1
|
Coquel F, Ho SZ, Tsai KC, Yang CY, Aze A, Devin J, Chang TH, Kong-Hap M, Bioteau A, Moreaux J, Maiorano D, Pourquier P, Yang WC, Lin YL, Pasero P. Synergistic effect of inhibiting CHK2 and DNA replication on cancer cell growth. eLife 2025; 13:RP104718. [PMID: 39887032 PMCID: PMC11785374 DOI: 10.7554/elife.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.
Collapse
Affiliation(s)
- Flavie Coquel
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Sing-Zong Ho
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
| | - Keng-Chang Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
- National Research Institute of Chinese Medicine, Ministry of Health and WelfareTaipeiTaiwan
| | - Chun-Yen Yang
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
| | - Antoine Aze
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Genome Surveillance and Stability’ Laboratory, IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Julie Devin
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Normal and Malignant B cells’ laboratory', IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Ting-Hsiang Chang
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
| | - Marie Kong-Hap
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de MontpellierMontpellierFrance
| | - Audrey Bioteau
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Jerome Moreaux
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Normal and Malignant B cells’ laboratory', IGH, Univ. de Montpellier, CNRSMontpellierFrance
- Institut Universitaire de FranceParisFrance
- Department of Biological Hematology, CHU MontpellierMontpellierFrance
| | - Domenico Maiorano
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Genome Surveillance and Stability’ Laboratory, IGH, Univ. de Montpellier, CNRSMontpellierFrance
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de MontpellierMontpellierFrance
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
- Graduate Institute of Integrated Medicine, China Medical UniversityTaichungTaiwan
- Department of Life Sciences, National Chung-Hsing UniversityTaichungTaiwan
| | - Yea-Lih Lin
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| | - Philippe Pasero
- Institut de Génétique Humaine, Univ. de Montpellier, CNRSMontpellierFrance
- ‘Maintenance of Genome Integrity during DNA replication’ laboratory, équipe labélisée Ligue contre le CancerMontpellierFrance
| |
Collapse
|
2
|
Gao M, Liu W, Li T, Song Z, Wang X, Zhang X. Identifying Genetic Signatures Associated with Oncogene-Induced Replication Stress in Osteosarcoma and Screening for Potential Targeted Drugs. Biochem Genet 2024; 62:1690-1715. [PMID: 37672187 DOI: 10.1007/s10528-023-10497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/07/2023] [Indexed: 09/07/2023]
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor. Due to the lack of selectivity and sensitivity of chemotherapy drugs to tumor cells, coupled with the use of large doses, chemotherapy drugs often have systemic toxicity. The use of modern sequencing technology to screen tumor markers in a large number of tumor samples is a common method for screening highly specific and selective anti-tumor drugs. This study aims to identify potential biomarkers using the latest reported gene expression signatures of oncogene-induced replication stress (ORS) in aggressive cancers, and potential anti-osteosarcoma drugs were screened in different drug databases. In this study, we obtained 89 osteosarcoma-related samples in the TARGET database, all of which included survival information. According to the median expression of each of six reported ORS gene markers (NAT10/DDX27/ZNF48/C8ORF33/MOCS3/MPP6), we divided 89 osteosarcoma gene expression datasets into a high expression group and a low expression group and then performed a differentially expressed gene (DEG) analysis. The coexisting genes of 6 groups of DEGs were used as replication stress-related genes (RSGs) of osteosarcoma. Then, key RSGs were screened using LASSO regression, a Cox risk proportional regression prognostic model and a tenfold cross-validation test. GSE21257 datasets collected from the Gene Expression Omnibus (GEO) database were used to verify the prognostic model. The final key RSGs selected were used in the L1000PWD and DGIdb databases to mine potential drugs. After further validation by the prognostic model, we identified seven genes associated with ORS in osteosarcoma as key RSGs, including transcription factor 7 like 2 (TCF7L2), solute carrier family 27 member 4 (SLC27A4), proprotein convertase subtilisin/kexin type 5 (PCSK5), nucleolar protein 6 (NOL6), coiled-coil-coil-coil-coil-helix domain containing 4 (CHCHD4), eukaryotic translation initiation factor 3 subunit B (EIF3B), and synthesis of cytochrome C oxidase 1 (SCO1). Then, we screened the seven key RSGs in two drug databases and found six potential anti-osteosarcoma drugs (D GIdb database: repaglinide, tacrolimus, sirolimus, cyclosporine, and hydrochlorothiazide; L1000PWD database: the small molecule VU-0365117-1). Seven RSGs (TCF7L2, SLC27A4, PCSK5, NOL6, CHCHD4, EIF3B, and SCO1) may be associated with the ORS gene signatures in osteosarcoma. Repaglinide, tacrolimus, sirolimus, cyclosporine, hydrochlorothiazide and the small molecule VU-0365117-1 are potential therapeutic drugs for osteosarcoma.
Collapse
Affiliation(s)
- Meng Gao
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China
| | - Weibo Liu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China
| | - Teng Li
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China
| | - ZeLong Song
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China
| | - XiangYu Wang
- Department of Pain Medicine, First Medical Center, PLA General Hospital, Beijing, 100000, China.
| | - XueSong Zhang
- School of Medicine, Nankai University, Tianjin, China.
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Haidian District, 51 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
3
|
Roy S, Zaker A, Mer A, D’Amours D. Large-scale phenogenomic analysis of human cancers uncovers frequent alterations affecting SMC5/6 complex components in breast cancer. NAR Cancer 2023; 5:zcad047. [PMID: 37705607 PMCID: PMC10495288 DOI: 10.1093/narcan/zcad047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer cells often experience large-scale alterations in genome architecture because of DNA damage and replication stress. Whether mutations in core regulators of chromosome structure can also lead to cancer-promoting loss in genome stability is not fully understood. To address this question, we conducted a systematic analysis of mutations affecting a global regulator of chromosome biology -the SMC5/6 complex- in cancer genomics cohorts. Analysis of 64 959 cancer samples spanning 144 tissue types and 199 different cancer genome studies revealed that the SMC5/6 complex is frequently altered in breast cancer patients. Patient-derived mutations targeting this complex associate with strong phenotypic outcomes such as loss of ploidy control and reduced overall survival. Remarkably, the phenotypic impact of several patient mutations can be observed in a heterozygous context, hence providing an explanation for a prominent role of SMC5/6 mutations in breast cancer pathogenesis. Overall, our findings suggest that genes encoding global effectors of chromosome architecture can act as key contributors to cancer development in humans.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Arvind Mer
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Dilmac S, Ozpolat B. Mechanisms of PARP-Inhibitor-Resistance in BRCA-Mutated Breast Cancer and New Therapeutic Approaches. Cancers (Basel) 2023; 15:3642. [PMID: 37509303 PMCID: PMC10378018 DOI: 10.3390/cancers15143642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recent success of Poly (ADP-ribose) polymerase (PARP) inhibitors has led to the approval of four different PARP inhibitors for the treatment of BRCA1/2-mutant breast and ovarian cancers. About 40-50% of BRCA1/2-mutated patients do not respond to PARP inhibitors due to a preexisting innate or intrinsic resistance; the majority of patients who initially respond to the therapy inevitably develop acquired resistance. However, subsets of patients experience a long-term response (>2 years) to treatment with PARP inhibitors. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that plays an important role in the recognition and repair of DNA damage. PARP inhibitors induce "synthetic lethality" in patients with tumors with a homologous-recombination-deficiency (HRD). Several molecular mechanisms have been identified as causing PARP-inhibitor-resistance. In this review, we focus on the molecular mechanisms underlying the PARP-inhibitor-resistance in BRCA-mutated breast cancer and summarize potential therapeutic strategies to overcome the resistance mechanisms.
Collapse
Affiliation(s)
- Sayra Dilmac
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Repurposing of Commercially Existing Molecular Target Therapies to Boost the Clinical Efficacy of Immune Checkpoint Blockade. Cancers (Basel) 2022; 14:cancers14246150. [PMID: 36551637 PMCID: PMC9776741 DOI: 10.3390/cancers14246150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) is now standard of care for several metastatic epithelial cancers and prolongs life expectancy for a significant fraction of patients. A hostile tumor microenvironment (TME) induced by intrinsic oncogenic signaling induces an immunosuppressive niche that protects the tumor cells, limiting the durability and efficacy of ICB therapies. Addition of receptor tyrosine kinase inhibitors (RTKi) as potential modulators of an unfavorable local immune environment has resulted in moderate life expectancy improvement. Though the combination strategy of ICB and RTKi has shown significantly better results compared to individual treatment, the benefits and adverse events are additive whereas synergy of benefit would be preferable. There is therefore a need to investigate the potential of inhibitors other than RTKs to reduce malignant cell survival while enhancing anti-tumor immunity. In the last five years, preclinical studies have focused on using small molecule inhibitors targeting cell cycle and DNA damage regulators such as CDK4/6, CHK1 and poly ADP ribosyl polymerase (PARP) to selectively kill tumor cells and enhance cytotoxic immune responses. This review provides a comprehensive overview of the available drugs that attenuate immunosuppression and overcome hostile TME that could be used to boost FDA-approved ICB efficacy in the near future.
Collapse
|
6
|
Zhang J, Chan DW, Lin SY. Exploiting DNA Replication Stress as a Therapeutic Strategy for Breast Cancer. Biomedicines 2022; 10:2775. [PMID: 36359297 PMCID: PMC9687274 DOI: 10.3390/biomedicines10112775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Proliferating cells rely on DNA replication to ensure accurate genome duplication. Cancer cells, including breast cancer cells, exhibit elevated replication stress (RS) due to the uncontrolled oncogenic activation, loss of key tumor suppressors, and defects in the DNA repair machinery. This intrinsic vulnerability provides a great opportunity for therapeutic exploitation. An increasing number of drug candidates targeting RS in breast cancer are demonstrating promising efficacy in preclinical and early clinical trials. However, unresolved challenges lie in balancing the toxicity of these drugs while maintaining clinical efficacy. Furthermore, biomarkers of RS are urgently required to guide patient selection. In this review, we introduce the concept of targeting RS, detail the current therapies that target RS, and highlight the integration of RS with immunotherapies for breast cancer treatment. Additionally, we discuss the potential biomarkers to optimizing the efficacy of these therapies. Together, the continuous advances in our knowledge of targeting RS would benefit more patients with breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Muralimanoharan S, Shamby R, Stansbury N, Schenken R, de la Pena Avalos B, Javanmardi S, Dray E, Sung P, Boyer TG. Aberrant R-loop-induced replication stress in MED12-mutant uterine fibroids. Sci Rep 2022; 12:6169. [PMID: 35418189 PMCID: PMC9008039 DOI: 10.1038/s41598-022-10188-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Uterine fibroid (UF) driver mutations in Mediator complex subunit 12 (MED12) trigger genomic instability and tumor development through unknown mechanisms. Herein, we show that MED12 mutations trigger aberrant R-loop-induced replication stress, suggesting a possible route to genomic instability and a novel therapeutic vulnerability in this dominant UF subclass. Immunohistochemical analyses of patient-matched tissue samples revealed that MED12 mutation-positive UFs, compared to MED12 mutation-negative UFs and myometrium, exhibited significantly higher levels of R-loops and activated markers of Ataxia Telangiectasia and Rad3-related (ATR) kinase-dependent replication stress signaling in situ. Single molecule DNA fiber analysis revealed that primary cells from MED12 mutation-positive UFs, compared to those from patient-matched MED12 mutation-negative UFs and myometrium, exhibited defects in replication fork dynamics, including reduced fork speeds, increased and decreased numbers of stalled and restarted forks, respectively, and increased asymmetrical bidirectional forks. Notably, these phenotypes were recapitulated and functionally linked in cultured uterine smooth muscle cells following chemical inhibition of Mediator-associated CDK8/19 kinase activity that is known to be disrupted by UF driver mutations in MED12. Thus, Mediator kinase inhibition triggered enhanced R-loop formation and replication stress leading to an S-phase cell cycle delay, phenotypes that were rescued by overexpression of the R-loop resolving enzyme RNaseH. Altogether, these findings reveal MED12-mutant UFs to be uniquely characterized by aberrant R-loop induced replication stress, suggesting a possible basis for genomic instability and new avenues for therapeutic intervention that involve the replication stress phenotype in this dominant UF subtype.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Ross Shamby
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Nicholas Stansbury
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | | | - Samin Javanmardi
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
8
|
Zhou L, Pei X, Zhang Y, Ning Y, Li L, Hu X, Chalasani SL, Sharma K, Nkwocha J, Yu J, Bandyopadhyay D, Sebti SM, Grant S. Chk1 inhibition potently blocks STAT3 tyrosine705 phosphorylation, DNA binding activity, and activation of downstream targets in human multiple myeloma cells. Mol Cancer Res 2021; 20:456-467. [PMID: 34782371 DOI: 10.1158/1541-7786.mcr-21-0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
The relationship between the checkpoint kinase Chk1 and the STAT3 pathway was examined in multiple myeloma (MM) cells. Gene expression profiling of U266 cells exposed to low (nM) Chk1 inhibitor (PF-477736) concentrations revealed STAT3 pathway-related gene down-regulation (e.g., BCL-XL, MCL-1, c-Myc), findings confirmed by RT-PCR. This was associated with marked inhibition of STAT3 Tyr705 (but not Ser727) phosphorylation, dimerization, nuclear localization, DNA binding, STAT3 promoter activity by ChIP assay, and down-regulation of STAT-3-dependent proteins. Similar findings were obtained in other MM cells and with alternative Chk1 inhibitors (e.g., prexasertib, CEP3891). While PF did not reduce GP130 expression or modify SOCS or PRL-3 phosphorylation, the phosphatase inhibitor pervanadate antagonized PF-mediated Tyr705 dephosphorylation. Significantly, PF attenuated Chk1-mediated STAT3 phosphorylation in in vitro assays. SPR analysis suggested Chk1/STAT3 interactions and PF reduced Chk1/STAT3 co-immunoprecipitation. Chk1 CRISPR knockout or shRNA knockdown cells also displayed STAT3 inactivation and STAT-3-dependent protein down-regulation. Constitutively active STAT3 diminished PF-mediated STAT3 inactivation and down-regulate STAT3-dependent proteins while significantly reducing PF-induced DNA damage (rH2A.X formation) and apoptosis. Exposure of cells with low basal phospho-STAT3 expression to IL-6 or human stromal cell conditioned medium activated STAT3, an event attenuated by Chk1 inhibitors. PF also inactivated STAT3 in primary human CD138+ MM cells and tumors extracted from an NSG MM xenograft model while inhibiting tumor growth. Implications: These findings identify a heretofore unrecognized link between the Chk1 and STAT3 pathways and suggest that Chk1 pathway inhibitors warrant attention as novel and potent candidate STAT3 antagonists in myeloma.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center
| | - Xinyan Pei
- Internal Medicine, Virginia Commonwealth University, Massey Cancer Center
| | - Yu Zhang
- Department of Medicine, Massey Cancer Center, Virginia Commonwealth University
| | - Yanxia Ning
- Department of Medicine, Virginia Commonwealth University Medical Center
| | - Lin Li
- Department of Medicine, Virginia Commonwealth University Medical Center
| | - Xiaoyan Hu
- Department of Medicine, Virginia Commonwealth University Medical Center
| | | | - Kanika Sharma
- Medicine, Biochemistry, and Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University
| | - Jewel Nkwocha
- Virginia Commonwealth University, Massey Cancer Center
| | | | | | - Said M Sebti
- Pharmacology & Toxicology, Massey Cancer Center, Virginia Commonwealth University
| | - Steven Grant
- Medicine, Biochemistry, and Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University
| |
Collapse
|
9
|
Proctor M, Gonzalez Cruz JL, Daignault-Mill SM, Veitch M, Zeng B, Ehmann A, Sabdia M, Snell C, Keane C, Dolcetti R, Haass NK, Wells JW, Gabrielli B. Targeting Replication Stress Using CHK1 Inhibitor Promotes Innate and NKT Cell Immune Responses and Tumour Regression. Cancers (Basel) 2021; 13:3733. [PMID: 34359633 PMCID: PMC8345057 DOI: 10.3390/cancers13153733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Drugs selectively targeting replication stress have demonstrated significant preclinical activity, but this has not yet translated into an effective clinical treatment. Here we report that targeting increased replication stress with a combination of Checkpoint kinase 1 inhibitor (CHK1i) with a subclinical dose of hydroxyurea targets also promotes pro-inflammatory cytokine/chemokine expression that is independent of cGAS-STING pathway activation and immunogenic cell death in human and murine melanoma cells. In vivo, this drug combination induces tumour regression which is dependent on an adaptive immune response. It increases cytotoxic CD8+ T cell activity, but the major adaptive immune response is a pronounced NKT cell tumour infiltration. Treatment also promotes an immunosuppressive tumour microenvironment through CD4+ Treg and FoxP3+ NKT cells. The number of these accumulated during treatment, the increase in FoxP3+ NKT cells numbers correlates with the decrease in activated NKT cells, suggesting they are a consequence of the conversion of effector to suppressive NKT cells. Whereas tumour infiltrating CD8+ T cell PD-1 and tumour PD-L1 expression was increased with treatment, peripheral CD4+ and CD8+ T cells retained strong anti-tumour activity. Despite increased CD8+ T cell PD-1, combination with anti-PD-1 did not improve response, indicating that immunosuppression from Tregs and FoxP3+ NKT cells are major contributors to the immunosuppressive tumour microenvironment. This demonstrates that therapies targeting replication stress can be well tolerated, not adversely affect immune responses, and trigger an effective anti-tumour immune response.
Collapse
Affiliation(s)
- Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (M.P.); (A.E.); (M.S.); (C.K.)
| | - Jazmina L. Gonzalez Cruz
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (J.L.G.C.); (S.M.D.-M.); (M.V.); (B.Z.); (R.D.); (N.K.H.); (J.W.W.)
| | - Sheena M. Daignault-Mill
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (J.L.G.C.); (S.M.D.-M.); (M.V.); (B.Z.); (R.D.); (N.K.H.); (J.W.W.)
| | - Margaret Veitch
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (J.L.G.C.); (S.M.D.-M.); (M.V.); (B.Z.); (R.D.); (N.K.H.); (J.W.W.)
| | - Bijun Zeng
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (J.L.G.C.); (S.M.D.-M.); (M.V.); (B.Z.); (R.D.); (N.K.H.); (J.W.W.)
| | - Anna Ehmann
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (M.P.); (A.E.); (M.S.); (C.K.)
| | - Muhammed Sabdia
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (M.P.); (A.E.); (M.S.); (C.K.)
| | - Cameron Snell
- Mater Pathology, Mater Research, Mater Hospital, Raymond Terrace, South Brisbane, QLD 4101, Australia;
| | - Colm Keane
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (M.P.); (A.E.); (M.S.); (C.K.)
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (J.L.G.C.); (S.M.D.-M.); (M.V.); (B.Z.); (R.D.); (N.K.H.); (J.W.W.)
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nikolas K. Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (J.L.G.C.); (S.M.D.-M.); (M.V.); (B.Z.); (R.D.); (N.K.H.); (J.W.W.)
| | - James W. Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (J.L.G.C.); (S.M.D.-M.); (M.V.); (B.Z.); (R.D.); (N.K.H.); (J.W.W.)
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia; (M.P.); (A.E.); (M.S.); (C.K.)
| |
Collapse
|
10
|
Ngoi NYL, Pham MM, Tan DSP, Yap TA. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Trends Cancer 2021; 7:930-957. [PMID: 34215565 DOI: 10.1016/j.trecan.2021.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
The replication stress response (RSR) involves a downstream kinase cascade comprising ataxia telangiectasia-mutated (ATM), ATM and rad3-related (ATR), checkpoint kinases 1 and 2 (CHK1/2), and WEE1-like protein kinase (WEE1), which cooperate to arrest the cell cycle, protect stalled forks, and allow time for replication fork repair. In the presence of elevated replicative stress, cancers are increasingly dependent on RSR to maintain genomic integrity. An increasing number of drug candidates targeting key RSR nodes, as monotherapy through synthetic lethality, or through rational combinations with immune checkpoint inhibitors and targeted therapies, are demonstrating promising efficacy in early phase trials. RSR targeting is also showing potential in reversing PARP inhibitor resistance, an important area of unmet clinical need. In this review, we introduce the concept of targeting the RSR, detail the current landscape of monotherapy and combination strategies, and discuss emerging therapeutic approaches, such as targeting Polθ.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Melissa M Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Han Y, Yu X, Li S, Tian Y, Liu C. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol 2020; 10:578095. [PMID: 33324554 PMCID: PMC7724080 DOI: 10.3389/fonc.2020.578095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a therapeutic milestone exerting a synthetic lethal effect in the treatment of cancer involving BRCA1/2 mutation. Theoretically, PARP inhibitors (PARPi) eliminate tumor cells by disrupting DNA damage repair through either PARylation or the homologous recombination (HR) pathway. However, resistance to PARPi greatly hinders therapeutic effectiveness in triple-negative breast cancer (TNBC). Owing to the high heterogeneity and few genetic targets in TNBC, there has been limited therapeutic progress in the past decades. In view of this, there is a need to circumvent resistance to PARPi and develop potential treatment strategies for TNBC. We present, herein, a review of the scientific progress and explore the mechanisms underlying PARPi resistance in TNBC. The complicated mechanisms of PARPi resistance, including drug exporter formation, loss of poly (ADP-ribose) glycohydrolase (PARG), HR reactivation, and restoration of replication fork stability, are discussed in detail in this review. Additionally, we also discuss new combination therapies with PARPi that can improve the clinical response in TNBC. The new perspectives for PARPi bring novel challenges and opportunities to overcome PARPi resistance in breast cancer.
Collapse
Affiliation(s)
- Ye Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Biomedical Informatics, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Abstract
Cancer cells die when their decimated DNA damage response (DDR) unsuccessfully handles DNA damage. This notion has been successfully exploited when targeting PARP (poly ADP-ribose polymerase) in homologous recombination-deficient cells. With the greater understanding of DDR achieved in the last decade, new cancer therapy targets within the DDR network have been identified. Intriguingly, many of the molecules that have advanced into clinical trials are inhibitors of DDR kinases. This special issue is devoted to discussing the mechanism of cell killing and the level of success that such inhibitors have reached in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires. Consejo de Investigaciones Científicas y Técnicas. Avenida Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
13
|
CEP131 Abrogates CHK1 Inhibitor-Induced Replication Defects and Is Associated with Unfavorable Outcome in Neuroblastoma. JOURNAL OF ONCOLOGY 2020; 2020:2752417. [PMID: 33014050 PMCID: PMC7512061 DOI: 10.1155/2020/2752417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Checkpoint kinase 1 (CHK1) plays a key role in genome surveillance and integrity throughout the cell cycle. Selective inhibitors of CHK1 (CHK1i) are undergoing clinical evaluation for various human malignancies, including neuroblastoma. Recently, we reported that CHK1i, PF-477736, induced a p53-mediated DNA damage response. As a result, the cancer cells were able to repair DNA damage and became less sensitive to CHK1i. In this study, we discovered that PF-477736 increased expression of MDM2 oncogene along with CHK1i-induced replication defects in neuroblastoma NB-39-nu cells. A mass spectrometry analysis of protein binding to MDM2 in the presence of CHK1i identified the centrosome-associated family protein 131 (CEP131), which was correlated with unfavorable prognosis of neuroblastoma patients. We revealed that MDM2 was associated with CEP131 protein degradation, whereas overexpression of CEP131 accelerated neuroblastoma cell growth and exhibited resistance to CHK1i-induced replication defects. Thus, these findings may provide a future therapeutic strategy against centrosome-associated oncogenes involving CEP131 as a target in neuroblastoma.
Collapse
|
14
|
Ngoi NY, Sundararajan V, Tan DS. Exploiting replicative stress in gynecological cancers as a therapeutic strategy. Int J Gynecol Cancer 2020; 30:1224-1238. [PMID: 32571890 PMCID: PMC7418601 DOI: 10.1136/ijgc-2020-001277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Elevated levels of replicative stress in gynecological cancers arising from uncontrolled oncogenic activation, loss of key tumor suppressors, and frequent defects in the DNA repair machinery are an intrinsic vulnerability for therapeutic exploitation. The presence of replication stress activates the DNA damage response and downstream checkpoint proteins including ataxia telangiectasia and Rad3 related kinase (ATR), checkpoint kinase 1 (CHK1), and WEE1-like protein kinase (WEE1), which trigger cell cycle arrest while protecting and restoring stalled replication forks. Strategies that increase replicative stress while lowering cell cycle checkpoint thresholds may allow unrepaired DNA damage to be inappropriately carried forward in replicating cells, leading to mitotic catastrophe and cell death. Moreover, the identification of fork protection as a key mechanism of resistance to chemo- and poly (ADP-ribose) polymerase inhibitor therapy in ovarian cancer further increases the priority that should be accorded to the development of strategies targeting replicative stress. Small molecule inhibitors designed to target the DNA damage sensors, such as inhibitors of ataxia telangiectasia-mutated (ATM), ATR, CHK1 and WEE1, impair smooth cell cycle modulation and disrupt efficient DNA repair, or a combination of the above, have demonstrated interesting monotherapy and combinatorial activity, including the potential to reverse drug resistance and have entered developmental pipelines. Yet unresolved challenges lie in balancing the toxicity profile of these drugs in order to achieve a suitable therapeutic index while maintaining clinical efficacy, and selective biomarkers are urgently required. Here we describe the premise for targeting of replicative stress in gynecological cancers and discuss the clinical advancement of this strategy.
Collapse
Affiliation(s)
| | | | - David Sp Tan
- National University Cancer Institute, Singapore
- Cancer Science Institute, National University of Singapore, Singapore
| |
Collapse
|
15
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|