1
|
Kurnit KC, Odunsi K. Harnessing Antitumor Immunity in Ovarian Cancer. Cold Spring Harb Perspect Med 2024; 14:a041336. [PMID: 38621830 PMCID: PMC11610759 DOI: 10.1101/cshperspect.a041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Despite progress in other tumor types, immunotherapy is not yet part of the standard of care treatment for high-grade serous ovarian cancer patients. Although tumor infiltration by T cells is frequently observed in patients with ovarian cancer, clinical responses to immunotherapy remain low. Mechanisms for immune resistance in ovarian cancer have been explored and may provide insight into future approaches to improve response to immunotherapy agents. In this review, we discuss what is known about the immune landscape in ovarian cancer, review the available data for immunotherapy-based strategies in these patients, and provide possible future directions.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Evans ET, Page EF, Choi AS, Shonibare Z, Kahn AG, Arend RC, Mythreye K. Activin levels correlate with lymphocytic infiltration in epithelial ovarian cancer. Cancer Med 2024; 13:e7368. [PMID: 39248018 PMCID: PMC11381957 DOI: 10.1002/cam4.7368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE The TGF-β superfamily member activin, a dimer of the gene products of INHBA and/or INHBB, has been implicated in immune cell maturation and recruitment, but its immune impact within epithelial ovarian cancer (EOC) is not well characterized. We sought to explore differences in activin (INHBA/ Inhibin-βA and INHBB/ Inhibin-βB) between malignant and ovarian tissues at the RNA and protein level and assess the relationship between activin and immune cells in EOC. METHODS Publicly available RNA sequencing data were accessed from GEO (#GSE143897) with normalization and quantification performed via DESeq2. Immune gene expression profile was further explored within the TCGA-OV cohort derived from The Cancer Genome Atlas (TCGA). Immunohistochemical analysis was performed to evaluate activin A and T-cell markers CD8 and FoxP3 at the protein level. ELISA to activin-A was used to assess levels in the ascites of advanced EOC patients. Kaplan-Meier curves were generated to visualize survival outcomes. RESULTS Gene expression levels of components of the activin signaling pathway were elevated within EOC when compared to a benign cohort, with differences in activin type I/II receptor gene profiles identified. Additionally, INHBA gene expression was linked to lymphocytic immune markers in EOC samples. Immunohistochemistry analysis revealed a positive correlation of CD8 and FOXP3 staining with activin A at the protein level in both primary and metastatic epithelial ovarian cancer samples. Furthermore, Activin-A (inhibin-βA) is significantly elevated in EOC patient ascites. CONCLUSION INHBA expression is elevated within EOC, correlating with worse survival, with activin protein levels correlating with specific immune infiltration. Our findings suggest that activin-A may play a role in suppressing anti-tumor immunity in EOC, highlighting its potential as a therapeutic target.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/immunology
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/mortality
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/genetics
- Inhibin-beta Subunits/genetics
- Inhibin-beta Subunits/metabolism
- Activins/metabolism
- Activins/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
Collapse
Affiliation(s)
- Elizabeth T Evans
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Emily F Page
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Alex Seok Choi
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Zainab Shonibare
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Andrea G Kahn
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Rebecca C Arend
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Hamada K, Murakami R, Ueda A, Kashima Y, Miyagawa C, Taki M, Yamanoi K, Yamaguchi K, Hamanishi J, Minamiguchi S, Matsumura N, Mandai M. A Deep Learning-Based Assessment Pipeline for Intraepithelial and Stromal Tumor-Infiltrating Lymphocytes in High-Grade Serous Ovarian Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1272-1284. [PMID: 38537936 DOI: 10.1016/j.ajpath.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Tumor-infiltrating lymphocytes (TILs) are associated with improved survival in patients with epithelial ovarian cancer. However, TIL evaluation has not been used in routine clinical practice because of reproducibility issues. The current study developed two convolutional neural network models to detect TILs and to determine their spatial location in whole slide images, and established a spatial assessment pipeline to objectively quantify intraepithelial and stromal TILs in patients with high-grade serous ovarian carcinoma. The predictions of the established models showed a significant positive correlation with the number of CD8+ T cells and immune gene expressions. Patients with a higher density of intraepithelial TILs had a significantly prolonged overall survival and progression-free survival in multiple cohorts. On the basis of the density of intraepithelial and stromal TILs, patients were classified into three immunophenotypes: immune inflamed, excluded, and desert. The immune-desert subgroup showed the worst prognosis. Gene expression analysis showed that the immune-desert subgroup had lower immune cytolytic activity and T-cell-inflamed gene-expression profile scores, whereas the immune-excluded subgroup had higher expression of interferon-γ and programmed death 1 receptor signaling pathway. The established evaluation method provided detailed and comprehensive quantification of intraepithelial and stromal TILs throughout hematoxylin and eosin-stained slides. It has potential for clinical application for personalized treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiko Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoko Kashima
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chiho Miyagawa
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Gao Z, Kang SW, Erstad D, Azar J, Van Buren G, Fisher W, Sun Z, Rubinstein MP, Lee HS, Camp ER. Pre-treatment inflamed tumor immune microenvironment is associated with FOLFIRINOX response in pancreatic cancer. Front Oncol 2023; 13:1274783. [PMID: 38074633 PMCID: PMC10701674 DOI: 10.3389/fonc.2023.1274783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with limited response to both chemotherapy and immunotherapy. Pre-treatment tumor features within the tumor immune microenvironment (TiME) may influence treatment response. We hypothesized that the pre-treatment TiME composition differs between metastatic and primary lesions and would be associated with response to modified FOLFIRINOX (mFFX) or gemcitabine-based (Gem-based) therapy. Methods Using RNAseq data from a cohort of treatment-naïve, advanced PDAC patients in the COMPASS trial, differential gene expression analysis of key immunomodulatory genes in were analyzed based on multiple parameters including tumor site, response to mFFX, and response to Gem-based treatment. The relative proportions of immune cell infiltration were defined using CIBERSORTx and Dirichlet regression. Results 145 samples were included in the analysis; 83 received mFFX, 62 received Gem-based therapy. Metastatic liver samples had both increased macrophage (1.2 times more, p < 0.05) and increased eosinophil infiltration (1.4 times more, p < 0.05) compared to primary lesion samples. Further analysis of the specific macrophage phenotypes revealed an increased M2 macrophage fraction in the liver samples. The pre-treatment CD8 T-cell, dendritic cell, and neutrophil infiltration of metastatic samples were associated with therapy response to mFFX (p < 0.05), while mast cell infiltration was associated with response to Gem-based therapy (p < 0.05). Multiple immunoinhibitory genes such as ADORA2A, CSF1R, KDR/VEGFR2, LAG3, PDCD1LG2, and TGFB1 and immunostimulatory genes including C10orf54, CXCL12, and TNFSF14/LIGHT were significantly associated with worse survival in patients who received mFFX (p = 0.01). There were no immunomodulatory genes associated with survival in the Gem-based cohort. Discussion Our evidence implies that essential differences in the PDAC TiME exist between primary and metastatic tumors and an inflamed pretreatment TiME is associated with mFFX response. Defining components of the PDAC TiME that influence therapy response will provide opportunities for targeted therapeutic strategies that may need to be accounted for in designing personalized therapy to improve outcomes.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Derek Erstad
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Department of Surgery, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
| | - William Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
| | - Zequn Sun
- Department of Preventative Medicine, Northwestern University Clinical and Translational Sciences Institute, Chicago, IL, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Department of Surgery, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
5
|
Rajtak A, Ostrowska-Leśko M, Żak K, Tarkowski R, Kotarski J, Okła K. Integration of local and systemic immunity in ovarian cancer: Implications for immunotherapy. Front Immunol 2022; 13:1018256. [PMID: 36439144 PMCID: PMC9684707 DOI: 10.3389/fimmu.2022.1018256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Cancer is a disease that induces many local and systemic changes in immunity. The difficult nature of ovarian cancer stems from the lack of characteristic symptoms that contributes to a delayed diagnosis and treatment. Despite the enormous progress in immunotherapy, its efficacy remains limited. The heterogeneity of tumors, lack of diagnostic biomarkers, and complex immune landscape are the main challenges in the treatment of ovarian cancer. Integrative approaches that combine the tumor microenvironment - local immunity - together with periphery - systemic immunity - are urgently needed to improve the understanding of the disease and the efficacy of treatment. In fact, multiparametric analyses are poised to improve our understanding of ovarian tumor immunology. We outline an integrative approach including local and systemic immunity in ovarian cancer. Understanding the nature of both localized and systemic immune responses will be crucial to boosting the efficacy of immunotherapies in ovarian cancer patients.
Collapse
Affiliation(s)
- Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Marta Ostrowska-Leśko
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Klaudia Żak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okła
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Department of Surgery, University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Hudry D, Le Guellec S, Meignan S, Bécourt S, Pasquesoone C, El Hajj H, Martínez-Gómez C, Leblanc É, Narducci F, Ladoire S. Tumor-Infiltrating Lymphocytes (TILs) in Epithelial Ovarian Cancer: Heterogeneity, Prognostic Impact, and Relationship with Immune Checkpoints. Cancers (Basel) 2022; 14:5332. [PMID: 36358750 PMCID: PMC9656626 DOI: 10.3390/cancers14215332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Epithelial ovarian cancers (EOC) are often diagnosed at an advanced stage with carcinomatosis and a poor prognosis. First-line treatment is based on a chemotherapy regimen combining a platinum-based drug and a taxane-based drug along with surgery. More than half of the patients will have concern about a recurrence. To improve the outcomes, new therapeutics are needed, and diverse strategies, such as immunotherapy, are currently being tested in EOC. To better understand the global immune contexture in EOC, several studies have been performed to decipher the landscape of tumor-infiltrating lymphocytes (TILs). CD8+ TILs are usually considered effective antitumor immune effectors that immune checkpoint inhibitors can potentially activate to reject tumor cells. To synthesize the knowledge of TILs in EOC, we conducted a review of studies published in MEDLINE or EMBASE in the last 10 years according to the PRISMA guidelines. The description and role of TILs in EOC prognosis are reviewed from the published data. The links between TILs, DNA repair deficiency, and ICs have been studied. Finally, this review describes the role of TILs in future immunotherapy for EOC.
Collapse
Affiliation(s)
- Delphine Hudry
- Inserm, U1192–Protéomique Réponse Inflammatoire Spectrométrie de Masse–PRISM, Lille University, F-59000 Lille, France
- Department of Gynecologic Oncology, Oscar Lambret Center, F-59000 Lille, France
| | - Solenn Le Guellec
- Department of Gynecologic Oncology, Oscar Lambret Center, F-59000 Lille, France
| | - Samuel Meignan
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille University, F-59000 Lille, France
| | - Stéphanie Bécourt
- Department of Gynecologic Oncology, Oscar Lambret Center, F-59000 Lille, France
| | - Camille Pasquesoone
- Department of Gynecologic Oncology, Oscar Lambret Center, F-59000 Lille, France
| | - Houssein El Hajj
- Department of Gynecologic Oncology, Oscar Lambret Center, F-59000 Lille, France
| | | | - Éric Leblanc
- Inserm, U1192–Protéomique Réponse Inflammatoire Spectrométrie de Masse–PRISM, Lille University, F-59000 Lille, France
- Department of Gynecologic Oncology, Oscar Lambret Center, F-59000 Lille, France
| | - Fabrice Narducci
- Inserm, U1192–Protéomique Réponse Inflammatoire Spectrométrie de Masse–PRISM, Lille University, F-59000 Lille, France
- Department of Gynecologic Oncology, Oscar Lambret Center, F-59000 Lille, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
- INSERM, CRI-866 Faculty of Medicine, F-21000 Dijon, France
| |
Collapse
|
7
|
Russell S, Lim F, Peters PN, Wardell SE, Whitaker R, Chang CY, Previs RA, McDonnell DP. Development and Characterization of a Luciferase Labeled, Syngeneic Murine Model of Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14174219. [PMID: 36077756 PMCID: PMC9454869 DOI: 10.3390/cancers14174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in surgery and targeted therapies, the prognosis for women with high-grade serous ovarian cancer remains poor. Moreover, unlike other cancers, immunotherapy has minimally impacted outcomes in patients with ovarian cancer. Progress in this regard has been hindered by the lack of relevant syngeneic ovarian cancer models to study tumor immunity and evaluate immunotherapies. To address this problem, we developed a luciferase labeled murine model of high-grade serous ovarian cancer, STOSE.M1 luc. We defined its growth characteristics, immune cell repertoire, and response to anti PD-L1 immunotherapy. As with human ovarian cancer, we demonstrated that this model is poorly sensitive to immune checkpoint modulators. By developing the STOSE.M1 luc model, it will be possible to probe the mechanisms underlying resistance to immunotherapies and evaluate new therapeutic approaches to treat ovarian cancer.
Collapse
Affiliation(s)
- Shonagh Russell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: (S.R.); (D.P.M.); Tel.: +1-919-684-6035 (D.P.M.)
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pamela N. Peters
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca A. Previs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: (S.R.); (D.P.M.); Tel.: +1-919-684-6035 (D.P.M.)
| |
Collapse
|
8
|
High Dual Expression of the Biomarkers CD44v6/α2β1 and CD44v6/PD-L1 Indicate Early Recurrence after Colorectal Hepatic Metastasectomy. Cancers (Basel) 2022; 14:cancers14081939. [PMID: 35454846 PMCID: PMC9027562 DOI: 10.3390/cancers14081939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Considering the biology of CRC, distant metastases might support the identification of high-risk patients for early recurrence and targeted therapy. Expression of a panel of druggable, metastasis-related biomarkers was immunohistochemically analyzed in 53 liver (LM) and 15 lung metastases (LuM) and correlated with survival. Differential expression between LM and LuM was observed for the growth factor receptors IGF1R (LuM 92.3% vs. LM 75.8%, p = 0.013), EGFR (LuM 68% vs. LM 41.5%, p = 0.004), the cell adhesion molecules CD44v6 (LuM 55.7% vs. LM 34.9%, p = 0.019) and α2β1 (LuM 88.3% vs. LM 58.5%, p = 0.001) and the check point molecule PD-L1 (LuM 6.1% vs. LM 3.3%, p = 0.005). Contrary, expression of HGFR, Hsp90, Muc1, Her2/neu, ERα and PR was comparable in LuM and LM. In the LM cohort (n = 52), a high CD44v6 expression was identified as an independent factor of poor prognosis (PFS: HR 2.37, 95% CI 1.18-4.78, p = 0.016). High co-expression of CD44v6/α2β1 (HR 4.14, 95% CI 1.65-10.38, p = 0.002) and CD44v6/PD-L1 (HR 2.88, 95% CI 1.21-6.85, p = 0.017) indicated early recurrence after hepatectomy, in a substantial number of patients (CD44v6/α2β1: 11 (21.15%) patients; CD44v6/PD-L1: 12 (23.1%) patients). Dual expression of druggable protein biomarkers may refine prognostic prediction and stratify high-risk patients for new therapeutic concepts, depending on the metastatic location.
Collapse
|
9
|
van Wilpe S, Gorris MAJ, van der Woude LL, Sultan S, Koornstra RHT, van der Heijden AG, Gerritsen WR, Simons M, de Vries IJM, Mehra N. Spatial and Temporal Heterogeneity of Tumor-Infiltrating Lymphocytes in Advanced Urothelial Cancer. Front Immunol 2022; 12:802877. [PMID: 35046958 PMCID: PMC8761759 DOI: 10.3389/fimmu.2021.802877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Checkpoint inhibitors targeting PD-(L)1 induce objective responses in 20% of patients with metastatic urothelial cancer (UC). CD8+ T cell infiltration has been proposed as a putative biomarker for response to checkpoint inhibitors. Nevertheless, data on spatial and temporal heterogeneity of tumor-infiltrating lymphocytes in advanced UC are lacking. The major aims of this study were to explore spatial heterogeneity for lymphocyte infiltration and to investigate how the immune landscape changes during the disease course. We performed multiplex immunohistochemistry to assess the density of intratumoral and stromal CD3+, CD8+, FoxP3+ and CD20+ immune cells in longitudinally collected samples of 49 UC patients. Within these samples, spatial heterogeneity for lymphocyte infiltration was observed. Regions the size of a 0.6 tissue microarray core (0.28 mm2) provided a representative sample in 60.6 to 71.6% of cases, depending on the cell type of interest. Regions of 3.30 mm2, the median tumor surface area in our biopsies, were representative in 58.8 to 73.8% of cases. Immune cell densities did not significantly differ between untreated primary tumors and metachronous distant metastases. Interestingly, CD3+, CD8+ and FoxP3+ T cell densities decreased during chemotherapy in two small cohorts of patients treated with neoadjuvant or palliative platinum-based chemotherapy. In conclusion, spatial heterogeneity in advanced UC challenges the use of immune cell infiltration in biopsies as biomarker for response prediction. Our data also suggests a decrease in tumor-infiltrating T cells during platinum-based chemotherapy.
Collapse
Affiliation(s)
- Sandra van Wilpe
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
| | - Lieke L. van der Woude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
| | - Shabaz Sultan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Antoine G. van der Heijden
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Winald R. Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michiel Simons
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Horst EN, Bregenzer ME, Mehta P, Snyder CS, Repetto T, Yang-Hartwich Y, Mehta G. Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomater 2021; 132:401-420. [PMID: 33940195 PMCID: PMC8969826 DOI: 10.1016/j.actbio.2021.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.
Collapse
Affiliation(s)
- Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael E Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine S Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Taylor Repetto
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States; Precision Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
11
|
Dora D, Rivard C, Yu H, Pickard SL, Laszlo V, Harko T, Megyesfalvi Z, Dinya E, Gerdan C, Szegvari G, Hirsch FR, Dome B, Lohinai Z. Characterization of Tumor-Associated Macrophages and the Immune Microenvironment in Limited-Stage Neuroendocrine-High and -Low Small Cell Lung Cancer. BIOLOGY 2021; 10:502. [PMID: 34200100 PMCID: PMC8228874 DOI: 10.3390/biology10060502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022]
Abstract
This study aims to characterize tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and the related molecular milieu regulating anti-tumor immunity in limited-stage neuroendocrine (NE)-high and NE-low small cell lung cancer. Primary tumors and matched lymph node (LN) metastases of 32 resected, early-stage SCLC patients were analyzed by immunohistochemistry (IHC) with antibodies against pan-macrophage marker CD68, M2-macrophage marker CD163, and MDSC marker CD33. Area-adjusted cell counting on TMAs showed that TAMs are the most abundant cell type in the TME, and their number in tumor nests exceeds the number of CD3 + T-cells (64% vs. 38% in NE-low and 71% vs. 18% in NE-high). Furthermore, the ratio of CD163-expressing M2-polarized TAMs in tumor nests was significantly higher in NE-low vs. NE-high tumors (70% vs. 31%). TAM density shows a strong positive correlation with CD45 and CD3 in tumor nests, but not in the stroma. fGSEA analysis on a targeted RNAseq oncological panel of 2560 genes showed that NE-high tumors exhibited increased enrichment in pathways related to cell proliferation, whereas in NE-low tumors, immune response pathways were significantly upregulated. Interestingly, we identified a subset of NE-high tumors representing an immune-oasis phenotype, but with a different gene expression profile compared to NE-low tumors. In contrast, we found that a limited subgroup of NE-low tumors is immune-deserted and express distinct cellular pathways from NE-high tumors. Furthermore, we identified potential molecular targets based on our expression data in NE-low and immune-oasis tumor subsets, including CD70, ANXA1, ITGB6, TP63, IFI27, YBX3 and CXCR2.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Shivaun Lueke Pickard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Viktoria Laszlo
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Tunde Harko
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Zsolt Megyesfalvi
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Elek Dinya
- Institute of Digital Health Sciences, Faculty of Public Services, Semmelweis University, 1094 Budapest, Hungary;
| | - Csongor Gerdan
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Gabor Szegvari
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Fred R. Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY 1190, USA
| | - Balazs Dome
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Zoltan Lohinai
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| |
Collapse
|
12
|
Schoenberg MB, Li X, Li X, Han Y, Hao J, Miksch RC, Koch D, Börner N, Beger NT, Bucher JN, Schiergens TS, Guba MO, Werner J, Bazhin AV. The predictive value of tumor infiltrating leukocytes in Hepatocellular Carcinoma: A systematic review and meta-analysis. Eur J Surg Oncol 2021; 47:2561-2570. [PMID: 33966947 DOI: 10.1016/j.ejso.2021.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For Hepatocellular carcinoma (HCC) surgery either through resection or transplantation often provides the only chance for cure. Since hepatocarcinogenesis and postsurgical prognosis is not only dependent on cirrhosis but also on immune activation and exhaustion, many studies have investigated tumor infiltrating leukocyte (TIL) subsets. This systematic review and meta-analysis aims at describing the cell groups and their predictive power regarding overall (OS), disease free (DFS) and recurrence free survival (RFS). MATERIAL AND METHODS A systematic search of the PubMed database was conducted (PROSPERO 172324). Data on CD3+, CD8+, Treg, B cells, macrophages, neutrophil and NK-cells were collected from Pubmed and related references up to December 2018. Overall (OS), disease-free (DFS) and recurrence free survival (RFS) in dependence of high vs. low infiltration rates were compared using a random effects meta-analysis. RESULTS Altogether data from 3541 patients enrolled in 20 publications were included. Except for Tregs and Neutrophils, heterogeneity analysis was found to be moderate to high across the studies. High CD3+, CD8+, NK-cell infiltration predicted better survival (OS, DFS and RFS; p < 0.05). Higher Treg and Neutrophil infiltration predicted lower OS and DFS. For Macrophages and B cells no difference in survival could be found. DISCUSSION As with other solid tumors immune infiltration has a great influence on survival after resection. However, a considerable publication bias cannot be ruled out in mostly retrospective analyses. Nevertheless, in light of novel immune modulatory treatments this opens a new avenue towards effective and well-tolerated adjuvant treatment.
Collapse
Affiliation(s)
- Markus Bo Schoenberg
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Xiaokang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xinyu Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yongsheng Han
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jingcheng Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, PR China
| | - Rainer Christoph Miksch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dominik Koch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicola Theresa Beger
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julian Nikolaus Bucher
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Simon Schiergens
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Otto Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
13
|
PD-1 and PD-L1 expression on TILs in peritoneal metastases compared to ovarian tumor tissues and its associations with clinical outcome. Sci Rep 2021; 11:6400. [PMID: 33737722 PMCID: PMC7973418 DOI: 10.1038/s41598-021-85966-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The therapeutic potential of immune checkpoint inhibitors is currently being investigated in epithelial ovarian cancer (EOC), but immunological effects of the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis in EOC still remain poorly understood. The aim of this study was thus to compare infiltration rates of PD-1 and PD-L1 expressing tumor infiltrating leucocytes (TILs) in primary ovarian tumor tissue and metastatic intraperitoneal implants and to investigate its impact on overall survival (OS). Tumor specimens (ovarian tumor tissues and intraperitoneal metastases) of 111 patients were used to investigate the PD-1, PD-L1 and CD8 expression rates on TILs and PD-L1 expression rate of tumor cells. The percentages of CD8, PD-1, and PD-L1 expressing subpopulations of TILs differ in primary ovarian tumor tissues and metastatic intraperitoneal implants. High PD-1 among TILs in peritoneal metastases were associated with favorable OS. High PD-L1 expression in TILs was associated with poor OS. Combining both factors in peritoneal metastases revealed an unfavorable prognosis. Primary ovarian tumor tissue and intraperitoneal metastatic tissues in EOC might have different strategies to evade immune control. Those findings are of importance for the process of biomarker assessment to predict patients’ response to immunotherapy.
Collapse
|
14
|
Integrin α2β1 Represents a Prognostic and Predictive Biomarker in Primary Ovarian Cancer. Biomedicines 2021; 9:biomedicines9030289. [PMID: 33809043 PMCID: PMC7999332 DOI: 10.3390/biomedicines9030289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
Currently, the same first-line chemotherapy is administered to almost all patients suffering from primary ovarian cancer. The high recurrence rate emphasizes the need for precise drug treatment in primary ovarian cancer. Being crucial in ovarian cancer progression and chemotherapeutic resistance, integrins became promising therapeutic targets. To evaluate its prognostic and predictive value, in the present study, the expression of integrin α2β1 was analyzed immunohistochemically and correlated with the survival data and other therapy-relevant biomarkers. The significant correlation of a high α2β1-expression with the estrogen receptor alpha (ERα; p = 0.035) and epithelial growth factor receptor (EGFR; p = 0.027) was observed. In addition, high α2β1-expression was significantly associated with a low number of tumor-infiltrating immune cells (CD3 intratumoral, p = 0.017; CD3 stromal, p = 0.035; PD-1 intratumoral, p = 0.002; PD-1 stromal, p = 0.049) and the lack of PD-L1 expression (p = 0.005). In Kaplan–Meier survival analysis, patients with a high expression of integrin α2β1 revealed a significant shorter progression-free survival (PFS, p = 0.035) and platinum-free interval (PFI, p = 0.034). In the multivariate Cox regression analysis, integrin α2β1 was confirmed as an independent prognostic factor for both PFS (p = 0.021) and PFI (p = 0.020). Dual expression of integrin α2β1 and the hepatocyte growth factor receptor (HGFR; PFS/PFI, p = 0.004) and CD44v6 (PFS, p = 0.000; PFI, p = 0.001; overall survival [OS], p = 0.025) impaired survival. Integrin α2β1 was established as a prognostic and predictive marker in primary ovarian cancer with the potential to stratify patients for chemotherapy and immunotherapy, and to design new targeted treatment strategies.
Collapse
|
15
|
The role of tumor heterogeneity in immune-tumor interactions. Cancer Metastasis Rev 2021; 40:377-389. [PMID: 33682030 DOI: 10.1007/s10555-021-09957-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022]
Abstract
The development of cancer stems from genetic instability and changes in genomic sequences, and hence, the heterogeneity exhibited by tumors is integral to the nature of cancer itself. Tumor heterogeneity can be further altered by factors that are not cancer cell intrinsic, i.e., by the microenvironment, including the patient's immune responses to tumors and administered therapies (immunotherapies, chemotherapies, and/or radiation therapies). The focus of this review is the impact of tumor heterogeneity on the interactions between immune cells and the tumor, taking into account that heterogeneity can exist at several levels. These levels include heterogeneity within an individual tumor, within an individual patient (particularly between the primary tumor and metastatic lesions), among the subtypes of a specific type of cancer, or within cancers that originate from different tissues. Because of the potential for immunity (either the natural immune system or via immunotherapeutics) to halt the progression of cancer, major clinical significance exists in understanding the impact of tumor heterogeneity on the associations between immune cells and tumor cells. Increased knowledge of why, whether, and how immune-tumor interactions occur provides the means to guide these interactions and improve outcomes for patients.
Collapse
|
16
|
Leem G, Park J, Jeon M, Kim ES, Kim SW, Lee YJ, Choi SJ, Choi B, Park S, Ju YS, Jung I, Kim S, Shin EC, Lee JY, Park SH. 4-1BB co-stimulation further enhances anti-PD-1-mediated reinvigoration of exhausted CD39 + CD8 T cells from primary and metastatic sites of epithelial ovarian cancers. J Immunother Cancer 2020; 8:e001650. [PMID: 33335029 PMCID: PMC7745695 DOI: 10.1136/jitc-2020-001650] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Responses to immunotherapy vary between different cancer types and sites. Here, we aimed to investigate features of exhaustion and activation in tumor-infiltrating CD8 T cells at both the primary and metastatic sites in epithelial ovarian cancer. METHODS Tumor tissues and peripheral blood were obtained from 65 patients with ovarian cancer. From these samples, we isolated tumor-infiltrating lymphocytes (TILs) and peripheral blood mononuclear cells. These cells were used for immunophenotype using multicolor flow cytometry, gene expression profile using RNA sequencing and ex vivo functional restoration assays. RESULTS We found that CD39+ CD8 TILs were enriched with tumor-specific CD8 TILs, and that the activation status of these cells was determined by the differential programmed cell death protein 1 (PD-1) expression level. CD39+ CD8 TILs with high PD-1 expression (PD-1high) exhibited features of highly tumor-reactive and terminally exhausted phenotypes. Notably, PD-1high CD39+ CD8 TILs showed similar characteristics in terms of T-cell exhaustion and activation between the primary and metastatic sites. Among co-stimulatory receptors, 4-1BB was exclusively overexpressed in CD39+ CD8 TILs, especially on PD-1high cells, and 4-1BB-expressing cells displayed immunophenotypes indicating higher degrees of T-cell activation and proliferation, and less exhaustion, compared with cells not expressing 4-1BB. Importantly, 4-1BB agonistic antibodies further enhanced the anti-PD-1-mediated reinvigoration of exhausted CD8 TILs from both primary and metastatic sites. CONCLUSION Severely exhausted PD-1high CD39+ CD8 TILs displayed a distinctly heterogeneous exhaustion and activation status determined by differential 4-1BB expression levels, providing rationale and evidence for immunotherapies targeting co-stimulatory receptor 4-1BB in ovarian cancers.
Collapse
Affiliation(s)
- Galam Leem
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eui-Soon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Baekgyu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jung Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Wertel I, Suszczyk D, Pawłowska A, Bilska M, Chudzik A, Skiba W, Paduch R, Kotarski J. Prognostic and Clinical Value of Interleukin 6 and CD45 +CD14 + Inflammatory Cells with PD-L1 +/PD-L2 + Expression in Patients with Different Manifestation of Ovarian Cancer. J Immunol Res 2020; 2020:1715064. [PMID: 33062717 PMCID: PMC7545411 DOI: 10.1155/2020/1715064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers. Recent studies suggest a crucial role of inflammatory immune system cells in the progression and metastasis of OC. The understanding of inflammatory mechanisms is pivotal for the selection of a biomarker that allows the differentiation between malignant and benign tumors, monitoring the progression of the disease, and identification of patients that will respond to implemented treatment. Our study is aimed at evaluating the profile of IL-6 in the plasma and peritoneal fluid (PF) of patients with various clinical manifestations of OC (n = 78). We also examined the relationship between IL-6 and PD-L1/PD-L2 positive CD45+CD14+ inflammatory cell (MO/MA) levels in three OC environments (TME): peripheral blood (PB), PF, and tumor (TT) and their clinical and prognostic relevance in OC patients. The expression of PD-L1/PD-L2 molecules was analyzed by flow cytometry. The IL-6 levels were determined by ELISA. We found an elevated level of PD-L1/PD-L2 positive MO/MA in TT compared to PB (p < 0.0001). Significantly higher (p < 0.0001) levels of IL-6 were observed in PF of the OC patients than in the benign ovarian tumor group (n = 31). Additionally, we found higher IL-6 levels in PF than in the plasma of the OC patients. Interestingly, accumulation of IL-6 was observed in PF of patients with low-differentiated OC and correlated with worse prognosis. Moreover, we observed correlations between the level of IL-6 and CD45+CD14+ cells and between CD45+CD14+PD-L1+ cells and the IL-6 level in PF. For the first time, we discovered that the higher percentage of CD45+CD14+PD-L2+ cells in PF predicts better survival of OC patients. Our study suggests that CD45+CD14+PD-L2+ cells and IL-6 may be predictive biomarkers for OC patients. Understanding how the composition of TME changes during OC development and progression is a prerequisite for projecting new therapeutic strategies. Overall, further validation research is warranted.
Collapse
Affiliation(s)
- Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Monika Bilska
- Independent Public Clinical Hospital No. 1, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Agata Chudzik
- Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Wiktoria Skiba
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, I Chair and Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Jan Kotarski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, Lublin 20-081, Poland
| |
Collapse
|
18
|
MacGregor HL, Sayad A, Elia A, Wang BX, Katz SR, Shaw PA, Clarke BA, Crome SQ, Robert-Tissot C, Bernardini MQ, Nguyen LT, Ohashi PS. High expression of B7-H3 on stromal cells defines tumor and stromal compartments in epithelial ovarian cancer and is associated with limited immune activation. J Immunother Cancer 2019; 7:357. [PMID: 31892360 PMCID: PMC6937725 DOI: 10.1186/s40425-019-0816-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND B7-H3 and B7-H4 are highly expressed by many human malignancies making them attractive immunotherapeutic targets. However, their expression patterns and immune contexts in epithelial ovarian cancer have not been well characterized. METHODS We used flow cytometry, immunohistochemistry, and genomic analyses to determine the patterns of B7-H3, B7-H4, and PD-L1 expression by tumor, stromal, and immune cells in the ovarian tumor microenvironment (TME). We analyzed immune cell frequency and expression of PD-1, TIM3, LAG3, ICOS, TIA-1, granzyme B, 2B4, CD107a, and GITR on T cells; CD20, CD22, IgD, BTLA, and CD27 on B cells; CD16 on monocytes; and B7-H3, B7-H4, PD-L1, PD-L2, ICOSL, CD40, CD86, and CLEC9a on antigen-presenting cells by flow cytometry. We determined intratumoral cellular location of immune cells using immunohistochemistry. We compared differences in immune infiltration in tumors with low or high tumor-to-stroma ratio and in tumors from the same or unrelated patients. RESULTS On non-immune cells, B7-H4 expression was restricted to tumor cells whereas B7-H3 was expressed by both tumor and stromal cells. Stromal cells of the ovarian TME expressed high levels of B7-H3 compared to tumor cells. We used this differential expression to assess the tumor-to-stroma ratio of ovarian tumors and found that high tumor-to-stroma ratio was associated with increased expression of CD16 by monocytes, increased frequencies of PD-1high CD8+ T cells, increased PD-L1 expression by APCs, and decreased CLEC9a expression by APCs. We found that expression of PD-L1 or CD86 on APCs and the proportion of PD-1high CD4+ T cells were strongly correlated on immune cells from tumors within the same patient, whereas expression of CD40 and ICOSL on APCs and the proportion of PD-1high CD8+ T cells were not. CONCLUSIONS This study provides insight into the expression patterns of B7-H3 and B7-H4 in the ovarian TME. Further, we demonstrate an association between the tumor-to-stroma ratio and the phenotype of tumor-infiltrating immune cells. We also find that some but not all immune parameters show consistency between peritoneal metastatic sites. These data have implications for the design of immunotherapies targeting these B7 molecules in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Heather L MacGregor
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Rachel Katz
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Patricia A Shaw
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Celine Robert-Tissot
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Linh T Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|