1
|
Benavente S. Remodeling the tumor microenvironment to overcome treatment resistance in HPV-negative head and neck cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:291-313. [PMID: 37457128 PMCID: PMC10344731 DOI: 10.20517/cdr.2022.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Despite intensive efforts and refined techniques, overall survival in HPV-negative head and neck cancer remains poor. Robust immune priming is required to elicit a strong and durable antitumor immune response in immunologically cold and excluded tumors like HPV-negative head and neck cancer. This review highlights how the tumor microenvironment could be affected by different immune and stromal cell types, weighs the need to integrate metabolic regulation of the tumor microenvironment into cancer treatment strategies and summarizes the emerging clinical applicability of personalized immunotherapeutic strategies in HPV-negative head and neck cancer.
Collapse
Affiliation(s)
- Sergi Benavente
- Correspondence to: Dr. Sergi Benavente, Department of Radiation Oncology, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119, Barcelona 08035, Spain. E-mail:
| |
Collapse
|
2
|
Chi H, Xie X, Yan Y, Peng G, Strohmer DF, Lai G, Zhao S, Xia Z, Tian G. Natural killer cell-related prognosis signature characterizes immune landscape and predicts prognosis of HNSCC. Front Immunol 2022; 13:1018685. [PMID: 36263048 PMCID: PMC9575041 DOI: 10.3389/fimmu.2022.1018685] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC), the most common head and neck cancer, is highly aggressive and heterogeneous, resulting in variable prognoses and immunotherapeutic outcomes. Natural killer (NK) cells play essential roles in malignancies’ development, diagnosis, and prognosis. The purpose of this study was to establish a reliable signature based on genes related to NK cells (NRGs), thus providing a new perspective for assessing immunotherapy response and prognosis of HNSCC patients. Methods In this study, NRGs were used to classify HNSCC from the TCGA-HNSCC and GEO cohorts. The genes were evaluated using univariate cox regression analysis based on the differential analysis of normal and tumor samples in TCGA-HNSCC conducted using the “limma” R package. Thereafter, we built prognostic gene signatures using LASSO-COX analysis. External validation was carried out in the GSE41613 cohort. Immunity analysis based on NRGs was performed via several methods, such as CIBERSORT, and immunotherapy response was evaluated by TIP portal website. Results With the TCGA-HNSCC data, we established a nomogram based on the 17-NRGs signature and a variety of clinicopathological characteristics. The low-risk group exhibited a better effect when it came to immunotherapy. Conclusions 17-NRGs signature and nomograms demonstrate excellent predictive performance and offer new perspectives for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology research.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yingjie Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Zhijia Xia, ; Gang Tian,
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Zhijia Xia, ; Gang Tian,
| |
Collapse
|
3
|
Zhou C, Shen Y, Jin Y, Shen Z, Ye D, Shen Y, Deng H. A novel Pyroptosis-related long non-coding RNA signature for predicting the prognosis and immune landscape of head and neck squamous cell carcinoma. Cancer Med 2022; 11:5097-5112. [PMID: 35567376 PMCID: PMC9761069 DOI: 10.1002/cam4.4819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Pyroptosis plays an essential function in carcinogenesis and the antitumor immune response. Herein, we constructed a pyroptosis-related long noncoding RNA (prLncRNA) signature to predict therapeutic effects and outcomes for head and neck squamous cell carcinoma (HNSCC) patients. METHODS Patients obtained from the TCGA-HNSC project were divided randomly into the training as well as the validation sets at a ratio of 7:3. A novel prognostic prLncRNA signature was constructed from the results of the training set using the least absolute shrinkage and selection operation. The medium value was used as the basis for categorizing all HNSCC patients into a low- or high-risk cohort. Cox regression and Kaplan-Meier (KM) survival analyses were executed to estimate the prognostic value. We also evaluated the functional enrichment, tumor microenvironment, immune cell infiltration, and the sensitivity to chemotherapy and immunotherapy between the high- and low-risk cohorts. RESULTS Nineteen prognostic prlncRNAs were identified to establish the prognostic signature. Multivariate Cox regression and KM survival analyses confirmed that this prlncRNA signature might serve as an independent prognostic indicator of patient survival, which was subsequently confirmed using a validating dataset. Multiple ROC curves indicated the prlncRNA signature presented a more predictive power than clinicopathological factors (age, sex, tumor grade, and tumor stage). GO, KEGG, and GSEA enrichment analysis disclosed several immune-related pathways which appeared to be enhanced in the low-risk cohort. ESTIMATE, CIBERSORT, and ssGSEA algorithms indicated considerable differences in the tumor microenvironment and immune cell infiltration in the low- and high-risk cohorts. Furthermore, the low-risk cohort was predicted to achieve a better response to immunotherapeutic drugs, while in contrast, the high-risk cohort would be more sensitive to chemotherapy drugs. CONCLUSIONS Our findings robustly demonstrate that our constructed prlncRNA signature could serve as an efficient indicator of prognosis, immunotherapy response, and chemosensitivity for HNSCC patients.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Yiming Shen
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Yangli Jin
- Department of UltrasonographyNingbo Yinzhou Second HospitalNingboChina
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Dong Ye
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck SurgeryNingbo Medical Center Lihuili HospitalNingboChina,Department of Otorhinolaryngology Head and Neck SurgeryLihuili Hospital affiliated to Ningbo UniversityNingboChina
| |
Collapse
|
4
|
Diagnostics of HNSCC Patients: An Analysis of Cell Lines and Patient-Derived Xenograft Models for Personalized Therapeutical Medicine. Diagnostics (Basel) 2022; 12:diagnostics12051071. [PMID: 35626227 PMCID: PMC9139588 DOI: 10.3390/diagnostics12051071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are very frequent worldwide, and smoking and chronic alcohol use are recognized as the main risk factors. For oropharyngeal cancers, HPV 16 infection is known to be a risk factor as well. By employing next-generation sequencing, both HPV-positive and negative HNSCC patients were detected as positive for PI3K mutation, which was considered an optimal molecular target. We analyzed scientific literature published in the last 5 years regarding the newly available diagnostic platform for targeted therapy of HNSCC HPV+/−, using HNSCC-derived cell lines cultures and HNSCC pdx (patient-derived xenografts). The research results are promising and require optimal implementation in the management of HNSCC patients.
Collapse
|
5
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
6
|
Abreu TR, Biscaia M, Gonçalves N, Fonseca NA, Moreira JN. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:271-299. [PMID: 33543464 DOI: 10.1007/978-3-030-58174-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple studies about tumor biology have revealed the determinant role of the tumor microenvironment in cancer progression, resulting from the dynamic interactions between tumor cells and surrounding stromal cells within the extracellular matrix. This malignant microenvironment highly impacts the efficacy of anticancer nanoparticles by displaying drug resistance mechanisms, as well as intrinsic physical and biochemical barriers, which hamper their intratumoral accumulation and biological activity.Currently, two-dimensional cell cultures are used as the initial screening method in vitro for testing cytotoxic nanocarriers. However, this fails to mimic the tumor heterogeneity, as well as the three-dimensional tumor architecture and pathophysiological barriers, leading to an inaccurate pharmacological evaluation.Biomimetic 3D in vitro tumor models, on the other hand, are emerging as promising tools for more accurately assessing nanoparticle activity, owing to their ability to recapitulate certain features of the tumor microenvironment and thus provide mechanistic insights into nanocarrier intratumoral penetration and diffusion rates.Notwithstanding, in vivo validation of nanomedicines remains irreplaceable at the preclinical stage, and a vast variety of more advanced in vivo tumor models is currently available. Such complex animal models (e.g., genetically engineered mice and patient-derived xenografts) are capable of better predicting nanocarrier clinical efficiency, as they closely resemble the heterogeneity of the human tumor microenvironment.Herein, the development of physiologically more relevant in vitro and in vivo tumor models for the preclinical evaluation of anticancer nanoparticles will be discussed, as well as the current limitations and future challenges in clinical translation.
Collapse
Affiliation(s)
- Teresa R Abreu
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal.,UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Mariana Biscaia
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal
| | - Nélio Gonçalves
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal
| | - Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal.,TREAT U, SA, Parque Industrial de Taveiro, Lote 44, Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, Coimbra, Portugal. .,UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal.
| |
Collapse
|
7
|
Lee TW, Lai A, Harms JK, Singleton DC, Dickson BD, Macann AMJ, Hay MP, Jamieson SMF. Patient-Derived Xenograft and Organoid Models for Precision Medicine Targeting of the Tumour Microenvironment in Head and Neck Cancer. Cancers (Basel) 2020; 12:E3743. [PMID: 33322840 PMCID: PMC7763264 DOI: 10.3390/cancers12123743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Patient survival from head and neck squamous cell carcinoma (HNSCC), the seventh most common cause of cancer, has not markedly improved in recent years despite the approval of targeted therapies and immunotherapy agents. Precision medicine approaches that seek to individualise therapy through the use of predictive biomarkers and stratification strategies offer opportunities to improve therapeutic success in HNSCC. To enable precision medicine of HNSCC, an understanding of the microenvironment that influences tumour growth and response to therapy is required alongside research tools that recapitulate the features of human tumours. In this review, we highlight the importance of the tumour microenvironment in HNSCC, with a focus on tumour hypoxia, and discuss the fidelity of patient-derived xenograft and organoids for modelling human HNSCC and response to therapy. We describe the benefits of patient-derived models over alternative preclinical models and their limitations in clinical relevance and how these impact their utility in precision medicine in HNSCC for the discovery of new therapeutic agents, as well as predictive biomarkers to identify patients' most likely to respond to therapy.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Amy Lai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Julia K. Harms
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Benjamin D. Dickson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Andrew M. J. Macann
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
8
|
Schuch LF, Silveira FM, Wagner VP, Borgato GB, Rocha GZ, Castilho RM, Vargas PA, Martins MD. Head and neck cancer patient-derived xenograft models - A systematic review. Crit Rev Oncol Hematol 2020; 155:103087. [PMID: 32992152 DOI: 10.1016/j.critrevonc.2020.103087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) involve the direct surgical transfer of fresh human tumor samples to immunodeficient mice. This systematic review aimed to identify publications of head and neck cancer PDX (HNC-PDX) models, describing the main methodological characteristics and outcomes. METHODS An electronic search was undertaken in four databases, including publications having used HNC-PDX. Data were analyzed descriptively. RESULTS 63 articles were yielded. The nude mouse was one most commonly animal model used (38.8 %), and squamous cell carcinoma accounted for the majority of HNC-PDX (80.6 %). Tumors were mostly implanted in the flank (86.3 %), and the latency period ranged from 30 to 401 days. The successful rate ranged from 17 % to 100 %. Different drugs and pathways were identified. CONCLUSION HNC-PDX appears to significantly recapitulate the morphology of the original HNC and represents a valuable method in translational research for the assessment of the in vivo effect of novel therapies for HNC.
Collapse
Affiliation(s)
- Lauren F Schuch
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Felipe M Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Vivian P Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Gabriell B Borgato
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Guilherme Z Rocha
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, United States; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Manoela D Martins
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil; Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Kang HN, Kim JH, Park AY, Choi JW, Lim SM, Kim J, Shin EJ, Hong MH, Pyo KH, Yun MR, Kim DH, Lee H, Yoon SO, Kim DH, Park YM, Byeon HK, Jung I, Paik S, Koh YW, Cho BC, Kim HR. Establishment and characterization of patient-derived xenografts as paraclinical models for head and neck cancer. BMC Cancer 2020; 20:316. [PMID: 32293356 PMCID: PMC7160896 DOI: 10.1186/s12885-020-06786-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background We investigated whether head and neck squamous cell carcinoma (HNSCC) patient-derived xenografts (PDXs) reaffirm patient responses to anti-cancer therapeutics. Methods Tumors from HNSCC patients were transplanted into immunodeficient mice and propagated via subsequent implantation. We evaluated established PDXs by histology, genomic profiling, and in vivo anti-cancer efficacy testing to confirm them as the authentic in vivo platform. Results From 62 HNSCCs, 15 (24%) PDXs were established. The primary cancer types were tongue (8), oropharynx (3), hypopharynx (1), ethmoid sinus cancer (1), supraglottic cancer (1), and parotid gland (1); six PDXs (40%) were established from biopsy specimens from advanced HNSCC. PDXs mostly retained donor characteristics and remained stable across passages. PIK3CA (H1047R), HRAS (G12D), and TP53 mutations (H193R, I195T, R248W, R273H, E298X) and EGFR, CCND1, MYC, and PIK3CA amplifications were identified. Using the acquisition method, biopsy showed a significantly higher engraftment rate when compared with that of surgical resection (100% [6/6] vs. 16.1% [9/56], P < 0.001). Specimens obtained from metastatic sites showed a significantly higher engraftment rate than did those from primary sites (100% [9/9] vs. 11.3% [6/53], P < 0.001). Three PDX models from HPV-positive tumors were established, as compared to 12 from HPV-negative (15.8% [3/19] and 27.9% [12/43] respectively, P = 0.311), suggesting that HPV positivity tends to show a low engraftment rate. Drug responses in PDX recapitulated the clinical responses of the matching patients with pan-HER inhibitors and pan-PI3K inhibitor. Conclusions Genetically and clinically annotated HNSCC PDXs could be useful preclinical tools for evaluating biomarkers, therapeutic targets, and new drug discovery.
Collapse
Affiliation(s)
- Han Na Kang
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Jae-Hwan Kim
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - A-Young Park
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Jae Woo Choi
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam-si, South Korea
| | - Jinna Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Joo Shin
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Min Hee Hong
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Kyoung-Ho Pyo
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Ran Yun
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Dong Hwi Kim
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Hanna Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Och Yoon
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Hee Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Hyung Kwon Byeon
- Department of Otolaryngology-Head and Neck Surgery Korea, University College of Medicine, Seoul, South Korea
| | - Inkyung Jung
- Department of Biostatistics and Medical Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Soonmyung Paik
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| | - Byoung Chul Cho
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea. .,Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| | - Hye Ryun Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|