1
|
Anraku T, Murata M, Kuroki H, Kazama A, Shirono Y, Tasaki M, Bilim V, Tomita Y. Selective HDAC6 Inhibition Has the Potential for Anti-Cancer Effect in Renal Cell Carcinoma. J Pers Med 2024; 14:704. [PMID: 39063958 PMCID: PMC11278056 DOI: 10.3390/jpm14070704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant advancements in systemic therapy for renal cell carcinoma (RCC), the prognosis for patients with metastatic RCC remains poor, as they are often incurable. Consequently, there is an urgent need for innovative therapeutic strategies to further enhance the efficacy of RCC treatment and improve patient outcomes. One such promising avenue lies in targeting histone deacetylase (HDAC) 6, a protein known to regulate numerous crucial biological processes implicated in cancer progression by modulating the acetylation status of various cytoplasmic proteins. To explore the therapeutic potential of HDAC6 inhibition in RCC, our study focused on investigating the effects of HDAC6 inhibitors on cultured RCC cells. Utilizing a panel of 12 small molecule selective HDAC6 inhibitors and employing genetic knockdown techniques, we examined the impact of HDAC6 inhibition on RCC cellular dynamics. Our findings revealed that HDAC6 inhibition exerted a profound effect on RCC cells, resulting in decreased cell viability and DNA replication. Importantly, this effect was attributed to the induction of apoptosis. Our study provides valuable insights into the mechanisms underlying the anticancer effects of selective HDAC6 inhibitors on RCC. A detailed understanding of the molecular mechanisms underlying the anticancer effects of HDAC6 inhibition is important to explore new therapeutic strategies for metastatic RCC.
Collapse
Affiliation(s)
- Tsutomu Anraku
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Masaki Murata
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Hiroo Kuroki
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Akira Kazama
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Yuko Shirono
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Masayuki Tasaki
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Vladimir Bilim
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
- Department of Urology, Kameda Daiichi Hospital, Niigata 950-0165, Japan
| | - Yoshihiko Tomita
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| |
Collapse
|
2
|
Schiedlauske K, Deipenbrock A, Pflieger M, Hamacher A, Hänsel J, Kassack MU, Kurz T, Teusch NE. Novel Histone Deacetylase (HDAC) Inhibitor Induces Apoptosis and Suppresses Invasion via E-Cadherin Upregulation in Pancreatic Ductal Adenocarcinoma (PDAC). Pharmaceuticals (Basel) 2024; 17:752. [PMID: 38931419 PMCID: PMC11206922 DOI: 10.3390/ph17060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal form of pancreatic cancer characterized by therapy resistance and early metastasis, resulting in a low survival rate. Histone deacetylase (HDAC) inhibitors showed potential for the treatment of hematological malignancies. In PDAC, the overexpression of HDAC 2 is associated with the epithelial-mesenchymal transition (EMT), principally accompanied by the downregulation of the epithelial marker E-cadherin and increased metastatic capacity. The effector cytokine transforming growth factor-β (TGF β) is known to be a major inducer of the EMT in PDAC, leading to high metastatic and invasive potential. In addition, the overexpression of HDAC 6 in PDAC is associated with reduced apoptosis. Here, we have demonstrated that a novel HDAC 2/6 inhibitor not only significantly increased E-cadherin expression in PANC-1 cells (5.5-fold) and in 3D PDAC co-culture spheroids (2.5-fold) but was also able to reverse the TGF-β-induced downregulation of E-cadherin expression. Moreover, our study indicates that the HDAC inhibitor mediated re-differentiation resulting in a significant inhibition of tumor cell invasion by approximately 60% compared to control. In particular, we have shown that the HDAC inhibitor induces both apoptosis (2-fold) and cell cycle arrest. In conclusion, the HDAC 2/6 inhibitor acts by suppressing invasion via upregulating E-cadherin mediated by HDAC 2 blockade and by inducing cell cycle arrest leading to apoptosis via HDAC 6 inhibition. These results suggest that the HDAC 2/6 inhibitor might represent a novel therapeutic strategy for the treatment of PDAC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marc Pflieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jan Hänsel
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Nicole E. Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Wright CA, Gordon ER, Cooper SJ. Genomic analysis reveals HDAC1 regulates clinically relevant transcriptional programs in Pancreatic cancer. BMC Cancer 2023; 23:1137. [PMID: 37996815 PMCID: PMC10666341 DOI: 10.1186/s12885-023-11645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Novel strategies are needed to combat multidrug resistance in pancreatic ductal adenocarcinoma (PDAC). We applied genomic approaches to understand mechanisms of resistance in order to better inform treatment and precision medicine. Altered function of chromatin remodeling complexes contribute to chemoresistance. Our study generates and analyzes genomic and biochemical data from PDAC cells overexpressing HDAC1, a histone deacetylase involved in several chromatin remodeling complexes. We characterized the impact of overexpression on drug response, gene expression, HDAC1 binding, and chromatin structure using RNA-sequencing and ChIP-sequencing for HDAC1 and H3K27 acetylation. Integrative genomic analysis shows that HDAC1 overexpression promotes activation of key resistance pathways including epithelial to mesenchymal transition, cell cycle, and apoptosis through global chromatin remodeling. Target genes are similarly altered in patient tissues and show correlation with patient survival. We also demonstrate that direct targets of HDAC1 that also show altered chromatin are enriched near genes associated with altered GTPase activity. HDAC1 target genes identified using in vitro methods and observed in patient tissues were used to develop a clinically relevant nine-transcript signature associated with patient prognosis. Integration of multiple genomic and biochemical data types enables understanding of multidrug resistance and tumorigenesis in PDAC, a disease in desperate need of novel treatment strategies.
Collapse
Affiliation(s)
- Carter A Wright
- The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Emily R Gordon
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.
| |
Collapse
|
4
|
Kawata M, McClatchy DB, Diedrich JK, Olmer M, Johnson KA, Yates JR, Lotz MK. Mocetinostat activates Krüppel-like factor 4 and protects against tissue destruction and inflammation in osteoarthritis. JCI Insight 2023; 8:e170513. [PMID: 37681413 PMCID: PMC10544226 DOI: 10.1172/jci.insight.170513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/19/2023] [Indexed: 09/09/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder, and disease-modifying OA drugs (DMOADs) represent a major need in OA management. Krüppel-like factor 4 (KLF4) is a central transcription factor upregulating regenerative and protective functions in joint tissues. This study was aimed to identify small molecules activating KLF4 expression and to determine functions and mechanisms of the hit compounds. High-throughput screening (HTS) with 11,948 clinical-stage compounds was performed using a reporter cell line detecting endogenous KLF4 activation. Eighteen compounds were identified through the HTS and confirmed in a secondary screen. After testing in SW1353 chondrosarcoma cells and human chondrocytes, mocetinostat - a class I selective histone deacetylase (HDAC) inhibitor - had the best profile of biological activities. Mocetinostat upregulated cartilage signature genes in human chondrocytes, meniscal cells, and BM-derived mesenchymal stem cells, and it downregulated hypertrophic, inflammatory, and catabolic genes in those cells and synoviocytes. I.p. administration of mocetinostat into mice reduced severity of OA-associated changes and improved pain behaviors. Global gene expression and proteomics analyses revealed that regenerative and protective effects of mocetinostat were dependent on peroxisome proliferator-activated receptor γ coactivator 1-α. These findings show therapeutic and protective activities of mocetinostat against OA, qualifying it as a candidate to be used as a DMOAD.
Collapse
Affiliation(s)
- Manabu Kawata
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Daniel B. McClatchy
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | | | - John R. Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Martin K. Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
5
|
Djokovic N, Djuric A, Ruzic D, Srdic-Rajic T, Nikolic K. Correlating Basal Gene Expression across Chemical Sensitivity Data to Screen for Novel Synergistic Interactors of HDAC Inhibitors in Pancreatic Carcinoma. Pharmaceuticals (Basel) 2023; 16:294. [PMID: 37259439 PMCID: PMC9964546 DOI: 10.3390/ph16020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 11/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies. Development of the chemoresistance in the PDAC is one of the key contributors to the poor survival outcomes and the major reason for urgent development of novel pharmacological approaches in a treatment of PDAC. Systematically tailored combination therapy holds the promise for advancing the treatment of PDAC. However, the number of possible combinations of pharmacological agents is too large to be explored experimentally. In respect to the many epigenetic alterations in PDAC, epigenetic drugs including histone deacetylase inhibitors (HDACi) could be seen as the game changers especially in combined therapy settings. In this work, we explored a possibility of using drug-sensitivity data together with the basal gene expression of pancreatic cell lines to predict combinatorial options available for HDACi. Developed bioinformatics screening protocol for predictions of synergistic drug combinations in PDAC identified the sphingolipid signaling pathway with associated downstream effectors as a promising novel targets for future development of multi-target therapeutics or combined therapy with HDACi. Through the experimental validation, we have characterized novel synergism between HDACi and a Rho-associated protein kinase (ROCK) inhibitor RKI-1447, and between HDACi and a sphingosine 1-phosphate (S1P) receptor agonist fingolimod.
Collapse
Affiliation(s)
- Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ana Djuric
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
6
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
7
|
Jo JH, Jung DE, Lee HS, Park SB, Chung MJ, Park JY, Bang S, Park SW, Cho S, Song SY. A phase I/II study of ivaltinostat combined with gemcitabine and erlotinib in patients with untreated locally advanced or metastatic pancreatic adenocarcinoma. Int J Cancer 2022; 151:1565-1577. [PMID: 35657348 PMCID: PMC9545559 DOI: 10.1002/ijc.34144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022]
Abstract
This phase I/II study evaluated the safety and efficacy of a new histone deacetylase (HDAC) inhibitor, ivaltinostat, in combination with gemcitabine and erlotinib for advanced pancreatic ductal adenocarcinoma (PDAC). Patients diagnosed with unresectable, histologically confirmed PDAC who had not undergone previous therapy were eligible. Phase I had a 3 + 3 dose escalation design to determine the maximum tolerable dose (MTD) of ivaltinostat (intravenously on days 1, 8 and 15) with gemcitabine (1000 mg/m2 intravenously on days 1, 8 and 15) and erlotinib (100 mg/day, orally) for a 28-day cycle. In phase II, patients received a six-cycle treatment with the MTD of ivaltinostat determined in phase I. The primary endpoint was the objective response rate (ORR). Secondary endpoints included overall survival (OS), disease control rate (DCR) and progression-free survival (PFS). The MTD of ivaltinostat for the phase II trial was determined to be 250 mg/m2 . In phase II, 24 patients were enrolled. The median OS and PFS were 8.6 (95% confidence interval [CI]: 5.3-11.2) and 5.3 months (95% CI: 3.7-5.8). Of the 16 patients evaluated for response, ORR and DCR were 25.0% and 93.8% with a median OS/PFS of 10.8 (95% CI: 8.3-16.7)/5.8 (95% CI: 4.6-6.7) months. Correlative studies showed that mutation burden detected by cfDNA and specific blood markers such as TIMP1, pro-MMP10, PECAM1, proMMP-2 and IGFBP1 were associated with clinical outcomes. Although the result of a small study, a combination of ivaltinostat, gemcitabine and erlotinib appeared to be a potential treatment option for advanced PDAC.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Dawoon E. Jung
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Sangsook Cho
- CG PharmaceuticalsOrindaCaliforniaUSA
- CrystalGenomicsSeongnamsi, GyeonggidoSouth Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
8
|
Hagiwara R, Kageyama K, Iwasaki Y, Niioka K, Daimon M. Effects of tubastatin A on adrenocorticotropic hormone synthesis and proliferation of AtT-20 corticotroph tumor cells. Endocr J 2022; 69:1053-1060. [PMID: 35296577 DOI: 10.1507/endocrj.ej21-0778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cushing's disease is an endocrine disorder characterized by hypercortisolism, mainly caused by autonomous production of ACTH from pituitary adenomas. Autonomous ACTH secretion results in excess cortisol production from the adrenal glands, and corticotroph adenoma cells disrupt the normal cortisol feedback mechanism. Pan-histone deacetylase (HDAC) inhibitors inhibit cell proliferation and ACTH production in AtT-20 corticotroph tumor cells. A selective HDAC6 inhibitor has been known to exert antitumor effects and reduce adverse effects related to the inhibition of other HDACs. The current study demonstrated that the potent and selective HDAC6 inhibitor tubastatin A has inhibitory effects on proopiomelanocortin (Pomc) and pituitary tumor-transforming gene 1 (Pttg1) mRNA expression, involved in cell proliferation. The phosphorylated Akt/Akt protein levels were increased after treatment with tubastatin A. Therefore, the proliferation of corticotroph cells may be regulated through the Akt-Pttg1 pathway. Dexamethasone treatment also decreased the Pomc mRNA level. Combined tubastatin A and dexamethasone treatment showed additive effects on the Pomc mRNA level. Thus, tubastatin A may have applications in the treatment of Cushing's disease.
Collapse
Affiliation(s)
- Rie Hagiwara
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | | | - Kanako Niioka
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
9
|
Knoche SM, Brumfield GL, Goetz BT, Sliker BH, Larson AC, Olson MT, Poelaert BJ, Bavari A, Yan Y, Black JD, Solheim JC. The histone deacetylase inhibitor M344 as a multifaceted therapy for pancreatic cancer. PLoS One 2022; 17:e0273518. [PMID: 36126055 PMCID: PMC9488834 DOI: 10.1371/journal.pone.0273518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
The histone deacetylase (HDAC) inhibitor vorinostat, used with gemcitabine and other therapies, has been effective in treatment of experimental models of pancreatic cancer. In this study, we demonstrated that M344, an HDAC inhibitor, is efficacious against pancreatic cancer in vitro and in vivo, alone or with gemcitabine. By 24 hours post-treatment, M344 augments the population of pancreatic cancer cells in G1, and at a later time point (48 hours) it increases apoptosis. M344 inhibits histone H3 deacetylation and slows pancreatic cancer cell proliferation better than vorinostat, and it does not decrease the viability of a non-malignant cell line more than vorinostat. M344 also elevates pancreatic cancer cell major histocompatibility complex (MHC) class I molecule expression, potentially increasing the susceptibility of pancreatic cancer cells to T cell lysis. Taken together, our findings support further investigation of M344 as a pancreatic cancer treatment.
Collapse
Affiliation(s)
- Shelby M. Knoche
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Gabrielle L. Brumfield
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benjamin T. Goetz
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bailee H. Sliker
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Madeline T. Olson
- Department of Pharmaceutical Sciences, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Brittany J. Poelaert
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Audrey Bavari
- University of Nebraska at Omaha, Omaha, NE, United States of America
| | - Ying Yan
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
10
|
Jo H, Shim K, Jeoung D. Targeting HDAC6 to Overcome Autophagy-Promoted Anti-Cancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23179592. [PMID: 36076996 PMCID: PMC9455701 DOI: 10.3390/ijms23179592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) regulate gene expression through the epigenetic modification of chromatin structure. HDAC6, unlike many other HDACs, is present in the cytoplasm. Its deacetylates non-histone proteins and plays diverse roles in cancer cell initiation, proliferation, autophagy, and anti-cancer drug resistance. The development of HDAC6-specific inhibitors has been relatively successful. Mechanisms of HDAC6-promoted anti-cancer drug resistance, cancer cell proliferation, and autophagy are discussed. The relationship between autophagy and anti-cancer drug resistance is discussed. The effects of combination therapy, which includes HDAC6 inhibitors, on the sensitivity of cancer cells to chemotherapeutics and immune checkpoint blockade are presented. A summary of clinical trials involving HDAC6-specific inhibitors is also presented. This review presents HDAC6 as a valuable target for developing anti-cancer drugs.
Collapse
|
11
|
Sim W, Lim WM, Hii LW, Leong CO, Mai CW. Targeting pancreatic cancer immune evasion by inhibiting histone deacetylases. World J Gastroenterol 2022; 28:1934-1945. [PMID: 35664961 PMCID: PMC9150054 DOI: 10.3748/wjg.v28.i18.1934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a vital role in maintaining the delicate balance between immune recognition and tumor development. Regardless, it is not uncommon that cancerous cells can intelligently acquire abilities to bypass the antitumor immune responses, thus allowing continuous tumor growth and development. Immune evasion has emerged as a significant factor contributing to the progression and immune resistance of pancreatic cancer. Compared with other cancers, pancreatic cancer has a tumor microenvironment that can resist most treatment modalities, including emerging immunotherapy. Sadly, the use of immunotherapy has yet to bring significant clinical breakthrough among pancreatic cancer patients, suggesting that pancreatic cancer has successfully evaded immunomodulation. In this review, we summarize the impact of genetic alteration and epigenetic modification (especially histone deacetylases, HDAC) on immune evasion in pancreatic cancer. HDAC overexpression significantly suppresses tumor suppressor genes, contributing to tumor growth and progression. We review the evidence on HDAC inhibitors in tumor eradication, improving T cells activation, restoring tumor immunogenicity, and modulating programmed death 1 interaction. We provide our perspective in targeting HDAC as a strategy to reverse immune evasion in pancreatic cancer.
Collapse
Affiliation(s)
- Wynne Sim
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ling-Wei Hii
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
- AGTC Genomics, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Murphy SA, Mapes NJ, Dua D, Kaur B. Histone modifiers at the crossroads of oncolytic and oncogenic viruses. Mol Ther 2022; 30:2153-2162. [PMID: 35143960 DOI: 10.1016/j.ymthe.2022.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease caused by loss of regulatory processes that control cell cycle, resulting in increased proliferation. The loss of control can deregulate both tumor suppressors and oncogenes. Apart from cell intrinsic gene mutations and environmental factors, infection by cancer-causing viruses also induces changes that lead to malignant transformation. This can be caused by both expression of oncogenic viral proteins and also by changes in cellular genes and proteins that affect the epigenome. Thus, these epigenetic modifiers are good therapeutic targets, and several epigenetic inhibitors are approved for the treatment of different cancers. In addition to small molecule drugs, biological therapies such as antibodies and viral therapies are also increasingly being used to treat cancer. An HSV-1 derived oncolytic virus is currently approved by the US FDA and the European Medicines Agency. Similarly, an adenovirus-based therapeutic is approved for use in China for some cancer types. Since viruses can affect cellular epigenetics, the interaction of epigenome-targeting drugs with oncogenic and oncolytic viruses is a highly significant area of investigation. Here we will review the current knowledge about the impact of using epigenetic drugs in tumors positive for oncogenic viruses or as therapeutic combinations with oncolytic viruses.
Collapse
Affiliation(s)
- Sara A Murphy
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030;; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Norman John Mapes
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA 71270
| | | | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030;.
| |
Collapse
|
13
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Thompson JK, Bednar F. Clinical Utility of Epigenetic Changes in Pancreatic Adenocarcinoma. EPIGENOMES 2021; 5:20. [PMID: 34968245 PMCID: PMC8715475 DOI: 10.3390/epigenomes5040020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is a molecularly heterogeneous disease. Epigenetic changes and epigenetic regulatory mechanisms underlie at least some of this heterogeneity and contribute to the evolution of aggressive tumor biology in patients and the tumor's intrinsic resistance to therapy. Here we review our current understanding of epigenetic dysregulation in pancreatic cancer and how it is contributing to our efforts in early diagnosis, predictive and prognostic biomarker development and new therapeutic approaches in this deadly cancer.
Collapse
Affiliation(s)
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
15
|
Nguyen A, Dzulko M, Murr J, Yen Y, Schneider G, Krämer OH. Class 1 Histone Deacetylases and Ataxia-Telangiectasia Mutated Kinase Control the Survival of Murine Pancreatic Cancer Cells upon dNTP Depletion. Cells 2021; 10:2520. [PMID: 34685500 PMCID: PMC8534202 DOI: 10.3390/cells10102520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with a dismal prognosis. Here, we show how an inhibition of de novo dNTP synthesis by the ribonucleotide reductase (RNR) inhibitor hydroxyurea and an inhibition of epigenetic modifiers of the histone deacetylase (HDAC) family affect short-term cultured primary murine PDAC cells. We used clinically relevant doses of hydroxyurea and the class 1 HDAC inhibitor entinostat. We analyzed the cells by flow cytometry and immunoblot. Regarding the induction of apoptosis and DNA replication stress, hydroxyurea and the novel RNR inhibitor COH29 are superior to the topoisomerase-1 inhibitor irinotecan which is used to treat PDAC. Entinostat promotes the induction of DNA replication stress by hydroxyurea. This is associated with an increase in the PP2A subunit PR130/PPP2R3A and a reduction of the ribonucleotide reductase subunit RRM2 and the DNA repair protein RAD51. We further show that class 1 HDAC activity promotes the hydroxyurea-induced activation of the checkpoint kinase ataxia-telangiectasia mutated (ATM). Unlike in other cell systems, ATM is pro-apoptotic in hydroxyurea-treated murine PDAC cells. These data reveal novel insights into a cytotoxic, ATM-regulated, and HDAC-dependent replication stress program in PDAC cells.
Collapse
Affiliation(s)
- Alexandra Nguyen
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| | - Melanie Dzulko
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| | - Janine Murr
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675 München, Germany; (J.M.); (G.S.)
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu Hsing Street, Taipei 110, Taiwan;
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675 München, Germany; (J.M.); (G.S.)
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| |
Collapse
|
16
|
Bieszczad B, Garbicz D, Świtalska M, Dudek MK, Warszycki D, Wietrzyk J, Grzesiuk E, Mieczkowski A. Improved HDAC Inhibition, Stronger Cytotoxic Effect and Higher Selectivity against Leukemias and Lymphomas of Novel, Tricyclic Vorinostat Analogues. Pharmaceuticals (Basel) 2021; 14:851. [PMID: 34577551 PMCID: PMC8470702 DOI: 10.3390/ph14090851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are a class of drugs used in the cancer treatment. Here, we developed a library of 19 analogues of Vorinostat, an HDAC inhibitor used in lymphomas treatment. In Vorinostat, we replaced the hydrophobic phenyl group with various tricyclic 'caps' possessing a central, eight-membered, heterocyclic ring, and investigated the HDAC activity and cytotoxic effect on the cancer and normal cell lines. We found that 3 out of the 19 compounds, based on dibenzo[b,f]azocin-6(5H)-one, 11,12-dihydrodibenzo[b,f]azocin-6(5H)-one, and benzo[b]naphtho[2,3-f][1,5]diazocine-6,14(5H,13H)-dione scaffolds, showed better HDACs inhibition than the referenced Vorinostat. In leukemic cell line MV4-11 and in the lymphoma cell line Daudi, three compounds showed lower IC50 values than Vorinostat. These compounds had higher activity and selectivity against MV4-11 and Daudi cell lines than reference Vorinostat. We also observed a strong correlation between HDACs inhibition and the cytotoxic effect. Cell lines derived from solid tumours: A549 (lung carcinoma) and MCF-7 (breast adenocarcinoma) as well as reference BALB/3T3 (normal murine fibroblasts) were less susceptible to compounds tested. Developed derivatives show improved properties than Vorinostat, thus they could be considered as possible agents for leukemia and lymphoma treatment.
Collapse
Affiliation(s)
- Bartosz Bieszczad
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (B.B.); (D.G.)
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (B.B.); (D.G.)
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ś.); (J.W.)
| | - Marta K. Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Dawid Warszycki
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland;
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ś.); (J.W.)
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (B.B.); (D.G.)
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (B.B.); (D.G.)
| |
Collapse
|
17
|
Chen N, Zheng Q, Wan G, Guo F, Zeng X, Shi P. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments. Cancer Metastasis Rev 2021; 40:739-759. [PMID: 34342796 DOI: 10.1007/s10555-021-09980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is a highly aggressive cancer, with a 9% 5-year survival rate and a high risk of recurrence. In part, this is because PC is composed of heterogeneous subgroups with different biological and functional characteristics and personalized anticancer treatments are required. Posttranslational modifications (PTMs) play an important role in modifying protein functions/roles and are required for the maintenance of cell viability and biological processes; thus, their dysregulation can lead to disease. Different types of PTMs increase the functional diversity of the proteome, which subsequently influences most aspects of normal cell biology or pathogenesis. This review primarily focuses on ubiquitination, SUMOylation, and NEDDylation, as well as the current understanding of their roles and molecular mechanisms in pancreatic carcinogenesis. Additionally, we briefly summarize studies and clinical trials on PC treatments to advance our knowledge of drugs available to target the ubiquitination, SUMOylation, and NEDDylation PTM types. Further investigation of PTMs could be a critical field of study in relation to PC, as they have been implicated in the initiation and progression of many other types of cancer.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
- Department of Cell Biology & University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China
| | - Feng Guo
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
18
|
Siklos M, Kubicek S. Therapeutic targeting of chromatin: status and opportunities. FEBS J 2021; 289:1276-1301. [PMID: 33982887 DOI: 10.1111/febs.15966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The molecular characterization of mechanisms underlying transcriptional control and epigenetic inheritance since the 1990s has paved the way for the development of targeted therapies that modulate these pathways. In the past two decades, cancer genome sequencing approaches have uncovered a plethora of mutations in chromatin modifying enzymes across tumor types, and systematic genetic screens have identified many of these proteins as specific vulnerabilities in certain cancers. Now is the time when many of these basic and translational efforts start to bear fruit and more and more chromatin-targeting drugs are entering the clinic. At the same time, novel pharmacological approaches harbor the potential to modulate chromatin in unprecedented fashion, thus generating entirely novel opportunities. Here, we review the current status of chromatin targets in oncology and describe a vision for the epigenome-modulating drugs of the future.
Collapse
Affiliation(s)
- Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
19
|
Wang X, Zhang L, Dai Q, Si H, Zhang L, Eltom SE, Si H. Combined Luteolin and Indole-3-Carbinol Synergistically Constrains ERα-Positive Breast Cancer by Dual Inhibiting Estrogen Receptor Alpha and Cyclin-Dependent Kinase 4/6 Pathway in Cultured Cells and Xenograft Mice. Cancers (Basel) 2021; 13:cancers13092116. [PMID: 33925607 PMCID: PMC8123907 DOI: 10.3390/cancers13092116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Anti-cancer effects of bioactive compounds have been extensively investigated; however, the effective dosages of the bioactive compounds are too high to be obtained by oral intake. Our study aimed to assess if combined two bioactive compounds, luteolin (LUT) and indole-3-carbinol (I3C), at low dosages that LUT or I3C along has no significant effect, synergistically exerts anti-breast cancer. We confirmed that combined LUT and I3C synergistically suppressed estrogen receptor-alpha positive breast cancer in cultured cells and cells-derived xenograft mice. Our results also indicated two possible molecular pathways involving the synergistic effects of the combination of LUT and I3C. Our findings provide a practical approach to treat or prevent breast cancer by combining two bioactive compounds. Abstract The high concentrations of individual phytochemicals in vitro studies cannot be physiologically achieved in humans. Our solution for this concentration gap between in vitro and human studies is to combine two or more phytochemicals. We screened 12 phytochemicals by pairwise combining two compounds at a low level to select combinations exerting the synergistic inhibitory effect of breast cancer cell proliferation. A novel combination of luteolin at 30 μM (LUT30) and indole-3-carbinol 40 μM (I3C40) identified that this combination (L30I40) synergistically constrains ERα+ breast cancer cell (MCF7 and T47D) proliferation only, but not triple-negative breast cancer cells. At the same time, the individual LUT30 and I3C40 do not have this anti-proliferative effect in ERα+ breast cancer cells. Moreover, this combination L30I40 does not have toxicity on endothelial cells compared to the current commercial drugs. Similarly, the combination of LUT and I3C (LUT10 mg + I3C10 mg/kg/day) (IP injection) synergistically suppresses tumor growth in MCF7 cells-derived xenograft mice, but the individual LUT (10 mg/kg/day) and I3C (20 mg/kg/day) do not show an inhibitory effect. This combination synergistically downregulates two major therapeutic targets ERα and cyclin dependent kinase (CDK) 4/6/retinoblastoma (Rb) pathway, both in cultured cells and xenograft tumors. These results provide a solid foundation that a combination of LUT and I3C may be a practical approach to treat ERα+ breast cancer cells after clinical trials.
Collapse
Affiliation(s)
- Xiaoyong Wang
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA; (X.W.); (L.Z.); (L.Z.)
- Vanderbilt University Medical Center, Department of Medicine, Division of Rheumatology and Immunology, Nashville, TN 37232, USA
| | - Lijuan Zhang
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA; (X.W.); (L.Z.); (L.Z.)
- Department of Veterinary Medicine, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Qi Dai
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA;
| | - Hongzong Si
- Institute of Computational Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China;
| | - Longyun Zhang
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA; (X.W.); (L.Z.); (L.Z.)
| | - Sakina E. Eltom
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Hongwei Si
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA; (X.W.); (L.Z.); (L.Z.)
- Correspondence:
| |
Collapse
|
20
|
Zhang XH, Qin-Ma, Wu HP, Khamis MY, Li YH, Ma LY, Liu HM. A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J Med Chem 2021; 64:1362-1391. [PMID: 33523672 DOI: 10.1021/acs.jmedchem.0c01782] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone deacetylases (HDACs) are essential for maintaining homeostasis by catalyzing histone deacetylation. Aberrant expression of HDACs is associated with various human diseases. Although HDAC inhibitors are used as effective chemotherapeutic agents in clinical practice, their applications remain limited due to associated side effects induced by weak isoform selectivity. HDAC6 displays unique structure and cellular localization as well as diverse substrates and exhibits a wider range of biological functions than other isoforms. HDAC6 inhibitors have been effectively used to treat cancers, neurodegenerative diseases, and autoimmune disorders without exerting significant toxic effects. Progress has been made in defining the crystal structures of HDAC6 catalytic domains which has influenced the structure-based drug design of HDAC6 inhibitors. This review summarizes recent literature on HDAC6 inhibitors with particular reference to structural specificity and functional diversity. It may provide up-to-date guidance for the development of HDAC6 inhibitors and perspectives for optimization of therapeutic applications.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qin-Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hui-Pan Wu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.,China Meheco Topfond Pharmaceutical Co., Ltd., Zhumadian, 463000, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
21
|
Ahmed AA, Neidle S. A G-Quadruplex-Binding Small Molecule and the HDAC Inhibitor SAHA (Vorinostat) Act Synergistically in Gemcitabine-Sensitive and Resistant Pancreatic Cancer Cells. Molecules 2020; 25:molecules25225407. [PMID: 33227941 PMCID: PMC7699281 DOI: 10.3390/molecules25225407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
The stabilisation of G-quadruplexes (G4s) by small-molecule compounds is an effective approach for causing cell growth arrest, followed by cell death. Some of these compounds are currently being developed for the treatment of human cancers. We have previously developed a substituted naphthalene diimide G4-binding molecule (CM03) with selective potency for pancreatic cancer cells, including gemcitabine-resistant cells. We report here that CM03 and the histone deacetylase (HDAC) inhibitor SAHA (suberanilohydroxamic acid) have synergistic effects at concentrations close to and below their individual GI50 values, in both gemcitabine-sensitive and resistant pancreatic cancer cell lines. Immunoblot analysis showed elevated levels of γ-H2AX and cleaved PARP proteins upon drug combination treatment, indicating increased levels of DNA damage (double-strand break events: DSBs) and apoptosis induction, respectively. We propose that the mechanism of synergy involves SAHA relaxing condensed chromatin, resulting in higher levels of G4 formation. In turn, CM03 can stabilise a greater number of G4s, leading to the downregulation of more G4-containing genes as well as a higher incidence of DSBs due to torsional strain on DNA and chromatin structure.
Collapse
|
22
|
Dawood M, Fleischer E, Klinger A, Bringmann G, Shan L, Efferth T. Inhibition of cell migration and induction of apoptosis by a novel class II histone deacetylase inhibitor, MCC2344. Pharmacol Res 2020; 160:105076. [PMID: 32659428 DOI: 10.1016/j.phrs.2020.105076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Epigenetic modifiers provide a new target for the development of anti-cancer drugs. The eraser histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that targets various non-histone proteins such as transcription factors, nuclear receptors, cytoskeletal proteins, DNA repair proteins, and molecular chaperones. Therefore, it became an attractive target for cancer treatment. In this study, virtual screening was applied to the MicroCombiChem database with 1162 drug-like compounds to identify new HDAC6 inhibitors. Five compounds were tested in silico and in vitro as HDAC6 inhibitors. Both analyses revealed 1-cyclohexene-1-carboxamide, 2-hydroxy-4,4-dimethyl-N-1-naphthalenyl-6-oxo- (MCC2344) as the best HDAC6 inhibitor among the five ligands. The binding affinity of MCC2344 to HDAC6 was further confirmed by microscale thermophoresis. Additionally, the anti-cancer activity of MCC2344 was tested in several tumor cell lines. Leukemia cells were the most sensitive cells towards MCC2344, particularly the P-glycoprotein-overexpressing multidrug-resistant cell line CEM/ADR5000 exhibited remarkable collateral sensitivity towards MCC2344. Transcriptome analysis using microarray hybridization was performed for investigating downstream mechanisms of action of MCC2344 in leukemia cells. MCC2344 affected microtubule dynamics and suppressed cell migration in the wound healing assay as well as in a spheroid model by hyper-acetylation of tubulin and HSP-90. MCC2344 induced cell death in CEM/ADR5000 cells by activation of PARP, caspase-3, and p21 in addition to the downregulation of p62. MCC2344 significantly inhibited tumor growth in vivo in zebrafish larvae without mortality until 20 pM. We propose MCC2344 as a novel HDAC6 inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | | | | | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
23
|
PAICS contributes to gastric carcinogenesis and participates in DNA damage response by interacting with histone deacetylase 1/2. Cell Death Dis 2020; 11:507. [PMID: 32632107 PMCID: PMC7338359 DOI: 10.1038/s41419-020-2708-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.
Collapse
|
24
|
Affiliation(s)
- Abdallah Hamze
- Equipe Labellisée Ligue Contre Le Cancer, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, BioCIS UMR 8076, Université Paris-Sud, CNRS, Université Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
25
|
Guo Q, Cheng K, Wang X, Li X, Yu Y, Hua Y, Yang Z. Expression of HDAC1 and RBBP4 correlate with clinicopathologic characteristics and prognosis in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:563-572. [PMID: 32269697 PMCID: PMC7137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Retinoblastoma binding protein 4 (RBBP4) plays an important role in transcription, cell cycle, and proliferation. Immunohistochemistry was performed to assess HDAC1 and RBBP4 expression in 240 BC patients. The expression of HDAC1 and RBBP4 in 12 pairs of BC tissues and their normal tissues was determined by western blotting. Kaplan-Meier analysis and Cox's proportional hazards regression were applied to evaluate the prognostic significance of HDAC1 and RBBP4. HDAC1 and RBBP4 expression in BC was significantly higher than that in normal tissues. HDAC1 was positively correlated with RBBP4 in breast cancer. HDAC1 and RBBP4 were negatively correlated with ER and PR in BC, respectively. The patients with high expression of RBBP4 had a worse overall survival time. The expression of RBBP4 was found to be significantly correlated with lymph node metastasis. RBBP4 may play a major role though HDAC1 in the development, metastasis, and prognosis of BC.
Collapse
Affiliation(s)
- Qingqun Guo
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Kai Cheng
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Xiaoqiang Li
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Yue Yu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Yitong Hua
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| |
Collapse
|