1
|
Stenman S, Bétrisey S, Vainio P, Huvila J, Lundin M, Linder N, Schmitt A, Perren A, Dettmer MS, Haglund C, Arola J, Lundin J. External validation of a deep learning-based algorithm for detection of tall cells in papillary thyroid carcinoma: A multicenter study. J Pathol Inform 2024; 15:100366. [PMID: 38425542 PMCID: PMC10901856 DOI: 10.1016/j.jpi.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The tall cell subtype (TC-PTC) is an aggressive subtype of papillary thyroid carcinoma (PTC). The TC-PTC is defined as a PTC comprising at least 30% epithelial cells that are three times as tall as they are wide. In practice, this definition is difficult to adhere to, resulting in high inter-observer variability. In this multicenter study, we validated a previously trained deep learning (DL)-based algorithm for detection of tall cells on 160 externally collected hematoxylin and eosin (HE)-stained PTC whole-slide images. In a test set of 360 manual annotations of regions of interest from 18 separate tissue sections in the external dataset, the DL-based algorithm detected TCs with a sensitivity of 90.6% and a specificity of 88.5%. The DL algorithm detected non-TC areas with a sensitivity of 81.6% and a specificity of 92.9%. In the validation datasets, 20% and 30% TC thresholds correlated with a significantly shorter relapse-free survival. In conclusion, the DL algorithm detected TCs in unseen, external scanned HE tissue slides with high sensitivity and specificity without any retraining.
Collapse
Affiliation(s)
- Sebastian Stenman
- Institute for Molecular Medicine Finland – FIMM, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 3C, 000290 HUS Helsinki, Finland
- Department of Surgery, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Sylvain Bétrisey
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| | - Paula Vainio
- Department of Pathology, University of Turku, Turku University Hospital, Kiinamyllykatu 10, 20520 Turku, Finland
| | - Jutta Huvila
- Department of Pathology, University of Turku, Turku University Hospital, Kiinamyllykatu 10, 20520 Turku, Finland
| | - Mikael Lundin
- Institute for Molecular Medicine Finland – FIMM, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Nina Linder
- Institute for Molecular Medicine Finland – FIMM, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- Institute of Pathology, Klinikum Stuttgart, Kriegsbergstraße 60, 70174 Stuttgart, Germany
| | - Anja Schmitt
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| | - Matthias S. Dettmer
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
- The Global Health & Migration Department of Women’s and Children’s Health, Uppsala University, 75185 Uppsala, Sweden
| | - Caj Haglund
- Department of Surgery, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Johanna Arola
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 3C, 000290 HUS Helsinki, Finland
| | - Johan Lundin
- Institute for Molecular Medicine Finland – FIMM, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- Department of Global Public Health, Karolinska Institutet, Norrbackagatan 4, 17176 Stockholm, Sweden
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
2
|
Wang Y, Cen A, Yang Y, Ye H, Li J, Liu S, Zhao L. miR-181a, delivered by hypoxic PTC-secreted exosomes, inhibits DACT2 by downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:610-621. [PMID: 33898109 PMCID: PMC8054101 DOI: 10.1016/j.omtn.2021.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, and angiogenesis plays critical roles in its recurrence and metastasis. In this study, we investigated the effects of hypoxia-induced exosomal microRNA-181 (miR-181a) from PTC on tumor growth and angiogenesis. Thyroid-cancer-related differentially expressed miR-181a was identified by microarray-based analysis in the Gene Expression Omnibus (GEO) database. We validated that miR-181a was highly expressed in PTC cells and even more so in cells cultured under hypoxic conditions, which also augmented exosome secretion from PTC cells. Exosomes extracted from PTC cells with manipulated miR-181a and mixed-lineage leukemia 3 (MLL3) were subjected to normoxic or hypoxic conditions. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-181a inhibitor/mimic or small interfering RNA (siRNA)-MLL3 or treated with exosomes from hypoxic PTC cells. Hypoxic exosomal miR-181a delivery promoted proliferation and capillary-like network formation in HUVECs. Mechanistically, miR-181a targeted and inhibited MLL3. Furthermore, miR-181a downregulated DACT2 and upregulated YAP and vascular endothelial growth factor (VEGF). Further, hypoxic exosomal miR-181a induced angiogenesis and tumor growth in vivo, which was reversed by hypoxic exosomal miR-181a inhibitor. In conclusion, exosomal miR-181a from hypoxic PTC cells promotes tumor angiogenesis and growth through MLL3 and DACT2 downregulation, as well as VEGF upregulation.
Collapse
Affiliation(s)
- Yingxue Wang
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Aiying Cen
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Yuxian Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Huilin Ye
- Department of Hepatopancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou 510120, P.R. China
| | - Jiaying Li
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Shiliang Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Lei Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| |
Collapse
|
3
|
MicroRNA-4325 Suppresses Cell Progression in Hepatocellular Carcinoma via GATA-Binding Protein 6. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6616982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
MicroRNAs (miRs) are regulators of the formation and development of hepatocellular carcinoma (HCC). The biological role of miR-4325 in HCC has yet to be determined. This study is aimed at dissecting the role of miR-4325 in HCC and the underlying mechanism. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-4325 expression in HCC tissue specimens and cells. Cell proliferation, migration, and invasion were assessed by using the MTT assay and Transwell assay, respectively. The miR-4325 target was predicted based on bioinformatics analysis and validated using the dual-luciferase reporter assay. Rescue experiments in the cells were utilized to functionally characterize the downstream molecular targets of miR-4325. We observed that miR-4325 expression levels were significantly reduced in both HCC tissue specimens and cell lines. Meanwhile, a lower miR-4325 level was associated with a poorer prognosis. Gain and loss of function assays revealed that miR-4325 markedly downregulated HCC cell growth, migration, and invasion. Moreover, we identified GATA-binding protein 6 (GATA6) as a miR-4325 target and found that GATA6 was abnormally expressed in HCC. Rescue assays demonstrated that the regulatory function of miR-4325 in HCC was mediated by GATA6. Taken together, miR-4325 suppresses HCC cell growth, migration, and invasion by targeting GATA6, suggesting that miR-4325 may potentially serve as a novel therapeutic target for HCC.
Collapse
|
4
|
Sun W, Yin D. Long noncoding RNA CASC7 inhibits the proliferation and migration of papillary thyroid cancer cells by inhibiting miR-34a-5p. J Physiol Sci 2021; 71:9. [PMID: 33706708 PMCID: PMC10718045 DOI: 10.1186/s12576-021-00793-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/11/2021] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) play an essential role in the progression of papillary thyroid cancer (PTC). However, the expression and function of lncRNA cancer susceptibility candidate 7 (CASC7) in PTC remain unknown. The purpose of this study was to investigate the role and molecular mechanism of CASC7 in regulating PTC cell behavior. The expression of CASC7, miR-34a-5p, and tumor protein P73 (TP73) was determined by qRT-PCR and western blot. Cell proliferation was examined by MTT assay. Cell apoptosis was assessed by flow cytometry following Annexin V and PI staining. Cell migration was determined by Transwell migration assay. The interaction between miR-34a-5p and CASC7 or TP73 was examined by luciferase reporter assay. CASC7 and TP73 expression were significantly lower, whereas miR-34a-5p expression was higher in PTC tissues than the adjacent normal tissues. Furthermore, CASC7 overexpression inhibited cell proliferation and migration, whereas facilitated cell apoptosis in human PTC cell lines (K1 and TPC-1). Mechanistically, CASC7 acted as a sponge of miR-34a-5p to upregulate TP73 expression. Moreover, miR-34a-5p mimic transfection could abate the CASC7-regulated PTC cell proliferation, migration, and apoptosis. Collectively, CASC7 inhibited the proliferation and migration of PTC cells by sponging miR-34a-5p to upregulate TP73 expression.
Collapse
Affiliation(s)
- Wencong Sun
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
- Department of Thyroid Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003, Henan, People's Republic of China
- Key Discipline Laboratory of Clinical Medicine of Henan, Daxue Road, Zhengzhou, 450050, Henan, People's Republic of China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Discipline Laboratory of Clinical Medicine of Henan, Daxue Road, Zhengzhou, 450050, Henan, People's Republic of China.
| |
Collapse
|
5
|
Qi T, Rong X, Feng Q, Sun H, Cao H, Yang Y, Feng H, Zhu L, Wang L, Du Q. Somatic Mutation Profiling of Papillary Thyroid Carcinomas by Whole-exome Sequencing and Its Relationship with Clinical Characteristics. Int J Med Sci 2021; 18:2532-2544. [PMID: 34104084 PMCID: PMC8176168 DOI: 10.7150/ijms.50916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/16/2021] [Indexed: 01/18/2023] Open
Abstract
The incidence of papillary thyroid carcinomas (PTCs) has increased rapidly during the past several decades. Until now, the mechanisms underlying the tumorigenesis of PTCs have remained largely unknown. Next-generation-sequencing (NGS) provides new ways to investigate the molecular pathogenesis of PTCs. To characterize the somatic alterations associated with PTCs, we performed whole-exome sequencing (WES) of PTCs from 23 Chinese patients. This study revealed somatic mutations in genes with relevant functions for tumorigenesis, such as BRAF, BCR, CREB3L2, DNMT1, IRS2, MSH6, and TP53. We also identified novel somatic gene alterations which may be potentially involved in PTC progression. Gene set enrichment analysis revealed that the cellular response to hormone stimulus, epigenetic modifications, such as protein/histone methylation and protein alkylation, as well as MAPK, PI3K-AKT, and FoxO/mTOR signaling pathways, were significantly altered in the PTCs studied here. Moreover, Protein-Protein Interaction (PPI) network analysis of our mutated gene selection highlighted EP300, KRAS, PTEN, and TP53 as major core genes. The correlation between gene mutations and clinicopathologic features of the PTCs defined by conventional ultrasonography (US) and contrast-enhanced ultrasonography (CEUS) were assessed. These analyses established significant associations between subgroups of mutations and respectively taller-than-wide, calcified, and peak time iso- or hypo-enhanced and metastatic PTCs. In conclusion, our study supplements the genomic landscape of PTCs and identifies new actionable target candidates and clinicopathology-associated mutations. Extension of this study to larger cohorts will help define comprehensive genomic aberrations in PTCs and validate target candidates. These new targets may open methods of individualized treatments adapted to the clinicopathologic specifics of the patients.
Collapse
Affiliation(s)
- Tingyue Qi
- Department of Ultrasound, Medical Imaging Center, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China.,Department of Critical Care Medicine, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Xin Rong
- Department of Ultrasound, Medical Imaging Center, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Qingling Feng
- Department of Critical Care Medicine, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Hongguang Sun
- Department of Ultrasound, Medical Imaging Center, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Haiyan Cao
- Department of Ultrasound, Medical Imaging Center, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Yan Yang
- Department of Ultrasound, Medical Imaging Center, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Hao Feng
- Department of Ultrasound, Medical Imaging Center, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Linhai Zhu
- Department of Thyroid and Breast Surgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Lei Wang
- Department of Pathology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Qiu Du
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China.,Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou 225012, Yangzhou University, China
| |
Collapse
|
6
|
Puxeddu E, Tallini G, Vanni R. What Is New in Thyroid Cancer: The Special Issue of the Journal Cancers. Cancers (Basel) 2020; 12:E3036. [PMID: 33086491 PMCID: PMC7603182 DOI: 10.3390/cancers12103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
The incidence of thyroid cancer has increased over the past 3 to 4 decades. Nonetheless, the mortality from thyroid cancer has remained stable. The thyroid gland may develop nodules encompassing several types of cell proliferation, from frankly benign to very aggressive forms with many intermediate challenging variants. For this reason, there is growing interest in evaluating thyroid nodules from many points of view, from the clinical to the molecular aspects, in the search for innovative diagnostic and prognostic parameters. The aim of this Special Issue was to provide an overview of recent developments in understanding the biology and molecular oncology of thyroid tumors of follicular cell derivation and their repercussions on the diagnosis, prognosis, and therapy. The contributions of many experts in the field made up a Special Issue of Cancers journal, that focusing on different aspects, including mechanistic and functional facets, gives the status of art of clinical and biological perspectives of thyroid cancer.
Collapse
Affiliation(s)
- Efisio Puxeddu
- Department of Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40126 Bologna, Italy;
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
7
|
Ji B, Chen L, Cai Q, Guo Q, Chen Z, He D. Identification of an 8-miRNA signature as a potential prognostic biomarker for glioma. PeerJ 2020; 8:e9943. [PMID: 33062427 PMCID: PMC7528815 DOI: 10.7717/peerj.9943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background Glioma is the most common form of primary malignant intracranial tumor. Methods In the current study, miRNA matrix were obtained from the Chinese Glioma Genome Atlas (CGGA), and then univariate Cox regression analysis and Lasso regression analysis were utilized to select candidate miRNAs and multivariate Cox regression analysis was applied to establish a miRNA signature for predicting overall survival (OS) of glioma. The signature was assessed with the area under the curve (AUC) of the receiver operating characteristic curve (ROC) and validated by data from Gene Expression Omnibus (GEO). Results Eight miRNAs (miR-1246, miR-148a, miR-150, miR-196a, miR-338-3p, miR-342-5p, miR-548h and miR-645) were included in the miRNA signature. The AUC of ROC analysis for 1- and 3-year OS in the CGGA dataset was 0.747 and 0.905, respectively. In the GEO dataset, The AUC for 1- and 3-year was 0.736 and 0.809, respectively. The AUC in both the CGGA and GEO datasets was similar to that based on WHO 2007 classification (0.736 and 0.799) and WHO 2016 classification (0.663 and 0.807). Additionally, Kaplan–Meier plot revealed that high-risk score patients had a poorer clinical outcome. Multivariate Cox regression analysis suggested that the miRNA signature was an independent prognosis-related factor [HR: 6.579, 95% CI [1.227−35.268], p = 0.028]. Conclusion On the whole, in the present study, based on eight miRNAs, a novel prognostic signature was developed for predicting the 1- and 3- year survival rate in glioma. The results may be conducive to predict the precise prognosis of glioma and to elucidate the underlying molecular mechanisms. However, further experimental researches of miRNAs are needed to validate the findings of this study.
Collapse
Affiliation(s)
- Baowei Ji
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Lihua Chen
- Department of Anesthesiology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Qiang Cai
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Qiao Guo
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhibiao Chen
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Du He
- Department of Oncology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| |
Collapse
|
8
|
Suh S, Goh TS, Kim YH, Oh SO, Pak K, Seok JW, Kim IJ. Development and Validation of a Risk Scoring System Derived from Meta-Analyses of Papillary Thyroid Cancer. Endocrinol Metab (Seoul) 2020; 35:435-442. [PMID: 32615728 PMCID: PMC7386116 DOI: 10.3803/enm.2020.35.2.435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aim of this study was to develop a scoring system to stratify the risk of papillary thyroid cancer (PTC) and to select the proper management. METHODS We performed a systematic search of MEDLINE and Embase. Data regarding patients' prognoses were obtained from the included studies. Odds ratios (ORs) with statistical significance were extracted from the publications. To generate a risk scoring system (RSS), ORs were summed (RSS1), and summed after natural-logarithmic transformation (RSS2). RSS1 and RSS2 were compared to the eighth edition of the American Joint Committee on Cancer (AJCC) staging system and the 2015 American Thyroid Association (ATA) guidelines for thyroid nodules and differentiated thyroid carcinoma. RESULTS Five meta-analyses were eligible for inclusion in the study. Eight variables (sex, tumour size, extrathyroidal extension, BRAF mutation, TERT mutation, histologic subtype, lymph node metastasis, and distant metastasis) were included. RSS1 was the best of the analysed models. CONCLUSION We developed and validated a new RSS derived from previous meta-analyses for patients with PTC. This RSS seems to be superior to previously published systems.
Collapse
Affiliation(s)
- Sunghwan Suh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan,
Korea
| | - Tae Sik Goh
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan,
Korea
| | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan,
Korea
| | - Sae-Ock Oh
- Department of Anatomy, Pusan National University School of Medicine, Yangsan,
Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan,
Korea
| | - Ju Won Seok
- Department of Nuclear Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan,
Korea
| |
Collapse
|
9
|
Fuziwara CS, Kimura ET. How does microRNA modulate Wnt/β-catenin signaling in thyroid oncogenesis? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:266. [PMID: 32355710 PMCID: PMC7186644 DOI: 10.21037/atm.2020.02.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Gao Y, Wang F, Zhang L, Kang M, Zhu L, Xu L, Liang W, Zhang W. LINC00311 promotes cancer stem-like properties by targeting miR-330-5p/TLR4 pathway in human papillary thyroid cancer. Cancer Med 2020; 9:1515-1528. [PMID: 31894666 PMCID: PMC7013059 DOI: 10.1002/cam4.2815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/17/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Growing evidence has suggested that long noncoding RNAs (lncRNAs) play an essential role in the progression of papillary thyroid cancer (PTC). LncRNA LINC00311 was found to be able to regulate many cellular process in several diseases. However, the function and regulatory mechanism of LINC00311 remains unclear in PTC. In the present study, the results showed that the expression of LINC00311 was upregulated in PTC tissues and cells. Furthermore, knockdown of LINC00311 dramatically suppressed spheroid formation, proliferation, migration, and invasion in PTC cells in vitro. Mechanistic investigations revealed that LINC00311 was negatively correlated with the expression of miR‐330‐5p, meanwhile, TLR4 was a direct target of miR‐330‐5p. In addition, rescue assays further determined that LINC00311 contributed to the progression of PTC through regulating TLR4 expression. Taken together, these findings indicated that LINC00311 could promote cancer stem‐like properties by targeting miR‐330‐5p/TLR4 pathway in PTC.
Collapse
Affiliation(s)
- Yu Gao
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Kang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liyang Zhu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Xu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Liang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|