedite bone healing. The innovation surrounding bone-targeting nanoplatforms presents a fresh approach to the theranostics of bone metastases.
Collapse
Affiliation(s)
- Xinyan Hao
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Buchan Jiang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Changsha Medical University, Changsha 410219, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
6
|
Koucký V, Syding LA, Plačková K, Pavelková L, Fialová A. Assessment of pDCs functional capacity upon exposure to tumor-derived soluble factors. Methods Cell Biol 2024; 189:85-96. [PMID: 39393888 DOI: 10.1016/bs.mcb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) are a minority subset of dendritic cells that despite their tiny quantity play an important role in the immune system, especially in antiviral immunity. They are known mostly as the major producers of type I IFN, which they secrete upon stimulation of endosomal Toll-like receptors 7 and 9 with viral RNA and DNA. However, the functionality of pDCs is more complex, as they were shown to be also involved in autoimmunity, inflammation, and cancer. In the context of the tumor microenvironment, pDCs mostly show substantial functional defects and thus contribute to establishing immunosuppressive micromilieu. Indeed, tumor-infiltrating pDCs were shown to be predominantly pro-tumorigenic, with reduced ability to produce IFNα and capacity to prime regulatory T cells via the ICOS/ICOS-L pathway. Here we describe in detail a method to assess the functional capacity of pDCs upon exposure to tumor-derived cell culture supernatants. The same technique can be implemented with minimal variations to test any soluble factor's impact on pDC phenotype and function.
Collapse
Affiliation(s)
- Vladimír Koucký
- Sotio, Prague, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, Prague, Czech Republic
| | | | - Klára Plačková
- Sotio, Prague, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, Prague, Czech Republic
| | - Lucie Pavelková
- Sotio, Prague, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, Prague, Czech Republic
| | | |
Collapse
|
7
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
8
|
Perzolli A, Koedijk JB, Zwaan CM, Heidenreich O. Targeting the innate immune system in pediatric and adult AML. Leukemia 2024; 38:1191-1201. [PMID: 38459166 PMCID: PMC11147779 DOI: 10.1038/s41375-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
While the introduction of T cell-based immunotherapies has improved outcomes in many cancer types, the development of immunotherapies for both adult and pediatric AML has been relatively slow and limited. In addition to the need to identify suitable target antigens, a better understanding of the immunosuppressive tumor microenvironment is necessary for the design of novel immunotherapy approaches. To date, most immune characterization studies in AML have focused on T cells, while innate immune lineages such as monocytes, granulocytes and natural killer (NK) cells, received less attention. In solid cancers, studies have shown that innate immune cells, such as macrophages, myeloid-derived suppressor cells and neutrophils are highly plastic and may differentiate into immunosuppressive cells depending on signals received in their microenvironment, while NK cells appear to be functionally impaired. Hence, an in-depth characterization of the innate immune compartment in the TME is urgently needed to guide the development of immunotherapeutic interventions for AML. In this review, we summarize the current knowledge on the innate immune compartment in AML, and we discuss how targeting its components may enhance T cell-based- and other immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alicia Perzolli
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Joost B Koedijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
9
|
Zhang C, Deng J, Li K, Lai G, Liu H, Zhang Y, Xie B, Zhong X. Mononuclear phagocyte system-related multi-omics features yield head and neck squamous cell carcinoma subtypes with distinct overall survival, drug, and immunotherapy responses. J Cancer Res Clin Oncol 2024; 150:37. [PMID: 38279056 PMCID: PMC10817853 DOI: 10.1007/s00432-023-05512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/10/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Recent research reported that mononuclear phagocyte system (MPS) can contribute to immune defense but the classification of head and neck squamous cell carcinoma (HNSCC) patients based on MPS-related multi-omics features using machine learning lacked. METHODS In this study, we obtain marker genes for MPS through differential analysis at the single-cell level and utilize "similarity network fusion" and "MoCluster" algorithms to cluster patients' multi-omics features. Subsequently, based on the corresponding clinical information, we investigate the prognosis, drugs, immunotherapy, and biological differences between the subtypes. A total of 848 patients have been included in this study, and the results obtained from the training set can be verified by two independent validation sets using "the nearest template prediction". RESULTS We identified two subtypes of HNSCC based on MPS-related multi-omics features, with CS2 exhibiting better predictive prognosis and drug response. CS2 represented better xenobiotic metabolism and higher levels of T and B cell infiltration, while the biological functions of CS1 were mainly enriched in coagulation function, extracellular matrix, and the JAK-STAT signaling pathway. Furthermore, we established a novel and stable classifier called "getMPsub" to classify HNSCC patients, demonstrating good consistency in the same training set. External validation sets classified by "getMPsub" also illustrated similar differences between the two subtypes. CONCLUSIONS Our study identified two HNSCC subtypes by machine learning and explored their biological difference. Notably, we constructed a robust classifier that presented an excellent classifying prediction, providing new insight into the precision medicine of HNSCC.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Jielian Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Kangjie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Hui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Yuan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| |
Collapse
|
10
|
Ji S, Shi Y, Yin B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun Signal 2024; 22:74. [PMID: 38279145 PMCID: PMC10811890 DOI: 10.1186/s12964-023-01424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yuqing Shi
- Department of Respiratory Medicine, Shenyang 10th People's Hospital, Shenyang, 110096, China
| | - Bo Yin
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
11
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
12
|
Monti M, Ferrari G, Grosso V, Missale F, Bugatti M, Cancila V, Zini S, Segala A, La Via L, Consoli F, Orlandi M, Valerio A, Tripodo C, Rossato M, Vermi W. Impaired activation of plasmacytoid dendritic cells via toll-like receptor 7/9 and STING is mediated by melanoma-derived immunosuppressive cytokines and metabolic drift. Front Immunol 2024; 14:1227648. [PMID: 38239354 PMCID: PMC10795195 DOI: 10.3389/fimmu.2023.1227648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) infiltrate a large set of human cancers. Interferon alpha (IFN-α) produced by pDCs induces growth arrest and apoptosis in tumor cells and modulates innate and adaptive immune cells involved in anti-cancer immunity. Moreover, effector molecules exert tumor cell killing. However, the activation state and clinical relevance of pDCs infiltration in cancer is still largely controversial. In Primary Cutaneous Melanoma (PCM), pDCs density decreases over disease progression and collapses in metastatic melanoma (MM). Moreover, the residual circulating pDC compartment is defective in IFN-α production. Methods The activation of tumor-associated pDCs was evaluated by in silico and microscopic analysis. The expression of human myxovirus resistant protein 1 (MxA), as surrogate of IFN-α production, and proximity ligation assay (PLA) to test dsDNA-cGAS activation were performed on human melanoma biopsies. Moreover, IFN-α and CXCL10 production by in vitro stimulated (i.e. with R848, CpG-A, ADU-S100) pDCs exposed to melanoma cell lines supernatants (SN-mel) was tested by intracellular flow cytometry and ELISA. We also performed a bulk RNA-sequencing on SN-mel-exposed pDCs, resting or stimulated with R848. Glycolytic rate assay was performed on SN-mel-exposed pDCs using the Seahorse XFe24 Extracellular Flux Analyzer. Results Based on a set of microscopic, functional and in silico analyses, we demonstrated that the melanoma milieu directly impairs IFN-α and CXCL10 production by pDCs via TLR-7/9 and cGAS-STING signaling pathways. Melanoma-derived immunosuppressive cytokines and a metabolic drift represent relevant mechanisms enforcing pDC-mediated melanoma escape. Discussion These findings propose a new window of intervention for novel immunotherapy approaches to amplify the antitumor innate immune response in cutaneous melanoma (CM).
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Nederlands Kanker Instituut, Amsterdam, Netherlands
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Stefania Zini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Consoli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Matteo Orlandi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
13
|
Liu P, Zhao L, Kroemer G, Kepp O. Conventional type 1 dendritic cells (cDC1) in cancer immunity. Biol Direct 2023; 18:71. [PMID: 37907944 PMCID: PMC10619282 DOI: 10.1186/s13062-023-00430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer immunotherapy, alone or in combination with conventional therapies, has revolutionized the landscape of antineoplastic treatments, with dendritic cells (DC) emerging as key orchestrators of anti-tumor immune responses. Among the distinct DC subsets, conventional type 1 dendritic cells (cDC1) have gained prominence due to their unique ability to cross-present antigens and activate cytotoxic T lymphocytes. This review summarizes the distinctive characteristics of cDC1, their pivotal role in anticancer immunity, and the potential applications of cDC1-based strategies in immunotherapy.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
| |
Collapse
|
14
|
Łazarczyk A, Streb J, Glajcar A, Streb-Smoleń A, Hałubiec P, Wcisło K, Laskowicz Ł, Hodorowicz-Zaniewska D, Szpor J. Dendritic Cell Subpopulations Are Associated with Prognostic Characteristics of Breast Cancer after Neoadjuvant Chemotherapy-An Observational Study. Int J Mol Sci 2023; 24:15817. [PMID: 37958800 PMCID: PMC10648319 DOI: 10.3390/ijms242115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy in women and researchers have strived to develop optimal strategies for its diagnosis and management. Neoadjuvant chemotherapy (NAC), which reduces tumor size, risk of metastasis and patient mortality, often also allows for a de-escalation of breast and axillary surgery. Nonetheless, complete pathological response (pCR) is achieved in no more than 40% of patients who underwent NAC. Dendritic cells (DCs) are professional antigen-presenting cells present in the tumor microenvironment. The multitude of their subtypes was shown to be associated with the pathological and clinical characteristics of BC, but it was not evaluated in BC tissue after NAC. We found that highe r densities of CD123+ plasmacytoid DCs (pDCs) were present in tumors that did not show pCR and had a higher residual cancer burden (RCB) score and class. They were of higher stage and grade and more frequently HER2-negative. The density of CD123+ pCDs was an independent predictor of pCR in the studied group. DC-LAMP+ mature DCs (mDCs) were also related to characteristics of clinical relevance (i.e., pCR, RCB, and nuclear grade), although no clear trends were identified. We conclude that CD123+ pDCs are candidates for a novel biomarker of BC response to NAC.
Collapse
Affiliation(s)
- Agnieszka Łazarczyk
- Department of Pathomorphology, Jagiellonian University Medical College, 31-501 Cracow, Poland (J.S.)
| | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, 31-501 Cracow, Poland
- University Centre of Breast Disease, University Hospital, 31-501 Cracow, Poland
| | - Anna Glajcar
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Anna Streb-Smoleń
- Department of Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 31-115 Cracow, Poland
| | - Przemysław Hałubiec
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland
| | - Kacper Wcisło
- Department of Pathomorphology, Jagiellonian University Medical College, 31-501 Cracow, Poland (J.S.)
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Łukasz Laskowicz
- Clinical Department of Gynecology and Gynecological Oncology, University Hospital, 30-688 Cracow, Poland
| | - Diana Hodorowicz-Zaniewska
- General, Oncological and Gastrointestinal Surgery, Jagiellonian University Medical College, 31-501 Cracow, Poland;
- Department of General Surgery, University Hospital, 31-501 Cracow, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, 31-501 Cracow, Poland (J.S.)
- University Centre of Breast Disease, University Hospital, 31-501 Cracow, Poland
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| |
Collapse
|
15
|
Yang L, Li S, Chen L, Zhang Y. Emerging roles of plasmacytoid dendritic cell crosstalk in tumor immunity. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0241. [PMID: 37817484 PMCID: PMC10618948 DOI: 10.20892/j.issn.2095-3941.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a pioneer cell type that produces type I interferon (IFN-I) and promotes antiviral immune responses. However, they are tolerogenic and, when recruited to the tumor microenvironment (TME), play complex roles that have long been a research focus. The interactions between pDCs and other components of the TME, whether direct or indirect, can either promote or hinder tumor development; consequently, pDCs are an intriguing target for therapeutic intervention. This review provides a comprehensive overview of pDC crosstalk in the TME, including crosstalk with various cell types, biochemical factors, and microorganisms. An in-depth understanding of pDC crosstalk in TME should facilitate the development of novel pDC-based therapeutic methods.
Collapse
Affiliation(s)
- Leilei Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Songya Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liuhui Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Abascal J, Oh MS, Liclican EL, Dubinett SM, Salehi-Rad R, Liu B. Dendritic Cell Vaccination in Non-Small Cell Lung Cancer: Remodeling the Tumor Immune Microenvironment. Cells 2023; 12:2404. [PMID: 37830618 PMCID: PMC10571973 DOI: 10.3390/cells12192404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.
Collapse
Affiliation(s)
- Jensen Abascal
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Michael S. Oh
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Elvira L. Liclican
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Steven M. Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095-1690, USA
| | - Ramin Salehi-Rad
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Liu
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| |
Collapse
|
17
|
Xu J, Shi Q, Wang B, Ji T, Guo W, Ren T, Tang X. The role of tumor immune microenvironment in chordoma: promising immunotherapy strategies. Front Immunol 2023; 14:1257254. [PMID: 37720221 PMCID: PMC10502727 DOI: 10.3389/fimmu.2023.1257254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Chordoma is a rare malignant bone tumor with limited therapeutic options, which is resistant to conventional chemotherapy and radiotherapy, and targeted therapy is also shown with little efficacy. The long-standing delay in researching its mechanisms of occurrence and development has resulted in the dilemma of no effective treatment targets and no available drugs in clinical practice. In recent years, the role of the tumor immune microenvironment in driving tumor growth has become a hot and challenging topic in the field of cancer research. Immunotherapy has shown promising results in the treatment of various tumors. However, the study of the immune microenvironment of chordoma is still in its infancy. In this review, we aim to present a comprehensive reveal of previous exploration on the chordoma immune microenvironment and propose promising immunotherapy strategies for chordoma based on these characteristics.
Collapse
Affiliation(s)
- Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tao Ji
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
18
|
Zuo C, Baer JM, Knolhoff BL, Belle JI, Liu X, Alarcon De La Lastra A, Fu C, Hogg GD, Kingston NL, Breden MA, Dodhiawala PB, Zhou DC, Lander VE, James CA, Ding L, Lim KH, Fields RC, Hawkins WG, Weber JD, Zhao G, DeNardo DG. Stromal and therapy-induced macrophage proliferation promotes PDAC progression and susceptibility to innate immunotherapy. J Exp Med 2023; 220:e20212062. [PMID: 36951731 PMCID: PMC10072222 DOI: 10.1084/jem.20212062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/08/2022] [Accepted: 02/01/2023] [Indexed: 03/24/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are abundant in pancreatic ductal adenocarcinomas (PDACs). While TAMs are known to proliferate in cancer tissues, the impact of this on macrophage phenotype and disease progression is poorly understood. We showed that in PDAC, proliferation of TAMs could be driven by colony stimulating factor-1 (CSF1) produced by cancer-associated fibroblasts. CSF1 induced high levels of p21 in macrophages, which regulated both TAM proliferation and phenotype. TAMs in human and mouse PDACs with high levels of p21 had more inflammatory and immunosuppressive phenotypes. p21 expression in TAMs was induced by both stromal interaction and/or chemotherapy treatment. Finally, by modeling p21 expression levels in TAMs, we found that p21-driven macrophage immunosuppression in vivo drove tumor progression. Serendipitously, the same p21-driven pathways that drive tumor progression also drove response to CD40 agonist. These data suggest that stromal or therapy-induced regulation of cell cycle machinery can regulate both macrophage-mediated immune suppression and susceptibility to innate immunotherapy.
Collapse
Affiliation(s)
- Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John M. Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brett L. Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jad I. Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiuting Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Christina Fu
- Department of Biology, Grinnell College, Grinnell, IA, USA
| | - Graham D. Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Natalie L. Kingston
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcus A. Breden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Paarth B. Dodhiawala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Varintra E. Lander
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - C. Alston James
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Kian-Huat Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan C. Fields
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - William G. Hawkins
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason D. Weber
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guoyan Zhao
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Backman M, Strell C, Lindberg A, Mattsson JSM, Elfving H, Brunnström H, O'Reilly A, Bosic M, Gulyas M, Isaksson J, Botling J, Kärre K, Jirström K, Lamberg K, Pontén F, Leandersson K, Mezheyeuski A, Micke P. Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer. Eur J Cancer 2023; 185:40-52. [PMID: 36963351 DOI: 10.1016/j.ejca.2023.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Immune cells in the tumour microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterise the spatial immune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC). METHODS We established a multiplexed fluorescence imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4-Eff), CD4 regulatory cells (CD4-Treg), CD8 effector cells (CD8-Eff), CD8 regulatory cells (CD8-Treg), B-cells, natural killer cells, natural killer T-cells, M1 macrophages (M1), CD163+ myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs). RESULTS CD4-Eff cells, CD8-Eff cells and M1 macrophages were the most abundant immune cells invading the tumour cell compartment and indicated a patient group with a favourable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4-Eff, CD4-Treg, CD8-Treg, B-cells and pDCs) were independently associated with longer survival. However, when these immune cells were located close to CD8-Treg cells, the favourable impact was attenuated. In the multivariable Cox regression model, including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8-Treg-B-cells, CD8-Eff-cancer cells and B-cells-CD4-Treg) demonstrated positive prognostic impact, whereas short M2-M1 distances were prognostically unfavourable. CONCLUSION We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is crucial for diagnostic use.
Collapse
Affiliation(s)
- Max Backman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hedvig Elfving
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Aine O'Reilly
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martina Bosic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miklos Gulyas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Klas Kärre
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Kristina Lamberg
- Department of Respiratory Medicine, Akademiska Sjukhuset, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
21
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
22
|
Kalkusova K, Smite S, Darras E, Taborska P, Stakheev D, Vannucci L, Bartunkova J, Smrz D. Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors. Int J Mol Sci 2022; 23:ijms231911080. [PMID: 36232398 PMCID: PMC9569882 DOI: 10.3390/ijms231911080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The immune checkpoint inhibitors have revolutionized cancer immunotherapy. These inhibitors are game changers in many cancers and for many patients, sometimes show unprecedented therapeutic efficacy. However, their therapeutic efficacy is largely limited in many solid tumors where the tumor-controlled immune microenvironment prevents the immune system from efficiently reaching, recognizing, and eliminating cancer cells. The tumor immune microenvironment is largely orchestrated by immune cells through which tumors gain resistance against the immune system. Among these cells are mast cells and dendritic cells. Both cell types possess enormous capabilities to shape the immune microenvironment. These capabilities stage these cells as cellular checkpoints in the immune microenvironment. Regaining control over these cells in the tumor microenvironment can open new avenues for breaking the resistance of solid tumors to immunotherapy. In this review, we will discuss mast cells and dendritic cells in the context of solid tumors and how these immune cells can, alone or in cooperation, modulate the solid tumor resistance to the immune system. We will also discuss how this modulation could be used in novel immunotherapeutic modalities to weaken the solid tumor resistance to the immune system. This weakening could then help other immunotherapeutic modalities engage against these tumors more efficiently.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Sindija Smite
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Elea Darras
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Correspondence: ; Tel.: +420-224-435-968; Fax: +420-224-435-962
| |
Collapse
|
23
|
Fang S, Brems BM, Olawode EO, Miller JT, Brooks TA, Tumey LN. Design and Characterization of Immune-Stimulating Imidazo[4,5-c]quinoline Antibody-Drug Conjugates. Mol Pharm 2022; 19:3228-3241. [PMID: 35904247 PMCID: PMC10166635 DOI: 10.1021/acs.molpharmaceut.2c00392] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Traditional antibody-drug conjugate (ADC) technology has employed tumor-targeting antibodies to selectively deliver ultrapotent cytotoxins to tumor tissue. While this technology has been highly successful, resulting in the FDA approval of over 10 ADCs, the field continues to struggle with modest efficacy and significant off-target toxicity. Concurrent with the struggles of the ADC field, a new generation of immune-activating therapeutics has arisen, most clearly exemplified by the PD-1/PD-L1 inhibitors that are now part of standard-of-care treatment regimens for a variety of cancers. The success of these immuno-oncology therapeutic agents has prompted the investigation of a variety of new immuno-stimulant approaches, including toll-like receptor (TLR) activators. Herein, we describe the optimization of ADC technology for the selective delivery of a potent series of TLR7 agonists. A series of imidazole[4,5-c]quinoline agonists (as exemplified by compound 1) were shown to selectively agonize the human and mouse TLR7 receptor at low nanomolar concentrations, resulting in the release of IFNα from human peripheral blood mononuclear cells (hPBMCs) and the upregulation of CD86 on antigen-presenting cells. Compound 1 was attached to a deglycosylated (Fc-γ null) HER2-targeting antibody via a cleavable linker, resulting in an ADC (anti-HER2_vc-1) that potently and selectively activated the TLR7 pathway in tumor-associated macrophages via a "bystander" mechanism. We demonstrated that this ADC rapidly released the TLR7 agonist into the media when incubated with HER2+ cells. This release was not observed upon incubation with an isotype control ADC and furthermore was suppressed by co-administration of the naked antibody. In co-culture experiments with HER2+ HCC1954 cells, this ADC induced the activation of the NFκB pathway in mouse macrophages and the release of IFNα from hPBMCs, while a corresponding isotype control ADC did not. Finally, we demonstrated that IP administration of anti-HER2_vc-1 induced complete tumor regression in an HCC1954 xenograft study in SCID beige mice. Unlike related ADC technology that has been reported recently, our technology relies on the passive diffusion of the TLR7 agonist into tumor-associated macrophages rather than Fc-γ-mediated uptake. Based on these observations, we believe that this ADC technology holds significant potential for both oncology and infectious disease applications.
Collapse
Affiliation(s)
- Siteng Fang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Brittany M Brems
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Emmanuel O Olawode
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Jared T Miller
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Tracy A Brooks
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - L Nathan Tumey
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| |
Collapse
|
24
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
25
|
Zhao L, Zhang S, Kepp O, Kroemer G, Liu P. Dendritic cell transfer for cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:33-64. [PMID: 35798506 DOI: 10.1016/bs.ircmb.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dendritic cells (DCs) play a major role in cancer immunosurveillance as they bridge innate and adaptive immunity by detecting tumor-associated antigens and presenting them to T lymphocytes. The adoptive transfer of antigen loaded DCs has been proposed as an immunotherapeutic approach for the treatment of various types of cancer. Nevertheless, despite promising preclinical data, the therapeutic efficacy of DC transfer is still deceptive in cancer patients. Here we summarize recent findings in DC biology with a special focus on the development of actionable therapeutic strategies and discuss experimental and clinical approaches that aim at improving the efficacy of DC-based immunotherapies, including, but not limited to, optimized DC production and antigen loading, stimulated maturation, the co-treatment with additional immunotherapies, as well as the inhibition of DC checkpoints.
Collapse
Affiliation(s)
- Liwei Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Shuai Zhang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, Hôpital Européen Georges Pompidou, APHP, Paris, France.
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
| |
Collapse
|
26
|
Zhou L, Zou M, Xu Y, Lin P, Lei C, Xia X. Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Front Oncol 2022; 12:864301. [PMID: 35664731 PMCID: PMC9160744 DOI: 10.3389/fonc.2022.864301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy is an artificial stimulation of the immune system to enhance anti-cancer response. It has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing in recent years, and many treatments are in clinical and preclinical stages. Despite this progress, the special tumor heterogeneity and immunosuppressive microenvironment of solid tumors made immunotherapy in the majority of cancer cases difficult. Therefore, understanding how to improve the intratumoral enrichment degree and the response rate of various immunotherapy drugs is key to improve efficacy and control adverse reactions. With the development of materials science and nanotechnology, advanced biomaterials such as nanoparticle and drug delivery systems like T-cell delivery therapy can improve effectiveness of immunotherapy while reducing the toxic side effects on non-target cells, which offers innovative ideas for improving immunity therapeutic effectiveness. In this review, we discuss the mechanism of tumor cell immune escape and focus on current immunotherapy (such as cytokine immunotherapy, therapeutic monoclonal antibody immunotherapy, PD-1/PD-L1 therapy, CAR-T therapy, tumor vaccine, oncolytic virus, and other new types of immunity) and its challenges as well as the latest nanotechnology (such as bionic nanoparticles, self-assembled nanoparticles, deformable nanoparticles, photothermal effect nanoparticles, stimuli-responsive nanoparticles, and other types) applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Manshu Zou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yilin Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Peng Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chang Lei
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
27
|
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, orchestrating innate and adaptive immunity during infections, autoimmune diseases, and malignancies. Since the discovery of DCs almost 50 years ago, our understanding of their biology in humans has increased substantially. Here, we review both antitumor and tolerogenic DC responses in cancer and discuss lineage-specific contributions by their functionally specialized subsets, including the conventional DC (cDC) subsets cDC1 and cDC2, the newly described DC3, and the plasmacytoid DCs (pDCs), focusing on the human setting. In addition, we review the lineage-unrestricted "mature DCs enriched in immunoregulatory molecules" (mregDC) state recently described across different human tumors.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore.,Inserm U1015, Gustave Roussy, Villejuif 94800, France.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
28
|
Early antitumor activity of oral Langerhans cells is compromised by a carcinogen. Proc Natl Acad Sci U S A 2022; 119:2118424119. [PMID: 35012988 PMCID: PMC8784117 DOI: 10.1073/pnas.2118424119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of oral squamous cell carcinoma (OSCC) remains an unmet clinical need. Therefore, elucidating the initial events of OSCC preceding tumor development could benefit OSCC prognosis. Here, we define the Langerhans cells (LCs) of the tongue and demonstrate that LCs protect the epithelium from carcinogen-induced OSCC by rapidly priming αβT cells capable of eliminating γH2AX+ epithelial cells, whereas γδT and natural killer cells are dispensable. The carcinogen, however, dysregulates the epithelial resident mononuclear phagocytes, reducing LC frequencies, while dendritic cells (DCs), macrophages, and plasmacytoid DCs (pDCs) populate the epithelium. Single-cell RNA-sequencing analysis indicates that these newly differentiated cells display an immunosuppressive phenotype accompanied by an expansion of T regulatory (Treg) cells. Accumulation of the Treg cells was regulated, in part, by pDCs and precedes the formation of visible tumors. This suggests LCs play an early protective role during OSCC, yet the capacity of the carcinogen to dysregulate the differentiation of mononuclear phagocytes facilitates oral carcinogenesis.
Collapse
|
29
|
Fan C, Wu J, Shen Y, Hu H, Wang Q, Mao Y, Ye B, Xiang M. Hypoxia promotes the tolerogenic phenotype of plasmacytoid dendritic cells in head and neck squamous cell carcinoma. Cancer Med 2021; 11:922-930. [PMID: 34964283 PMCID: PMC8855917 DOI: 10.1002/cam4.4511] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 11/11/2022] Open
Abstract
Objective We aim to review the roles of plasmacytoid dendritic cells (pDCs) in head and neck squamous cell carcinoma (HNSCC) and explore the effects of hypoxia on the tolerogenic transformation of pDCs. Background pDCs, best known as professional type I interferon‐secreting cells, play key roles in immune surveillance and antitumor immunity. Recently, pDCs have been shown to be tolerogenic and correlate with poor prognosis in a variety of cancers, including HNSCC. However, it remains unclear what drives the tolerogenic transformation of pDCs in the HNSCC microenvironment. Hypoxia, a prominent hallmark of the tumor microenvironment (TME) of HNSCC, can interfere with multiple immune cells and establish an immunosuppressive TME. Methods In this review, we summarize the antitumor and protumor functions of pDCs, explore the effects of hypoxia on the migration and maturation of pDCs, and discuss related mechanisms in HNSCC. Conclusions pDCs mainly display protumor functions in HNSCC. The hypoxic TME in HNSCC can enhance the migration of pDCs and inhibit the differentiation and maturation of pDCs, promoting the tolerogenic phenotype of pDCs.
Collapse
Affiliation(s)
- Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufeng Mao
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Girard P, Sosa Cuevas E, Ponsard B, Mouret S, Gil H, Col E, De Fraipont F, Sturm N, Charles J, Manches O, Chaperot L, Aspord C. Dysfunctional BTN3A together with deregulated immune checkpoints and type I/II IFN dictate defective interplay between pDCs and γδ T cells in melanoma patients, which impacts clinical outcomes. Clin Transl Immunology 2021; 10:e1329. [PMID: 34786191 PMCID: PMC8577077 DOI: 10.1002/cti2.1329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives pDCs and γδ T cells emerge as potent immune players participating in the pathophysiology of cancers, yet still remaining enigmatic while harbouring a promising potential for clinical translations. Despite strategic and closed missions, crosstalk between pDCs and γδ T cells has not been deciphered yet in cancers, especially in melanoma where the long‐term control of the tumor still remains a challenge. Methods This prompted us to explore the interplay between pDCs and γδ T cells in the context of melanoma, investigating the reciprocal features of pDCs or γδ T cells, the underlying molecular mechanisms and its impact on clinical outcomes. Results TLRL‐activated pDCs from the blood and tumor infiltrate of melanoma patients displayed an impaired ability to activate, to modulate immune checkpoints and trigger the functionality of γδ T cells. Conversely, γδ T cells from the blood or tumor infiltrate of melanoma patients activated by PAg were defective in triggering pDCs’ activation and modulation of immune checkpoints, and failed to elicit the functionality of pDCs. Reversion of the dysfunctional cross‐talks could be achieved by specific cytokine administration and immune checkpoint targeting. Strikingly, we revealed an increased expression of BTN3A on circulating and tumor‐infiltrating pDCs and γδ T cells from melanoma patients, but stressed out the potential impairment of this molecule. Conclusion Our study uncovered that melanoma hijacked the bidirectional interplay between pDCs and γδ T cells to escape from immune control, and revealed BTN3A dysfunction. Such understanding will help harness and synergise the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes.
Collapse
Affiliation(s)
- Pauline Girard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Benedicte Ponsard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Hugo Gil
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Edwige Col
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Nathalie Sturm
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Olivier Manches
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
31
|
Donaubauer AJ, Becker I, Weissmann T, Fröhlich BM, Muñoz LE, Gryc T, Denzler M, Ott OJ, Fietkau R, Gaipl US, Frey B. Low Dose Radiation Therapy Induces Long-Lasting Reduction of Pain and Immune Modulations in the Peripheral Blood - Interim Analysis of the IMMO-LDRT01 Trial. Front Immunol 2021; 12:740742. [PMID: 34712229 PMCID: PMC8546320 DOI: 10.3389/fimmu.2021.740742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
The treatment of chronic inflammatory and degenerative diseases by low dose radiation therapy (LDRT) is promising especially for patients who were refractory for classical therapies. LDRT aims to reduce pain of patients and to increase their mobility. Although LDRT has been applied since the late 19th century, the immunological mechanisms remain elusive. Within the prospective IMMO-LDRT01 trial (NCT02653079) the effects of LDRT on the peripheral blood immune status, as well as on pain and life quality of patients have been analyzed. Blood is taken before and after every serial irradiation with a single dose per fraction of 0.5Gy, as well as during follow-up appointments in order to determine a detailed longitudinal immune status by multicolor flow cytometry. Here, we report the results of an interim analysis of 125 patients, representing half the number of patients to be recruited. LDRT significantly improved patients’ pain levels and induced distinct systemic immune modulations. While the total number of leukocytes remained unchanged in the peripheral blood, LDRT induced a slight reduction of eosinophils, basophils and plasmacytoid dendritic cells and an increase of B cells. Furthermore, activated immune cells were decreased following LDRT. Especially cells of the monocytic lineage correlated to LDRT-induced improvements of clinical symptoms, qualifying these immune cells as predictive biomarkers for the therapeutic success. We conclude that LDRT improves pain of the patients by inducing systemic immune modulations and that immune biomarkers could be defined for prediction by improved patient stratification in the future.
Collapse
Affiliation(s)
- Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ina Becker
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Birgitta M Fröhlich
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Gryc
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel Denzler
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
32
|
Identification of Immune-Related Risk Signatures for the Prognostic Prediction in Oral Squamous Cell Carcinoma. J Immunol Res 2021; 2021:6203759. [PMID: 34497859 PMCID: PMC8420972 DOI: 10.1155/2021/6203759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, which remains a major cause of morbidity and mortality in patients with head and neck cancers. However, the critical immune-related signatures and their prognostic values have rarely been investigated. Materials and Methods Gene differential analysis was used to measure the differences of gene expression between the groups. Correlation analysis was used to assess the association between the gene expression levels and immune-related risk score/DNA methylation levels. The gene set enrichment analysis (GSEA) was used to identify the pathways or cell types enriched by those identified differentially expressed genes (DEGs). Results In this study, we identified four immune-related gene signatures, including CTSG, TNFRSF4, LCORL, and PLAU, that were significantly associated with the overall survival in OSCC patients from the Cancer Genome Atlas (TCGA) OSCC cohort. Moreover, these four immune-related signatures were differentially expressed between the OSCC and nontumor tissues. The two groups (high and low risk) stratified by the immune-related risk scores had significantly different OS and mortality rates. The gene expression patterns and prognostic values of these immune-related signatures were also verified in two independent validation cohorts. Furthermore, the downregulated genes in the high-risk group (which were also upregulated in the low-risk group) were significantly enriched in the cell type-specific signatures of type 2 T helper cell (Th2), plasmacytoid dendritic cell (pDC), and memory B cell. In contrast, the upregulated genes in the high-score group were enriched in growth factor receptor-related signaling pathways, such as the VEGFA-VEGFR2 signaling pathway, PI3K-Akt signaling pathway, focal adhesion-PI3K-Akt-mTOR signaling pathway, and PDGF pathway, suggesting that those pathways were inversely correlated with immune cell infiltration. Conclusion In summary, the immune-related signatures had the potential for predicting the risk of OSCC patients. Moreover, the present study also improved our understanding of the association between the growth factor receptor pathways and immune cell infiltration in OSCC.
Collapse
|
33
|
Knight A, Rihova L, Kralova R, Penka M, Adam Z, Pour L, Piskacek M, Hajek R. Plasmacytoid Dendritic Cells in Patients with MGUS and Multiple Myeloma. J Clin Med 2021; 10:jcm10163717. [PMID: 34442012 PMCID: PMC8396926 DOI: 10.3390/jcm10163717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Plasmacytoid dendritic cells (pDCs) play prominent roles in mediating innate and adaptive immune responses. However, it is unclear how pDCs contribute to the immunosuppressive tumor microenvironment described in multiple myeloma (MM). Methods: Newly diagnosed myeloma patients (MM, n = 37) were analyzed to determine the pDC counts in comparison to peripheral blood (PB, n = 53) and bone marrow (BM, n = 10) samples of age-matched healthy donors (HD) using flow cytometry. Second, proliferation of myeloma tumor cells in the presence of freshly isolated pDCs was examined. Third, production of IFNα by pDCs co-cultured with MM cells was determined by intracellular staining. Results: We found a highly significant reduction of circulating pDCs (p < 0.0001) and in bone marrow (p < 0.0001) of MM patients compared to HD. We also observed a significant decrease of pDCs (p = 0.004) in BM in patients with monoclonal gammopathy of undetermined significance (MGUS, n = 12). Importantly, we determined that pDCs promote proliferation specifically of MM cells and not the stromal cells and that pDCs secrete IFNα upon co-culture with MM tumor cells. Conclusions: Our results show altered pDC frequencies in the BM microenvironment in MGUS and MM patients at diagnosis. We showed the tumor-promoting function of pDCs that may mediate immune deficiencies affecting long-term disease control and treatment outcome.
Collapse
Affiliation(s)
- Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Correspondence:
| | - Lucie Rihova
- Department of Hematology, University Hospital Brno, 625 00 Brno, Czech Republic; (L.R.); (R.K.); (M.P.)
| | - Romana Kralova
- Department of Hematology, University Hospital Brno, 625 00 Brno, Czech Republic; (L.R.); (R.K.); (M.P.)
| | - Miroslav Penka
- Department of Hematology, University Hospital Brno, 625 00 Brno, Czech Republic; (L.R.); (R.K.); (M.P.)
| | - Zdenek Adam
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 625 00 Brno, Czech Republic; (Z.A.); (L.P.)
| | - Ludek Pour
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 625 00 Brno, Czech Republic; (Z.A.); (L.P.)
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Roman Hajek
- Department of Hemato-Oncology, University Hospital Ostrava, 708 00 Ostrava, Czech Republic;
- Faculty of Medicine, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
34
|
Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021; 175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.
Collapse
|
35
|
He Y, Liu X, Wang H, Wu L, Jiang M, Guo H, Zhu J, Wu S, Sun H, Chen S, Zhu Y, Zhou C, Yang Y. Mechanisms of Progression and Heterogeneity in Multiple Nodules of Lung Adenocarcinoma. SMALL METHODS 2021; 5:e2100082. [PMID: 34927899 DOI: 10.1002/smtd.202100082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/27/2021] [Indexed: 06/14/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD) is thought to be caused by precursor lesions of atypical adenoma-like hyperplasia and may have extensive in situ growth before infiltration. To explore the relevant factors in heterogeneity and evolution of lung adenocarcinoma subtypes, the authors perform single-cell RNA sequencing (scRNA-seq) on tumor and normal tissue from five multiple nodules' LUAD patients and conduct a thorough gene expression profiling of cancer cells and cells in their microenvironment at single-cell level. This study gives a deep understanding of heterogeneity and evolution in early glandular neoplasia of the lung. This dataset leads to discovery of the changes in the immune microenvironment during the development of LUAD, and the development process from adenocarcinoma in situ (AIS) to invasive adenocarcinoma (IAC). This work sheds light on the direction of early tumor development and whether they are homologous.
Collapse
Affiliation(s)
- Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Xiaogang Liu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Liang Wu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Hui Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Shanhao Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Yang Yang
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
36
|
Tien TZ, Lee JNLW, Lim JCT, Chen XY, Thike AA, Tan PH, Yeong JPS. Delineating the breast cancer immune microenvironment in the era of multiplex immunohistochemistry/immunofluorescence. Histopathology 2021; 79:139-159. [PMID: 33400265 DOI: 10.1111/his.14328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common malignancy and the leading cause of cancer death in females worldwide. Treatment is challenging, especially for those who are triple-negative. Increasing evidence suggests that diverse immune populations are present in the breast tumour microenvironment, which opens up avenues for personalised drug targets. Historically, our investigations into the immune constitution of breast tumours have been restricted to analyses of one or two markers at a given time. Recent technological advances have allowed simultaneous labelling of more than 35 markers and detailed profiling of tumour-immune infiltrates at the single-cell level, as well as determining the cellular composition and spatial analysis of the entire tumour architecture. In this review, we describe emerging technologies that have contributed to the field of breast cancer diagnosis, and discuss how to interpret the vast data sets obtained in order to effectively translate them for clinically relevant use.
Collapse
Affiliation(s)
- Tracy Z Tien
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Justina N L W Lee
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jeffrey C T Lim
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao-Yang Chen
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Joe P S Yeong
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
37
|
Belenchia M, Rocchetti G, Maestri S, Cimadamore A, Montironi R, Santoni M, Merelli E. Agent-Based Learning Model for the Obesity Paradox in RCC. Front Bioeng Biotechnol 2021; 9:642760. [PMID: 33996779 PMCID: PMC8116955 DOI: 10.3389/fbioe.2021.642760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
A recent study on the immunotherapy treatment of renal cell carcinoma reveals better outcomes in obese patients compared to lean subjects. This enigmatic contradiction has been explained, in the context of the debated obesity paradox, as the effect produced by the cell-cell interaction network on the tumor microenvironment during the immune response. To better understand this hypothesis, we provide a computational framework for the in silico study of the tumor behavior. The starting model of the tumor, based on the cell-cell interaction network, has been described as a multiagent system, whose simulation generates the hypothesized effects on the tumor microenvironment. The medical needs in the immunotherapy design meet the capabilities of a multiagent simulator to reproduce the dynamics of the cell-cell interaction network, meaning a reaction to environmental changes introduced through the experimental data.
Collapse
Affiliation(s)
- Matteo Belenchia
- Laboratory of Data Science and Bioshape, School of Science and Technology, University of Camerino, Camerino, Italy
| | - Giacomo Rocchetti
- Laboratory of Data Science and Bioshape, School of Science and Technology, University of Camerino, Camerino, Italy
| | - Stefano Maestri
- Laboratory of Data Science and Bioshape, School of Science and Technology, University of Camerino, Camerino, Italy.,Centre de Physique Théorique, Aix-Marseille University, Marseilles, France
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Matteo Santoni
- Department of Oncology, Macerata Hospital, Macerata, Italy
| | - Emanuela Merelli
- Laboratory of Data Science and Bioshape, School of Science and Technology, University of Camerino, Camerino, Italy
| |
Collapse
|
38
|
Van Eyndhoven LC, Chouri E, Subedi N, Tel J. Phenotypical Diversification of Early IFNα-Producing Human Plasmacytoid Dendritic Cells Using Droplet-Based Microfluidics. Front Immunol 2021; 12:672729. [PMID: 33995415 PMCID: PMC8117785 DOI: 10.3389/fimmu.2021.672729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a rare type of highly versatile immune cells that besides their specialized function of massive type I interferon (IFN-I) production are able to exert cytotoxic effector functions. However, diversification upon toll like receptor (TLR)-induced activation leads to highly heterogeneous responses that have not been fully characterized yet. Using droplet-based microfluidics, we showed that upon TLR7/8 and TLR9-induced single-cell activation only 1-3% secretes IFNα, and only small fractions upregulate cytotoxicity markers. Interestingly, this 1-3% of early IFN-producing pDCs, also known as first responders, express high levels of programmed death-ligand 1 (PD-L1) and TNF-related apoptosis-inducing ligand (TRAIL), which makes these hybrid cells similar to earlier described IFN-I producing killer pDCs (IKpDCs). IFN-I priming increases the numbers of IFNα producing cells up to 40%, but does not significantly upregulate the cytotoxicity markers. Besides, these so-called second responders do not show a cytotoxic phenotype as potent as observed for the first responders. Overall, our results indicate that the first responders are the key drivers orchestrating population wide IFN-I responses and possess high cytotoxic potential.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eleni Chouri
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nikita Subedi
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
39
|
Yan X, Xie Y, Yang F, Hua Y, Zeng T, Sun C, Yang M, Huang X, Wu H, Fu Z, Li W, Jiao S, Yin Y. Comprehensive description of the current breast cancer microenvironment advancements via single-cell analysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:142. [PMID: 33906694 PMCID: PMC8077685 DOI: 10.1186/s13046-021-01949-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is a heterogeneous disease with a complex microenvironment consisting of tumor cells, immune cells, fibroblasts and vascular cells. These cancer-associated cells shape the tumor microenvironment (TME) and influence the progression of breast cancer and the therapeutic responses in patients. The exact composition of the intra-tumoral cells is mixed as the highly heterogeneous and dynamic nature of the TME. Recent advances in single-cell technologies such as single-cell DNA sequencing (scDNA-seq), single-cell RNA sequencing (scRNA-seq) and mass cytometry have provided new insights into the phenotypic and functional diversity of tumor-infiltrating cells in breast cancer. In this review, we have outlined the recent progress in single-cell characterization of breast tumor ecosystems, and summarized the phenotypic diversity of intra-tumoral cells and their potential prognostic relevance.
Collapse
Affiliation(s)
- Xueqi Yan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yinghong Xie
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fan Yang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yijia Hua
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianyu Zeng
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chunxiao Sun
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mengzhu Yang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Huang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ziyi Fu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Shiping Jiao
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210029, Jiangsu Province, China. .,Drum Tower Institute of clinical medicine, Nanjing University, Nanjing, 210029, Jiangsu Province, China.
| | - Yongmei Yin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
40
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
41
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
42
|
Han N, Li X, Wang Y, Wang L, Zhang C, Zhang Z, Ruan M, Zhang C. Increased tumor-infiltrating plasmacytoid dendritic cells promote cancer cell proliferation and invasion via TNF-α/NF-κB/CXCR-4 pathway in oral squamous cell carcinoma. J Cancer 2021; 12:3045-3056. [PMID: 33854604 PMCID: PMC8040884 DOI: 10.7150/jca.55580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor-infiltrating immune cells are closely associated with tumor occurrence and progression. The present study explored the potential mechanism of tumor-infiltrating plasmacytoid dendritic cells (pDC) mediating the proliferation and metastasis of cancer cells in oral squamous cell carcinoma (OSCC). Methods: pDC distribution was detected by immunofluorescence and flow cytometry. chemotaxis cytokine receptor-4/7 (CXCR-4/7) expression was detected by quantitative polymerase chain reaction and immunohistochemistry. Cell proliferation and migration were measured by CCK-8, colony formation, wound healing and transwell assay. ELISA and western blotting were used to investigate cytokines secretion and NF-κB pathway activity. Results: Tumor-infiltrating pDC in OSCC was significantly increased and associated with tumor size, lymph node (LN) metastasis (P <0.05). Tumor-infiltrating-pDC-conditioned medium from OSCC patients significantly promoted tumor cell proliferation and invasion, which was at least partly mediated via enhancing the CXCR-4 expression of tumor cell. In addition, the activation of NF-κB pathway played a decisive role in the overexpression of CXCR-4, which was further regulated by pDC-derived TNF-α secretion. Conclusions: Tumor-infiltrating pDC promoted oral cancer proliferation and invasion via activating the TNF-α/NF-κB/CXCR-4 pathway, which may serve as a potential immunological target for the treatment of OSCC in the future.
Collapse
Affiliation(s)
- Nannan Han
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Xing Li
- Department of Dentistry, Affiliated Hospital, Weifang Medical University, Weifang, 261031, China
| | - Yupu Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Lin Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Chunye Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zun Zhang
- Department of Stomatology, Shanghai East Hospital, Tongji University. Shanghai 200120, China
| | - Min Ruan
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| |
Collapse
|
43
|
Zhou JG, Donaubauer AJ, Frey B, Becker I, Rutzner S, Eckstein M, Sun R, Ma H, Schubert P, Schweizer C, Fietkau R, Deutsch E, Gaipl U, Hecht M. Prospective development and validation of a liquid immune profile-based signature (LIPS) to predict response of patients with recurrent/metastatic cancer to immune checkpoint inhibitors. J Immunother Cancer 2021; 9:jitc-2020-001845. [PMID: 33593828 PMCID: PMC7888377 DOI: 10.1136/jitc-2020-001845] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background The predictive power of novel biological markers for treatment response to immune checkpoint inhibitors (ICI) is still not satisfactory for the majority of patients with cancer. One should identify valid predictive markers in the peripheral blood, as this is easily available before and during treatment. The current interim analysis of patients of the ST-ICI cohort therefore focuses on the development and validation of a liquid immune profile-based signature (LIPS) to predict response of patients with metastatic cancer to ICI targeting the programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis. Methods A total of 104 patients were prospectively enrolled. 54 immune cell subsets were prospectively analyzed in patients’ peripheral blood by multicolor flow cytometry before treatment with ICI (pre-ICI; n=89), and after the first application of ICI (n=65). Pre-ICI, patients were randomly allocated to a training (n=56) and a validation cohort (n=33). Univariate Cox proportional hazards regression analysis and least absolute shrinkage and selection operator Cox model were used to create a predictive immune signature, which was also checked after the first ICI, to consider the dynamics of changes in the immune status. Results Whole blood samples were provided by 89 patients pre-ICI and by 65 patients after the first ICI. We identified a LIPS which is based on five immune cell subtypes: CD14high monocytes, CD8+/PD-1+ T cells, plasmacytoid dendritic cells, neutrophils, and CD3+/CD56+/CD16+ natural killer (NK)T cells. The signature achieved a high accuracy (C-index 0.74 vs 0.71) for predicting overall survival (OS) benefit in both the training and the validation cohort. In both cohorts, the low-risk group had significantly longer OS than the high-risk group (HR 0.26, 95% CI 0.12 to 0.56, p=0.00025; HR 0.30, 95% CI 0.10 to 0.91, p=0.024, respectively). Regarding the whole cohort, LIPS also predicted progression-free survival (PFS). The identified LIPS was not affected by clinicopathological features with the exception of brain metastases. NKT cells and neutrophils of the LIPS can be used as dynamic predictive biomarkers for OS and PFS after first administration of the ICI. Conclusion Our study identified a predictive LIPS for survival of patients with cancer treated with PD-1/PD-L1 ICI, which is based on immune cell subsets in the peripheral whole blood. Trial registration number NCT03453892.
Collapse
Affiliation(s)
- Jian-Guo Zhou
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Anna-Jasmina Donaubauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Ina Becker
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sandra Rutzner
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Institute of Pathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy - CentraleSupélec - TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Villejuif, France.,Université Paris-Saclay, INSERM1030 Radiothérapie Moléculaire, Villejuif, France
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Philipp Schubert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Claudia Schweizer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy - CentraleSupélec - TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Villejuif, France.,Université Paris-Saclay, INSERM1030 Radiothérapie Moléculaire, Villejuif, France
| | - Udo Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany .,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
44
|
Koucký V, Hladíková K, Táborská E, Bouček J, Grega M, Špíšek R, Fialová A. The cytokine milieu compromises functional capacity of tumor-infiltrating plasmacytoid dendritic cells in HPV-negative but not in HPV-positive HNSCC. Cancer Immunol Immunother 2021; 70:2545-2557. [PMID: 33569630 DOI: 10.1007/s00262-021-02874-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are the most potent type I interferon-producing cells and play an important role in antiviral immunity. Tumor-infiltrating pDCs were shown to be predominantly pro-tumorigenic, with reduced ability to produce interferon alpha (IFNα) and confirmed capacity to prime regulatory T cells (Tregs) by the ICOS/ICOS-L pathway. Because a significant number of HNSCCs are induced by human papillomaviruses and show markedly different immune profiles than non-virally induced tumors, we compared the phenotype and functional capacity of HNSCC-infiltrating pDCs to the HPV status of the tumor. We observed a reduced capacity of pDCs to produce IFNα upon toll-like receptor activation in HPV-negative samples and a rather uncompromised functionality in HPV-associated tumors. Additionally, supernatants from non-virally induced but not HPV-associated tumor cell suspensions significantly inhibited IFNα production by peripheral blood-derived pDCs. We identified IL-10 and TNFα as the soluble pDC-suppressive factors with the highest variability between HPV-negative and HPV-positive tumor-derived supernatants. Additionally, we observed a positive correlation of tumor-infiltrating pDCs with Tregs in HPV-negative samples but not in virally induced tumors. Overall, our study indicates that the immunosuppressive cytokine milieu rich in IL-10 and TNFα in HPV-negative but not in HPV-positive HNSCC significantly affects the functional capacity of tumor-infiltrating pDCs, and such dysfunctional pDCs may further support the immunosuppressive tumor microenvironment by promoting the expansion of Tregs in the tumor tissue.
Collapse
Affiliation(s)
- Vladimír Koucký
- , Sotio, Prague, Czech Republic.
- Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, Prague, Czech Republic.
| | | | | | - Jan Bouček
- Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, Prague, Czech Republic
| | - Marek Grega
- Department of Pathology and Molecular Medicine, Second Medical Faculty, Motol University Hospital, Prague, Czech Republic
| | | | | |
Collapse
|
45
|
Lucarini V, Melaiu O, Tempora P, D’Amico S, Locatelli F, Fruci D. Dendritic Cells: Behind the Scenes of T-Cell Infiltration into the Tumor Microenvironment. Cancers (Basel) 2021; 13:433. [PMID: 33498755 PMCID: PMC7865357 DOI: 10.3390/cancers13030433] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Tumor-infiltrating CD8+ T cells have been shown to play a crucial role in controlling tumor progression. However, the recruitment and activation of these immune cells at the tumor site are strictly dependent on several factors, including the presence of dendritic cells (DCs), the main orchestrators of the antitumor immune responses. Among the various DC subsets, the role of cDC1s has been demonstrated in several preclinical experimental mouse models. In addition, the high density of tumor-infiltrating cDC1s has been associated with improved survival in many cancer patients. The ability of cDC1s to modulate antitumor activity depends on their interaction with other immune populations, such as NK cells. This evidence has led to the development of new strategies aimed at increasing the abundance and activity of cDC1s in tumors, thus providing attractive new avenues to enhance antitumor immunity for both established and novel anticancer immunotherapies. In this review, we provide an overview of the various subsets of DCs, focusing in particular on the role of cDC1s, their ability to interact with other intratumoral immune cells, and their prognostic significance on solid tumors. Finally, we outline key therapeutic strategies that promote the immunogenic functions of DCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| | - Patrizia Tempora
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| | - Silvia D’Amico
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (V.L.); (O.M.); (P.T.); (S.D.); (F.L.)
| |
Collapse
|
46
|
Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene 2021; 40:6748-6758. [PMID: 34663877 PMCID: PMC8677623 DOI: 10.1038/s41388-021-02054-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Abstract
Recent developments in immuno-oncology demonstrate that not only cancer cells, but also the tumor microenvironment can guide precision medicine. A comprehensive and in-depth characterization of the tumor microenvironment is challenging since its cell populations are diverse and can be important even if scarce. To identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to ten human lung adenocarcinomas and ten normal control tissues. Our analyses revealed heterogeneous carcinoma cell transcriptomes reflecting histological grade and oncogenic pathway activities, and two distinct microenvironmental patterns. The immune-activated CP²E microenvironment was composed of cancer-associated myofibroblasts, proinflammatory monocyte-derived macrophages, plasmacytoid dendritic cells and exhausted CD8+ T cells, and was prognostically unfavorable. In contrast, the inert N³MC microenvironment was characterized by normal-like myofibroblasts, non-inflammatory monocyte-derived macrophages, NK cells, myeloid dendritic cells and conventional T cells, and was associated with a favorable prognosis. Microenvironmental marker genes and signatures identified in single-cell profiles had progonostic value in bulk tumor profiles. In summary, single-cell RNA profiling of lung adenocarcinoma provides additional prognostic information based on the microenvironment, and may help to predict therapy response and to reveal possible target cell populations for future therapeutic approaches.
Collapse
|
47
|
Nikfarjam S, Rezaie J, Kashanchi F, Jafari R. Dexosomes as a cell-free vaccine for cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:258. [PMID: 33228747 PMCID: PMC7686678 DOI: 10.1186/s13046-020-01781-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) secrete vast quantities of exosomes termed as dexosomes. Dexosomes are symmetric nanoscale heat-stable vesicles that consist of a lipid bilayer displaying a characteristic series of lipid and protein molecules. They include tetraspanins and all established proteins for presenting antigenic material such as the major histocompatibility complex class I/II (MHC I/II) and CD1a, b, c, d proteins and CD86 costimulatory molecule. Dexosomes contribute to antigen-specific cellular immune responses by incorporating the MHC proteins with antigen molecules and transferring the antigen-MHC complexes and other associated molecules to naïve DCs. A variety of ex vivo and in vivo studies demonstrated that antigen-loaded dexosomes were able to initiate potent antitumor immunity. Human dexosomes can be easily prepared using monocyte-derived DCs isolated by leukapheresis of peripheral blood and treated ex vivo by cytokines and other factors. The feasibility of implementing dexosomes as therapeutic antitumor vaccines has been verified in two phase I and one phase II clinical trials in malignant melanoma and non small cell lung carcinoma patients. These studies proved the safety of dexosome administration and showed that dexosome vaccines have the capacity to trigger both the adaptive (T lymphocytes) and the innate (natural killer cells) immune cell recalls. In the current review, we will focus on the perspective of utilizing dexosome vaccines in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, P.O. Box: 1138, Shafa St, Ershad Blvd., 57147, Urmia, Iran
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., VA, 20110, Manassas, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, P.O. Box: 1138, Shafa St, Ershad Blvd., 57147, Urmia, Iran. .,Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
48
|
Holsbø E, Olsen KS. Metastatic Breast Cancer and Pre-Diagnostic Blood Gene Expression Profiles-The Norwegian Women and Cancer (NOWAC) Post-Genome Cohort. Front Oncol 2020; 10:575461. [PMID: 33178605 PMCID: PMC7594625 DOI: 10.3389/fonc.2020.575461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/28/2020] [Indexed: 01/16/2023] Open
Abstract
Breast cancer patients with metastatic disease have a higher incidence of deaths from breast cancer than patients with early-stage cancers. Recent findings suggest that there are differences in immune cell function between metastatic and non-metastatic cases, even years before diagnosis. We have analyzed whole blood gene expression by Illumina bead chips in blood samples taken using the PAXgene blood collection system up to two years before diagnosis. The final study sample included 197 breast cancer cases and 197 age-matched controls. We defined a causal directed acyclic graph to guide a Bayesian data analysis to estimate the risk of metastasis associated with the expression of all genes and with relevant sets of genes. We ranked genes and gene sets according to the sign probability for excess risk. Among the screening detected cancers, 82% were without metastasis, compared to 53% of between-screening detected cancers. Among the highest ranking genes and gene sets associated with metastasis risk, we identified plasmacytiod dentritic cell function, the SLC22 family of transporters, and glutamine metabolism as potential links between the immune system and metastasis. We conclude that there may be potentially wide-reaching differences in blood gene expression profiles between metastatic and non-metastatic breast cancer cases up to two years before diagnosis, which warrants future study.
Collapse
Affiliation(s)
- Einar Holsbø
- Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
49
|
Maser IP, Hoves S, Bayer C, Heidkamp G, Nimmerjahn F, Eckmann J, Ries CH. The Tumor Milieu Promotes Functional Human Tumor-Resident Plasmacytoid Dendritic Cells in Humanized Mouse Models. Front Immunol 2020; 11:2082. [PMID: 33013879 PMCID: PMC7507800 DOI: 10.3389/fimmu.2020.02082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Particular interest to harness the innate immune system for cancer immunotherapy is fueled by limitations of immune checkpoint blockade. Plasmacytoid dendritic cells (pDC) are detected in a variety of solid tumors and correlate with poor clinical outcome. Release of type I interferons in response to toll-like-receptor (TLR)7 and TLR9 activation is the pDC hallmark. Mouse and human pDC differ substantially in their biology concerning surface marker expression and cytokine production. Here, we employed humanized mouse models (HIS) to study pDC function. We performed a comprehensive characterization of transgenic, myeloid-enhanced mouse strains (NOG-EXL and NSG-SGM3) expressing human interleukin-3 (hIL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) using identical humanization protocols. Only in HIS-NOG-EXL mice sufficient pDC infiltration was detectable. Therefore, we selected this strain for subsequent tumor studies. We analyzed pDC frequency in peripheral blood and tumors by comparing HIS-NOG-EXL with HIS-NOG mice bearing three different ovarian and breast tumors. Despite the substantially increased pDC numbers in peripheral blood of HIS-NOG-EXL mice, we detected TLR7/8 agonist responsive and thus functional pDCs only in certain tumor models independent of the mouse strain employed. However, HIS-NOG-EXL mice showed in general a superior humanization phenotype characterized by reconstitution of different myeloid subsets, NK cells and B cells producing physiologic IgG levels. Hence, we provide first evidence that the tumor milieu but not genetically introduced cytokines defines intratumoral (i.t.) frequencies of the rare pDC subset. This study provides model systems to investigate in vivo pro- and anti-tumoral human pDC functions.
Collapse
Affiliation(s)
- Ilona-Petra Maser
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Sabine Hoves
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Christa Bayer
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Gordon Heidkamp
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Falk Nimmerjahn
- FAU Erlangen, Division of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Eckmann
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Carola H Ries
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany.,Dr. Carola Ries Consulting, Penzberg, Germany
| |
Collapse
|
50
|
Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov 2020; 19:635-652. [PMID: 32764681 DOI: 10.1038/s41573-020-0074-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Mobilizing antitumour immunity through vaccination potentially constitutes a powerful anticancer strategy but has not yet provided robust clinical benefits in large patient populations. Although major hurdles still exist, we believe that currently available strategies for vaccines that target dendritic cells or use them to present antitumour antigens could be integrated into existing clinical practice using prime-boost approaches. In the priming phase, these approaches capitalize on either standard treatment modalities to trigger in situ vaccination and release tumour antigens or vaccination with dendritic cells loaded with tumour lysates or patient-specific neoantigens. In a second boost phase, personalized synthetic vaccines specifically boost T cells that were triggered during the priming phase. This immunotherapy approach has been enabled by the substantial recent improvements in dendritic cell vaccines. In this Perspective, we discuss these improvements, highlight how the prime-boost approach can be translated into clinical practice and provide solutions for various anticipated hurdles.
Collapse
Affiliation(s)
- Alexandre Harari
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michele Graciotti
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|