1
|
Shapoval O, Patsula V, Větvička D, Engstová H, Oleksa V, Kabešová M, Vasylyshyn T, Poučková P, Horák D. Temoporfin-Conjugated PEGylated Poly( N, N-dimethylacrylamide)-Coated Upconversion Colloid for NIR-Induced Photodynamic Therapy of Pancreatic Cancer. Biomacromolecules 2024; 25:5771-5785. [PMID: 38888278 PMCID: PMC11388470 DOI: 10.1021/acs.biomac.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Photodynamic therapy (PDT) has the potential to cure pancreatic cancer with minimal side effects. Visible wavelengths are primarily used to activate hydrophobic photosensitizers, but in clinical practice, these wavelengths do not sufficiently penetrate deeper localized tumor cells. In this work, NaYF4:Yb3+,Er3+,Fe2+ upconversion nanoparticles (UCNPs) were coated with polymer and labeled with meta-tetra(hydroxyphenyl)chlorin (mTHPC; temoporfin) to enable near-infrared light (NIR)-triggered PDT of pancreatic cancer. The coating consisted of alendronate-terminated poly[N,N-dimethylacrylamide-co-2-aminoethylacrylamide]-graft-poly(ethylene glycol) [P(DMA-AEM)-PEG-Ale] to ensure the chemical and colloidal stability of the particles in aqueous physiological fluids, thereby also improving the therapeutic efficacy. The designed particles were well tolerated by the human pancreatic adenocarcinoma cell lines CAPAN-2, PANC-1, and PA-TU-8902. After intratumoral injection of mTHPC-conjugated polymer-coated UCNPs and subsequent exposure to 980 nm NIR light, excellent PDT efficacy was achieved in tumor-bearing mice.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského Nám. 2, 162
00 Prague 6, Czech
Republic
| | - Vitalii Patsula
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského Nám. 2, 162
00 Prague 6, Czech
Republic
| | - David Větvička
- First
Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Hana Engstová
- Institute
of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Viktoriia Oleksa
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského Nám. 2, 162
00 Prague 6, Czech
Republic
| | - Martina Kabešová
- First
Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Taras Vasylyshyn
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského Nám. 2, 162
00 Prague 6, Czech
Republic
| | - Pavla Poučková
- First
Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Daniel Horák
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského Nám. 2, 162
00 Prague 6, Czech
Republic
| |
Collapse
|
2
|
Kessel D. Trials and errors in the realm of photodynamic therapy: Viability and ROS detection. Photochem Photobiol 2024. [PMID: 39189639 DOI: 10.1111/php.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
In the realm of Photodynamic Therapy, as elsewhere, claims are sometimes made for which there is minimal evidence or proof. Some examples are indicated.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
3
|
Millichap L, Turton N, Damiani E, Marcheggiani F, Orlando P, Silvestri S, Tiano L, Hargreaves IP. The Effect of Neuronal CoQ 10 Deficiency and Mitochondrial Dysfunction on a Rotenone-Induced Neuronal Cell Model of Parkinson's Disease. Int J Mol Sci 2024; 25:6622. [PMID: 38928331 PMCID: PMC11204355 DOI: 10.3390/ijms25126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.
Collapse
Affiliation(s)
- Lauren Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| |
Collapse
|
4
|
Shi M, Xu M, Huang X, Li C, Chen P, Li Q, Guo J, Zhu M, He S, Zeng K. The effect of autophagy on hemoporfin-mediated photodynamic therapy in human umbilical vein endothelial cells. Photodiagnosis Photodyn Ther 2024; 47:104196. [PMID: 38710260 DOI: 10.1016/j.pdpdt.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
SIGNIFICANCE Hemoporfin-mediated photodynamic therapy (HMME-PDT) has been recognized as a safe and effective treatment for port wine stain (PWS). However, some patients show limited improvement even after multiple treatments. Herein, we aim to explore the effect of autophagy on HMME-PDT in human umbilical vein endothelial cells (HUVECs), so as to provide theoretical basis and treatment strategies to enhance clinical effectiveness. METHODS Establish the in vitro HMME-PDT system by HUVECs. Apoptosis and necrosis were identified by Annexin Ⅴ-FITC/PI flow cytometry, and autophagy flux was detected by monitoring RFP-GFP-LC3 under the fluorescence microscope. Hydroxychloroquine and rapamycin were employed in the mechanism study. Specifically, the certain genes and proteins were qualified by qPCR and Western Blot, respectively. The cytotoxicity was measured by CCK-8, VEGF-A secretion was determined by ELISA, and the tube formation of HUVECs was observed by angiogenesis assay. RESULTS In vitro experiments revealed that autophagy and apoptosis coexisted in HUVECs treated by HMME-PDT. Apoptosis was dominant in early stage, while autophagy gradually increased in the middle and late stage. AMPK, AKT and mTOR participated in the regulation of autophagy induced by HMME-PDT, in which AMPK was positive regulation, while AKT and mTOR were negative regulation. Hydroxychloroquine could not inhibit HMME-PDT-induced autophagy, but capable of blocking the fusion of autophagosomes with lysosome. Rapamycin might cooperate with HMME-PDT to enhance autophagy in HUVECs, leading to increased cytotoxicity, reduced VEGF-A secretion, and weakened angiogenesis ability. CONCLUSIONS Both autophagy and apoptosis contribute to HMME-PDT-induced HUVECs death. Pretreatment of HUVECs with rapamycin to induce autophagy might enhance the photodynamic killing effect of HMME-PDT on HUVECs. The combination of Rapamycin and HMME-PDT is expected to further improve the clinical efficacy.
Collapse
Affiliation(s)
- Minglan Shi
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Meinian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Jia Guo
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Menghua Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China
| | - Sijin He
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China.
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Moloudi K, Abrahamse H, George BP. Photodynamic therapy induced cell cycle arrest and cancer cell synchronization: review. Front Oncol 2023; 13:1225694. [PMID: 37503319 PMCID: PMC10369002 DOI: 10.3389/fonc.2023.1225694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Cell cycle arrest (CCA) is seen as a prime candidate for effective cancer therapy. This mechanism can help researchers to create new treatments to target cancer cells at particular stages of the cell cycle (CC). The CCA is a characteristic of various therapeutic modalities, including radiation (RT) and chemotherapy (CT), which synchronizes the cells and facilitates the standardization of radio-chemotherapy protocols. Although it was discovered that photodynamic treatment (PDT) had a biological effect on CCA in cancer cells, the mechanism remains unclear. Furthermore, besides conventional forms of cell death such as apoptosis, autophagy, and necrosis, various unconventional types of cell death including pyroptosis, mitotic catastrophe, paraptosis, ferroptosis, necroptosis, and parthanatos after PDT have been reported. Thus, a variety of elements, such as oxygen, the tumor's microenvironment, the characteristics of light, and photosensitizer (PS), influence the effectiveness of the PDT treatment, which have not yet been studied clearly. This review focuses on CCA induced by PDT for a variety of PSs agents on various cell lines. The CCA by PDT can be viewed as a remarkable effect and instructive for the management of the PDT protocol. Regarding the relationship between the quantity of reactive oxygen species (ROS) and its biological consequences, we have proposed two mathematical models in PDT. Finally, we have gathered recent in vitro and in vivo studies about CCA post-PDT at various stages and made suggestions about how it can standardize, potentiate, and customize the PDT methodology.
Collapse
|
6
|
Caverzán MD, Oliveda PM, Beaugé L, Palacios RE, Chesta CA, Ibarra LE. Metronomic Photodynamic Therapy with Conjugated Polymer Nanoparticles in Glioblastoma Tumor Microenvironment. Cells 2023; 12:1541. [PMID: 37296661 PMCID: PMC10252555 DOI: 10.3390/cells12111541] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Alternative therapies such as photodynamic therapy (PDT) that combine light, oxygen and photosensitizers (PSs) have been proposed for glioblastoma (GBM) management to overcome conventional treatment issues. An important disadvantage of PDT using a high light irradiance (fluence rate) (cPDT) is the abrupt oxygen consumption that leads to resistance to the treatment. PDT metronomic regimens (mPDT) involving administering light at a low irradiation intensity over a relatively long period of time could be an alternative to circumvent the limitations of conventional PDT protocols. The main objective of the present work was to compare the effectiveness of PDT with an advanced PS based on conjugated polymer nanoparticles (CPN) developed by our group in two irradiation modalities: cPDT and mPDT. The in vitro evaluation was carried out based on cell viability, the impact on the macrophage population of the tumor microenvironment in co-culture conditions and the modulation of HIF-1α as an indirect indicator of oxygen consumption. mPDT regimens with CPNs resulted in more effective cell death, a lower activation of molecular pathways of therapeutic resistance and macrophage polarization towards an antitumoral phenotype. Additionally, mPDT was tested in a GBM heterotopic mouse model, confirming its good performance with promising tumor growth inhibition and apoptotic cell death induction.
Collapse
Affiliation(s)
- Matías Daniel Caverzán
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Paula Martina Oliveda
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| | - Lucía Beaugé
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| |
Collapse
|
7
|
Hohlfeld BF, Steen D, Wieland GD, Achazi K, Kulak N, Haag R, Wiehe A. Bromo- and glycosyl-substituted BODIPYs for application in photodynamic therapy and imaging. Org Biomol Chem 2023; 21:3105-3120. [PMID: 36799212 DOI: 10.1039/d2ob02174a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The introduction of heavy atoms into the BODIPY-core structure has proven to be a straightforward strategy for optimizing the design of such dyes towards enhanced generation of singlet oxygen rendering them suitable as photosensitizers for photodynamic therapy (PDT). In this work, BODIPYs are presented by combining the concept of bromination with nucleophilic aromatic substitution (SNAr) of a pentafluorophenyl or a 4-fluoro-3-nitrophenyl moiety to introduce functional groups, thus improving the phototoxic effect of the BODIPYs as well as their solubility in the biological environment. The nucleophilic substitution enabled functionalization with various amines and alcohols as well as unprotected thiocarbohydrates. The phototoxic activity of these more than 50 BODIPYs has been assessed in cellular assays against four cancer cell lines in order to more broadly evaluate their PDT potential, thus accounting for the known variability between cell lines with respect to PDT activity. In these investigations, dibrominated polar-substituted BODIPYs, particularly dibrominated glyco-substituted compounds, showed promising potential as photomedicine candidates. Furthermore, the cellular uptake of the glycosylated BODIPYs has been confirmed via fluorescence microscopy.
Collapse
Affiliation(s)
- Benjamin F Hohlfeld
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | - Dorika Steen
- Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | | | - Katharina Achazi
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Nora Kulak
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rainer Haag
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Arno Wiehe
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| |
Collapse
|
8
|
Diao P, Han C, Li X, Yang Y, Jiang X. Hematoporphyrin Monomethyl Ether Photodynamic Therapy of Port Wine Stain: Narrative Review. Clin Cosmet Investig Dermatol 2023; 16:1135-1144. [PMID: 37139084 PMCID: PMC10150768 DOI: 10.2147/ccid.s401447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 05/05/2023]
Abstract
Port wine stain (PWS) is a congenital and progressive capillary malformation characterized by structural abnormalities of intradermal capillaries and postcapillary venules. The visible manifestation is often considered a disfigurement and the accompanying social stigma often causes serious emotional and physical impact. Hematoporphyrin monomethyl ether (HMME) is a newly authorized photosensitizer for treating PWS in China. Hematoporphyrin monomethyl ether photodynamic therapy (HMME-PDT) has successfully treated thousands of Chinese patients with PWS since 2017, and HMME-PDT may be one of the most promising strategies for the treatment of PWS. However, there are few reviews published about the clinical use of HMME-PDT. So in this article, we want to briefly review the mechanism, efficacy evaluation, effectiveness and influencing factors, and the common postoperative reactions and treatment suggestions of HMME-PDT in the treatment of PWS.
Collapse
Affiliation(s)
- Ping Diao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Chenglong Han
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yi Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Correspondence: Xian Jiang, Email
| |
Collapse
|
9
|
Mattioli EJ, Ulfo L, Marconi A, Pellicioni V, Costantini PE, Marforio TD, Di Giosia M, Danielli A, Fimognari C, Turrini E, Calvaresi M. Carrying Temoporfin with Human Serum Albumin: A New Perspective for Photodynamic Application in Head and Neck Cancer. Biomolecules 2022; 13:biom13010068. [PMID: 36671454 PMCID: PMC9855801 DOI: 10.3390/biom13010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Temoporfin (mTHPC) is approved in Europe for the photodynamic treatment of head and neck squamous cell carcinoma (HNSCC). Although it has a promising profile, its lipophilic character hampers the full exploitation of its potential due to high tendency of aggregation and a reduced ROS generation that compromise photodynamic therapy (PDT) efficacy. Moreover, for its clinical administration, mTHPC requires the presence of ethanol and propylene glycol as solvents, often causing adverse effects in the site of injection. In this paper we explored the efficiency of a new mTHPC formulation that uses human serum albumin (HSA) to disperse the photosensitizer in solution (mTHPC@HSA), investigating its anticancer potential in two HNSCC cell lines. Through a comprehensive characterization, we demonstrated that mTHPC@HSA is stable in physiological environment, does not aggregate, and is extremely efficient in PDT performance, due to its high singlet oxygen generation and the high dispersion as monomolecular form in HSA. This is supported by the computational identification of the specific binding pocket of mTHPC in HSA. Moreover, mTHPC@HSA-PDT induces cytotoxicity in both HNSCC cell lines, increasing intracellular ROS generation and the number of γ-H2AX foci, a cellular event involved in the global response to cellular stress. Taken together these results highlight the promising phototoxic profile of the complex, prompting further studies to assess its clinical potential.
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Alessia Marconi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Valentina Pellicioni
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
- Correspondence: (E.T.); (M.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- Correspondence: (E.T.); (M.C.)
| |
Collapse
|
10
|
Choi J, Sun IC, Sook Hwang H, Yeol Yoon H, Kim K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv Drug Deliv Rev 2022; 186:114344. [PMID: 35580813 DOI: 10.1016/j.addr.2022.114344] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Photodynamic nanomedicines have significantly enhanced the therapeutic efficacy of photosensitizers (PSs) by overcoming critical limitations of PSs such as poor water solubility and low tumor accumulation. Furthermore, functional photodynamic nanomedicines have enabled overcoming oxygen depletion during photodynamic therapy (PDT) and tissue light penetration limitation by supplying oxygen or upconverting light in targeted tumor tissues, resulting in providing the potential to overcome biological therapeutic barriers of PDT. Nevertheless, their localized therapeutic effects still remain a huddle for the effective treatment of metastatic- or recurrent tumors. Recently, newly designed photodynamic nanomedicines and their combination chemo- or immune checkpoint inhibitor therapy enable the systemic treatment of various metastatic tumors by eliciting antitumor immune responses via immunogenic cell death (ICD). This review introduces recent advances in photodynamic nanomedicines and their applications, focusing on overcoming current limitations. Finally, the challenges and future perspectives of the clinical translation of photodynamic nanomedicines in cancer PDT are discussed.
Collapse
Affiliation(s)
- Jiwoong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
11
|
Jing M, Han G, Li Y, Zong W, Liu R. Cellular and molecular responses of earthworm coelomocytes and antioxidant enzymes to naphthalene and a major metabolite (1-naphthol). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
He SF, Liao JX, Huang MY, Zhang YQ, Zou YM, Wu CL, Lin WY, Chen JX, Sun J. Rhenium-guanidine complex as photosensitizer: trigger HeLa cell apoptosis through death receptor-mediated, mitochondria-mediated and cell cycle arrest pathways. Metallomics 2022; 14:6527583. [PMID: 35150263 DOI: 10.1093/mtomcs/mfac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
During the last decades, growing evidence indicates that the photodynamic antitumor activity of transition metal complexes, and Re(I) compounds are potential candidates for photodynamic therapy (PDT). This study reports the synthesis, characterization, and anti-tumor activity of three new Re(I)-guadinium complexes. Cytotoxicity tests reveal that complex Re1 increased cytotoxicity by 145-fold from IC50 > 180 μM in the dark to 1.3 ± 0.7 μM following 10 min of light irradiation (425 nm) in HeLa cells. Further, the mechanism by which Re1 induces apoptosis in the presence or absence of light irradiation was investigated, and results indicate that cell death was caused through different pathways. Upon irradiation, Re1 first accumulates on the cell membrane and interacts with death receptors to activate the extrinsic death receptor-mediated signaling pathway, then is transported into the cell cytoplasm. Most of the intracellular Re1 locates within mitochondria, improving the ROS level, and decreasing MMP and ATP levels, and inducing the activation of caspase-9 and, thus, apoptosis. Subsequently, the residual Re1 can translocate into the cell nucleus, and activates the p53 pathway, causing cell-cycle arrest and eventually cell death.
Collapse
Affiliation(s)
- Shu-Fen He
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.,Department of Pharmacy, Dongguan Peaple's Hospital, Dongguan, 523059, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yu-Qing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yi-Min Zou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Ci-Ling Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Wen-Yuan Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
13
|
In vitro assessment of synergistic effects in combinations of a temoporfin-based photodynamic therapy with glutathione peroxidase 1 inhibitors. Photodiagnosis Photodyn Ther 2021; 36:102478. [PMID: 34375776 DOI: 10.1016/j.pdpdt.2021.102478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Due to an increased elimination of reactive oxygen species (ROS), in particular hydrogen peroxide (H2O2), overexpression of glutathione peroxidase 1 (GPX1) can lead to an attenuation of apoptosis and development of resistance in cancer cells, thereby promoting tumor cell survival. Consequently, GPX1 inhibitors have the potential to be used in cancer therapy as they support oxidative stress in cancer cells. Similarly, photodynamic therapy (PDT) induces oxidative stress in cancer cells by the formation of ROS upon illumination. Thus, both methods of treatment might act in synergy when used in combination. METHODS To investigate this hypothesis, combinations of the known GPX1 inhibitors 9-chloro-6-ethyl-6H-[1,2,3,4,5]pentathiepino[6,7-b]indole (CEPI) or mercaptosuccinic acid (MSA) with PDT induced by the photosensitizer (PS) temoporfin (5,10,15,20-tetra(m-hydroxyphenyl)chlorin, mTHPC) were studied in vitro. This new combinatory approach was intended to accumulate ROS formed during PDT via blockage of GPX1-catalyzed H2O2 degradation, and thus to enhance PDT-induced phototoxicity. Five human cancer cell lines from tumor origins treatable with PDT were utilized to investigate ROS generation, apoptosis induction, and cell cycle distribution. RESULTS Synergy was identified with both GPX1 inhibitors, but not in all cell lines. ROS levels were increased after combined treatment with mTHPC and CEPI, but not MSA, in some cell lines, indicating that oxidative stress and ROS accumulation were enhanced by CEPI. Surprisingly, enhanced apoptosis induction was also observed with MSA afterwards, suggesting that other pathways contributed to the initiation of apoptosis. Cell cycle analysis confirmed apoptosis induction via the detection of DNA fragmentation. CONCLUSION A combination of GPX1 inhibitors with mTHPC-PDT has the potential to generate synergistic effects and to increase overall phototoxicity, but the success of this combination approach was dependent on cancer type, and even antagonistic effects can occur.
Collapse
|
14
|
Kessel D. Paraptosis after ER Photodamage Initiated by m-tetra(hydroxyphenyl) Chlorin. Photochem Photobiol 2021; 97:1097-1100. [PMID: 33934367 DOI: 10.1111/php.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Two cell lines, A549 (human-derived nonsmall-cell lung cancer) and 1c1c7 (mouse hepatoma), were photosensitized with m-THPC and irradiated under LD90 conditions. After 4 h, a pattern of cytoplasmic vacuoles had formed consistent with the initiation of paraptosis. After irradiation, there was no detectable loss of the mitochondrial membrane potential indicating no significant photodamage to mitochondria. We did, however, observe localization of m-THPC in the endoplasmic reticulum (ER), as indicated by fluorescence microscopy. Subsequent ER perturbation is known to result in initiation of paraptosis, another pathway to cell death. While an apoptotic response to m-THPC has been reported, the ability to target ER and induce paraptosis could explain the efficacy of this agent which could therefore eradicate cell types with an impaired apoptotic response.
Collapse
Affiliation(s)
- David Kessel
- Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
15
|
Lysosome-targeted photodynamic treatment induces primary keratinocyte differentiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 218:112183. [PMID: 33831753 DOI: 10.1016/j.jphotobiol.2021.112183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy is an attractive technique for various skin tumors and non-cancerous skin lesions. However, while the aim of photodynamic therapy is to target and damage only the malignant cells, it unavoidably affects some of the healthy cells surrounding the tumor as well. However, data on the effects of PDT to normal cells are scarce, and the characterization of the pathways activated after the photodamage of normal cells may help to improve clinical photodynamic therapy. In our study, primary human epidermal keratinocytes were used to evaluate photodynamic treatment effects of photosensitizers with different subcellular localization. We compared the response of keratinocytes to lysosomal photodamage induced by phthalocyanines, aluminum phthalocyanine disulfonate (AlPcS2a) or aluminum phthalocyanine tetrasulfonate (AlPcS4), and cellular membrane photodamage by m-tetra(3-hydroxyphenyl)-chlorin (mTHPC). Our data showed that mTHPC-PDT promoted autophagic flux, whereas lysosomal photodamage induced by aluminum phthalocyanines evoked differentiation and apoptosis. Photodamage by AlPcS2a, which is targeted to lysosomal membranes, induced keratinocyte differentiation and apoptosis more efficiently than AlPcS4, which is targeted to lysosomal lumen. Computational analysis of the interplay between these molecular pathways revealed that keratin 10 is the coordinating molecular hub of primary keratinocyte differentiation, apoptosis and autophagy.
Collapse
|
16
|
Liu XY, Wang JQ, Ashby CR, Zeng L, Fan YF, Chen ZS. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov Today 2021; 26:1284-1292. [PMID: 33549529 DOI: 10.1016/j.drudis.2021.01.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs) have been shown to be useful as carriers of various anticancer drugs as well as diagnosis platforms. In this review, we discuss the synthesis and physiochemical properties of AuNPs. We also highlight the photothermal and photodynamic properties of AuNPs and relevant applications in therapeutic studies. Furthermore, we review the applications of AuNPs in cancer treatment as and their underlying anticancer mechanisms in multiple types of cancer.
Collapse
Affiliation(s)
- Xin-Yu Liu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA; Precision Medicine Center, Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA; Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| |
Collapse
|
17
|
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front Oncol 2021; 10:610472. [PMID: 33552982 PMCID: PMC7855851 DOI: 10.3389/fonc.2020.610472] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered an age-related disease that, over the next 10 years, will become the most prevalent health problem worldwide. Although cancer therapy has remarkably improved in the last few decades, novel treatment concepts are needed to defeat this disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several types of cancer. Over the past three decades, new light sources and photosensitizers (PS) have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to explain the main biochemical routes needed to trigger regulated cell death mechanisms, affecting, considerably, the scope of the PDT. Although autophagy modulation is being raised as an interesting strategy to be used in cancer therapy, the main aspects referring to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive. Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to cope with the photo-induced stress and to survive. Moreover, other underlying molecular mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the paradigm about the PDT-regulated cell death mechanisms that involve autophagic impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor cells. Thereby, this review provides insights into the mechanisms by which PDT can be used to modulate autophagy and emphasizes how this field represents a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Waleska K Martins
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Renata Belotto
- Perola Byington Hospital Gynecology - Lasertherapy Clinical Research Department, São Paulo, Brazil
| | - Maryana N Silva
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maynne D Suriani
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tayná S Lavor
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Tayana M Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
18
|
Xue J, Gruber F, Tschachler E, Zhao Y. Crosstalk between oxidative stress, autophagy and apoptosis in hemoporfin photodynamic therapy treated human umbilical vein endothelial cells. Photodiagnosis Photodyn Ther 2020; 33:102137. [PMID: 33307232 DOI: 10.1016/j.pdpdt.2020.102137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) provides a treatment for port-wine stain (PWS) using hemoporfin (hematoporphyrin monomethyl ether, HMME), a novel photosensitizer, reporting better efficacy and lower recurrence rate. This study investigated the effects of HMME-PDT on human umbilical vein endothelial cells (HUVECs) as well as underlying mechanisms. METHODS Cell proliferation ability was measured by CCK8 assay and cell apoptosis was determined by TUNEL assay and Western blot analysis. Confocal fluorescence microscopy monitoring RFP-GFP-LC3 transfected HUVECs and Western blot analysis were used to evaluate autophagy. 3-Methyladenine (3-MA), Z-VAD-FMK, N-acetylcysteine (NAC) were used for inhibitor studies. RESULTS HMME-PDT decreased cell proliferation ability in an HMME concentration and light dose-dependent manner. Oxidative stress played an important role in HMME-PDT induced cell apoptosis and autophagy in HUVECs. Pretreatment with Z-VAD-FMK, the inhibitor of apoptosis, enhanced HMME-PDT induced autophagy. 3-MA, the suppressor of autophagy, significantly increased HMME-PDT induced apoptosis rates. CONCLUSIONS Our study demonstrated that HMME-PDT induced both apoptosis and autophagy in HUVECs via oxidative stress. Our data suggested that HMME-PDT- induced autophagy was able to prevent apoptotic cell death of HUVECs and rendered them more resistant to HMME-PDT induced toxicity.
Collapse
Affiliation(s)
- Jingwen Xue
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Yi Zhao
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| |
Collapse
|
19
|
Cupido-Sánchez MG, Herrera-González NE, Mendoza CCB, Hernández MLM, Ramón-Gallegos E. In silico analysis of the association of hsa-miR-16 expression and cell survival in MDA-MB-231 breast cancer cells subjected to photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 33:102106. [PMID: 33217568 DOI: 10.1016/j.pdpdt.2020.102106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Breast cancer is the most common malignancy effecting women, and the triple-negative breast cancer (TNBC) subtype is particularly aggressive. This study aimed to evaluate the differential expression pattern of microRNAs (miRNAs) between untreated MDA-MB-231 cells (TNBC cell model) and those that survived photodynamic therapy (PDT) to gain insights into cell survival mechanisms. METHODS Two PDT cycles were applied to MDA-MB-231 cells, using δ-aminolevulinic acid (ALA) followed by laser light at 635 nm. RNA was obtained from cells surviving PDT and untreated cells. The miRNAs expression profile was analyzed to detect the differences between the two groups. The potential target network of hsa-miR-16 was examined in silico with the integrative database Ingenuity® Pathway Analysis software. RESULTS After the first and second PDT cycles, 17.8% and 49.6% of the MDA-MB-231 cells were viable. Microarray profiling of miRNAs showed decreased hsa-miR-16 expression (p < 0.05) in MDA-MB-231 cells surviving PDT when compared to the control cells. The predicted downstream targets of hsa-miR-16 were: 1) tumor suppressor protein 53; 2) molecules related to the cell cycle, such as cyclin D1, D3, and E1, and checkpoint kinase 1; 3) cell proliferation molecules, including fibroblast growth factor 1, 2 and 7 and fibroblast growth factor receptor 1; and 4) apoptosis-related molecules, consisting of BCL-2, B-cell leukemia/lymphoma 2, caspase 3, and cytochrome c. CONCLUSIONS The differential expression of hsa-miR-16 between untreated MDA-MB-231 cells and those surviving PDT has not been previously reported. There was a lower expression of hsa-miR-16 in treated cells, which probably altered its downstream target network. In silico analysis predicted, a network related to the cell cycle, proliferation and apoptosis. These results are congruent with previous descriptions of hsa-miR-16 as a tumor suppressor and suggest that the treated population has increased their capacity to survive.
Collapse
Affiliation(s)
- María Guadalupe Cupido-Sánchez
- Molecular Oncology Lab, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, 11340, Ciudad de México, Mexico.
| | - Norma Estela Herrera-González
- Molecular Oncology Lab, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, 11340, Ciudad de México, Mexico.
| | - Columba Citlalli Barrera Mendoza
- Environmental Cytopathology Lab, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Wilfrido Massieu, Esq. Cda. Manuel Stampa Zacatenco, Gustavo A. Madero, 07736, Ciudad de México, Mexico.
| | - María Luisa Morales Hernández
- Environmental Cytopathology Lab, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Wilfrido Massieu, Esq. Cda. Manuel Stampa Zacatenco, Gustavo A. Madero, 07736, Ciudad de México, Mexico.
| | - Eva Ramón-Gallegos
- Environmental Cytopathology Lab, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Wilfrido Massieu, Esq. Cda. Manuel Stampa Zacatenco, Gustavo A. Madero, 07736, Ciudad de México, Mexico.
| |
Collapse
|
20
|
Photodynamic Therapy (PDT) in Oncology. Cancers (Basel) 2020; 12:cancers12113341. [PMID: 33198063 PMCID: PMC7698223 DOI: 10.3390/cancers12113341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The issue is focused on Photodynamic Therapy (PDT), which is a minimally invasive therapeutic modality approved for treatment of several types of cancer and non-oncological disorders [...].
Collapse
|
21
|
Miyata Y, Mukae Y, Harada J, Matsuda T, Mitsunari K, Matsuo T, Ohba K, Sakai H. Pathological and Pharmacological Roles of Mitochondrial Reactive Oxygen Species in Malignant Neoplasms: Therapies Involving Chemical Compounds, Natural Products, and Photosensitizers. Molecules 2020; 25:E5252. [PMID: 33187225 PMCID: PMC7697499 DOI: 10.3390/molecules25225252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an important role in cellular processes. Consequently, oxidative stress also affects etiology, progression, and response to therapeutics in various pathological conditions including malignant tumors. Oxidative stress and associated outcomes are often brought about by excessive generation of reactive oxygen species (ROS). Accumulation of ROS occurs due to dysregulation of homeostasis in an otherwise strictly controlled physiological condition. In fact, intracellular ROS levels are closely associated with the pathological status and outcome of numerous diseases. Notably, mitochondria are recognized as the critical regulator and primary source of ROS. Damage to mitochondria increases mitochondrial ROS (mROS) production, which leads to an increased level of total intracellular ROS. However, intracellular ROS level may not always reflect mROS levels, as ROS is not only produced by mitochondria but also by other organelles such as endoplasmic reticulum and peroxisomes. Thus, an evaluation of mROS would help us to recognize the biological and pathological characteristics and predictive markers of malignant tumors and develop efficient treatment strategies. In this review, we describe the pathological significance of mROS in malignant neoplasms. In particular, we show the association of mROS-related signaling in the molecular mechanisms of chemically synthesized and natural chemotherapeutic agents and photodynamic therapy.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (Y.M.); (J.H.); (T.M.); (K.M.); (T.M.); (K.O.); (H.S.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Song C, Xu W, Wu H, Wang X, Gong Q, Liu C, Liu J, Zhou L. Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway. Cell Death Dis 2020; 11:938. [PMID: 33130826 PMCID: PMC7603522 DOI: 10.1038/s41419-020-03136-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Evidence has shown that m-THPC and verteporfin (VP) are promising sensitizers in photodynamic therapy (PDT). In addition, autophagy can act as a tumor suppressor or a tumor promoter depending on the photosensitizer (PS) and the cancer cell type. However, the role of autophagy in m-THPC- and VP-mediated PDT in in vitro and in vivo models of human colorectal cancer (CRC) has not been reported. In this study, m-THPC-PDT or VP-PDT exhibited significant phototoxicity, inhibited proliferation, and induced the generation of large amounts of reactive oxygen species (ROS) in CRC cells. From immunoblotting, fluorescence image analysis, and transmission electron microscopy, we found extensive autophagic activation induced by ROS in cells. In addition, m-THPC-PDT or VP-PDT treatment significantly induced apoptosis in CRC cells. Interestingly, the inhibition of m-THPC-PDT-induced autophagy by knockdown of ATG5 or ATG7 substantially inhibited the apoptosis of CRC cells. Moreover, m-THPC-PDT treatment inhibited tumorigenesis of subcutaneous HCT116 xenografts. Meanwhile, antioxidant treatment markedly inhibited autophagy and apoptosis induced by PDT in CRC cells by inactivating JNK signaling. In conclusion, inhibition of autophagy can remarkably alleviate PDT-mediated anticancer efficiency in CRC cells via inactivation of the ROS/JNK signaling pathway. Our study provides evidence for the therapeutic application of m-THPC and VP in CRC.
Collapse
Affiliation(s)
- Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Hongkun Wu
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Qianyi Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Chang Liu
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China.
| | - Lin Zhou
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P.R. China.
| |
Collapse
|
24
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
25
|
Wang Y, Wang H, Zhou L, Lu J, Jiang B, Liu C, Guo J. Photodynamic therapy of pancreatic cancer: Where have we come from and where are we going? Photodiagnosis Photodyn Ther 2020; 31:101876. [PMID: 32534246 DOI: 10.1016/j.pdpdt.2020.101876] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) is a potential adjuvant therapy in pancreatic cancer with several advantages. Mechanistically, pancreatic cancer PDT can induce apoptosis and necrosis of pancreatic cancer cells and lead to vascular damage and enhance anti-tumor immune response in tumor tissues. However, limitations of current photosensitizers such as limited penetration depth, poor targeted therapy and inadequate reactive oxygen species (ROS) generation still exist. Recently, several novel photosensitizers have been reported to break through limits in pancreatic cancer PDT. Methods combined with biomedical engineering, materialogy and chemical engineering have been employed to overcome the difficulties and to realize targeted therapy. Preclinical and clinical trials also preliminarily confirmed the technical feasibility and safety of pancreatic cancer PDT. Therefore, PDT may be potential to be used as an effective adjuvant therapy in pancreatic cancer multimodality therapy. This review will give an overview about pancreatic cancer PDT from basic experimental studies, preclinical and clinical application to future direction of pancreatic cancer PDT.
Collapse
Affiliation(s)
- Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hongwei Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chengxi Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
26
|
Nompumelelo Simelane NW, Kruger CA, Abrahamse H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Adv 2020; 10:41560-41576. [PMID: 35516575 PMCID: PMC9058000 DOI: 10.1039/d0ra08617g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review highlights the various photo diagnostic and treatment methods utilized for CRC, over the last seven years.
Collapse
Affiliation(s)
| | - Cherie Ann Kruger
- Laser Research Centre
- Faculty of Health Sciences
- University of Johannesburg
- Johannesburg 2028
- South Africa
| | - Heidi Abrahamse
- Laser Research Centre
- Faculty of Health Sciences
- University of Johannesburg
- Johannesburg 2028
- South Africa
| |
Collapse
|