1
|
Zhang W, Guo G, Li X, Lin J, Zheng Z, Huang P, Lin C, Lin Y, Chen X, Lin K, Zheng C, Lin H, Lu Y, Zhang H. A bibliometric analysis of bladder cancer and microRNA research: Trends and advances from 2008 to 2022. Medicine (Baltimore) 2024; 103:e40289. [PMID: 39470484 PMCID: PMC11521070 DOI: 10.1097/md.0000000000040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Bladder cancer (BC) is a significant global health issue with high incidence and mortality rates. MicroRNAs (miRNAs) play a crucial role in regulating gene expression and have been found to be dysregulated in BC. Understanding the role of miRNAs in BC development could lead to targeted therapies and improved patient management. Our study presents a thorough examination of the correlation between BC and miRNA research from 2008 to 2022. With the help of 3 powerful methods, including VOSviewer, Biblioshiny, and CiteSpace software, we analyzed the retrieved documents from "Core Collection databases online" on the Web of Science. In total, 798 articles were extracted from the Web of Science, and the number of published papers showed an upward trend from 2008 to 2019. The total number of citations was 21,233, of which the highest paper was a review article written by Chan Jiajia et al in 2018 with 752 citations. Based on the result of the coauthor analysis, Seki Naohiko was the most productive writer and China had the highest volume of published articles. Co-citation analysis was used to reveal the knowledge structure of the research field. In addition to the keywords "Bladder cancer" and "miRNA," "Proliferation," "Biomarkers," and "Apoptosis" were the high-frequency used keywords. Recently, increasingly researchers have paid more attention to the field about BC and miRNA around the worldwide. Through in-depth communication and close collaboration, the veil of miRNA in BC has gradually been unveiled. Bibliometric analysis helps to identify hotspots in research and areas for future investigation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Gaowei Guo
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Xinji Li
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Jinming Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Zexian Zheng
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Peidong Huang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Chuqi Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Yurong Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Xiaosheng Chen
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Kuncheng Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Changzheng Zheng
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Huirong Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Yong Lu
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Hui Zhang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| |
Collapse
|
2
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
3
|
Ahmad SMS, Nazar H, Rahman MM, Rusyniak RS, Ouhtit A. ITGB1BP1, a Novel Transcriptional Target of CD44-Downstream Signaling Promoting Cancer Cell Invasion. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:373-380. [PMID: 37252376 PMCID: PMC10225144 DOI: 10.2147/bctt.s404565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Breast cancer (BC) is the most common malignancy worldwide and has a poor prognosis, because it begins in the breast and disseminates to lymph nodes and distant organs. While invading, BC cells acquire aggressive characteristics from the tumor microenvironment through several mechanisms. Thus, understanding the mechanisms underlying the process of BC cell invasion can pave the way towards the development of targeted therapeutics focused on metastasis. We have previously reported that the activation of CD44 receptor with its major ligand hyaluronan (HA) promotes BC metastasis to the liver in vivo. Next, a gene expression profiling microarray analysis was conducted to identify and validate CD44-downstream transcriptional targets mediating its pro-metastatic function from RNA samples collected from Tet CD44-induced versus control MCF7-B5 cells. We have already validated a number of novel CD44-target genes and published their underlying signaling pathways in promoting BC cell invasion. From the same microarray analysis, Integrin subunit beta 1 binding protein 1 (ITGB1BP1) was also identified as a potential CD44-target gene that was upregulated (2-fold) upon HA activation of CD44. This report will review the lines of evidence collected from the literature to support our hypothesis, and further discuss the possible mechanisms linking HA activation of CD44 to its novel potential transcriptional target ITGB1BP1.
Collapse
Affiliation(s)
- Salma M S Ahmad
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Hanan Nazar
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Md Mizanur Rahman
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Radoslaw Stefan Rusyniak
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Shiau JP, Chuang YT, Yen CY, Chang FR, Yang KH, Hou MF, Tang JY, Chang HW. Modulation of AKT Pathway-Targeting miRNAs for Cancer Cell Treatment with Natural Products. Int J Mol Sci 2023; 24:ijms24043688. [PMID: 36835100 PMCID: PMC9961959 DOI: 10.3390/ijms24043688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
5
|
Ginckels P, Holvoet P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:129-152. [PMID: 35370493 PMCID: PMC8961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
High oxidative stress, Th1/Th17 immune response, M1 macrophage inflammation, and cell death are associated with cardiovascular diseases. Controlled oxidative stress, Th2/Treg anti-tumor immune response, M2 macrophage inflammation, and survival are associated with cancer. MiR-21 protects against cardiovascular diseases but may induce tumor growth by retaining the anti-inflammatory M2 macrophage and Treg phenotypes and inhibiting apoptosis. Down-regulation of let-7, miR-1, miR-9, miR-16, miR-20a, miR-22a, miR-23a, miR-24a, miR-26a, miR-29, miR-30a, miR-34a, miR-124, miR-128, miR-130a, miR-133, miR-140, miR-143-145, miR-150, miR-153, miR-181a, miR-378, and miR-383 may aid cancer cells to escape from stresses. Upregulation of miR-146 and miR-223 may reduce anti-tumor immune response together with miR-21 that also protects against apoptosis. MiR-155 and silencing of let-7e, miR-125, and miR-126 increase anti-tumor immune response. MiR expression depends on oxidative stress, cytokines, MYC, and TGF-β, and expression of silencing lncRNAs and circ-RNAs. However, one lncRNA or circ-RNA may have opposite effects by targeting several miRs. For example, PVT1 induces apoptosis by targeting miR-16a and miR-30a but inhibits apoptosis by silencing miR-17. In addition, levels of a non-coding RNA in a cell type depend not only on expression in that cell type but also on an exchange of microvesicles between cell types and tumors. Although we got more insight into the function of a growing number of individual non-coding RNAs, overall, we do not know enough how several of them interact in functional networks and how their expression changes at different stages of disease progression.
Collapse
Affiliation(s)
- Pieterjan Ginckels
- Department of Architecture, Brussels and Gent, KU Leuven, Leuven, Belgium
| | - Paul Holvoet
- Experimental Cardiology, KU Leuven, Leuven, Belgium,To whom all correspondence should be addressed: Paul Holvoet, Experimental
Cardiology, KU Leuven, Belgium; ; ORCID iD:
https://orcid.org/0000-0001-9201-0772
| |
Collapse
|
6
|
Szymonik J, Wala K, Górnicki T, Saczko J, Pencakowski B, Kulbacka J. The Impact of Iron Chelators on the Biology of Cancer Stem Cells. Int J Mol Sci 2021; 23:ijms23010089. [PMID: 35008527 PMCID: PMC8745085 DOI: 10.3390/ijms23010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neoplastic diseases are still a major medical challenge, requiring a constant search for new therapeutic options. A serious problem of many cancers is resistance to anticancer drugs and disease progression in metastases or local recurrence. These characteristics of cancer cells may be related to the specific properties of cancer stem cells (CSC). CSCs are involved in inhibiting cells’ maturation, which is essential for maintaining their self-renewal capacity and pluripotency. They show increased expression of transcription factor proteins, which were defined as stemness-related markers. This group of proteins includes OCT4, SOX2, KLF4, Nanog, and SALL4. It has been noticed that the metabolism of cancer cells is changed, and the demand for iron is significantly increased. Iron chelators have been proven to have antitumor activity and influence the expression of stemness-related markers, thus reducing chemoresistance and the risk of tumor cell progression. This prompts further investigation of these agents as promising anticancer novel drugs. The article presents the characteristics of stemness markers and their influence on the development and course of neoplastic disease. Available iron chelators were also described, and their effects on cancer cells and expression of stemness-related markers were analyzed.
Collapse
Affiliation(s)
- Julia Szymonik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Botany, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-06-88
| |
Collapse
|
7
|
The correlation of epithelial-mesenchymal transition-related gene expression and the clinicopathologic features of colorectal cancer patients in Taiwan. PLoS One 2021; 16:e0254000. [PMID: 34214117 PMCID: PMC8253430 DOI: 10.1371/journal.pone.0254000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in the world. It has been the most prevalent malignancy in Taiwan for consecutive thirteen years. Despite the diversity of its etiologic and pathophysiologic factors, a biological process named as epithelial-mesenchymal transition (EMT) is indispensable in the progression of epithelial cancer. Our aim is to investigate the correlation between the expression of 8 EMT-related proteins (E-cadherin, β-catenin, claudin-1, CD44, N-cadherin, fibronectin, vimentin, S100A4) and the clinicopathologic features of CRC in Taiwan, along with the DNA CpG epigenetic status of CD44 gene. In immunohistochemical assessment, decreased expression of E-cadherin is statistically associated with the progression of cancer stage, while decreased expression of claudin-1 as well as increased β-catenin nuclear translocation and N-cadherin expression is statistically associated with the progression of histopathologic grade. E-cadherin, nuclear β-catenin and claudin-1 are also associated with other important prognostic factors, including nodal metastasis, tumor deposits, and elevated serum CA 19-9 levels. In addition, the left-sided colon and rectal cancers show increased nuclear translocation of β-catenin compared to the right-sided colon cancers, while the rectal cancers show increased fibronectin expression compared to the right-sided and left-sided colon cancers. Moreover, vimentin is aberrantly expressed in one case of signet-ring cell carcinoma. The DNA methylation levels of CD44 gene promoter between the tumoral and non-tumorous tissues by NGS comparison showed statistical difference on six CpG sites. However, such difference may not be sufficient because these DNA methylation proportions are too low to inactivate CD44 gene. Our results demonstrate the expression of E-cadherin, claudin-1, and nuclear β-catenin is closely related to the clinicopathologic prognostic determinants of CRC in Taiwan. The DNA methylation level of CD44 gene and its protein expression, however, show no correlation with the clinicopathologic features in CRC.
Collapse
|
8
|
Wang C, Mao C, Lai Y, Cai Z, Chen W. MMP1 3'UTR facilitates the proliferation and migration of human oral squamous cell carcinoma by sponging miR-188-5p to up-regulate SOX4 and CDK4. Mol Cell Biochem 2021; 476:785-796. [PMID: 33090337 DOI: 10.1007/s11010-020-03944-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/10/2020] [Indexed: 12/24/2022]
Abstract
Growing evidence indicates that the non-coding 3'-untranslated region (3'UTR) of genes acts as competing endogenous RNAs (ceRNAs) to exert their roles in a number of diseases, including cancer. In the present study, MMP1 messenger RNA was identified to be significantly up-regulated in oral squamous cell carcinoma (OSCC) tissues, and both MMP1 and its 3'UTR promoted tumor growth and cell motility. Further mechanism investigations indicated that MMP1 3'UTR was able to antagonize miR-188-5p; in addition, overexpression of MMP1 3'UTR up-regulated the expression level of SOX4 and CDK4, target genes of miR-188-5p, which have also been identified as oncogenic driver genes in OSCC. Therefore, a ceRNA regulatory network among MMP1, SOX4, and CDK4 mediated via competing for binding to miR-188-5p was proved. Taken together, the present study demonstrates for the first time that MMP1 mRNA participates in the development of OSCC via ceRNA regulatory mechanism and genes involved in the ceRNA network may provide a novel avenue for target therapy.
Collapse
Affiliation(s)
- Chengyong Wang
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chuanqing Mao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhiyu Cai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Abstract
The protein-coding regions of mRNAs have the information to make proteins and hence have been at the center of attention for understanding altered protein functions in disease states, including cancer. Indeed, the discovery of genomic alterations and driver mutations that change protein levels and/or activity has been pivotal in our understanding of cancer biology. However, to better understand complex molecular mechanisms that are deregulated in cancers, we also need to look at non-coding parts of mRNAs, including 3'UTRs (untranslated regions), which control mRNA stability, localization, and translation efficiency. Recently, these rather overlooked regions of mRNAs are gaining attention as mounting evidence provides functional links between 3'UTRs, protein functions, and cancer-related molecular mechanisms. Here, roles of 3'UTRs in cancer biology and mechanisms that result in cancer-specific 3'-end isoform variants will be reviewed. An increased appreciation of 3'UTRs may help the discovery of new ways to explain as of yet unknown oncogene activation and tumor suppressor inactivation cases in cancers, and provide new avenues for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ayse Elif Erson-Bensan
- Department of Biological Sciences and Cancer Systems Biology Laboratory, Middle East Technical University (METU, ODTU), Dumlupinar Blv No: 1, Universiteler Mah, 06800, Ankara, Turkey.
| |
Collapse
|
10
|
Gao X, Lu C, Chen C, Sun K, Liang Q, Shuai J, Wang X, Xu Y. ARPP-19 Mediates Herceptin Resistance via Regulation of CD44 in Gastric Cancer. Onco Targets Ther 2020; 13:6629-6643. [PMID: 32753897 PMCID: PMC7354958 DOI: 10.2147/ott.s253841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose As the first-line drug for treatment of HER2-positive metastatic gastric cancer (GC), Herceptin exhibits significant therapeutic efficacy. However, acquired resistance of Herceptin limits the therapeutic benefit of gastric cancer patients, in which the molecular mechanisms remain to be further determined. Methods Quantitative real-time polymerase chain reaction was performed to detect the mRNA levels of ARPP-19 and CD44 in GC cells. Protein levels were determined using Western blot and IHC staining. MTT and soft agar colony formation assays were used to measure cell proliferation. Xenograft model was established to verify the functional role of ARPP-19 in Herceptin resistance in vivo. Sphere formation assay was conducted to determine cell stemness. Results We observed ARPP-19 was up-regulated in Herceptin resistance gastric cancer cells NCI-N87-HR and MKN45-HR. The forced expression of ARPP-19 promoted, whereas the silencing of ARPP-19 impaired Herceptin resistance of HER2-positive gastric cancer cells both in vitro and in vivo. Moreover, ARPP-19 significantly enhanced the sphere formation capacity and CD44 expression, CD44 was also a positive factor of Herceptin resistance in HER2-positive gastric cancer cells. In addition, high level of ARPP-19 was positively associated with Herceptin resistance and poor survival rate of gastric cancer patients. Conclusion We have demonstrated that ARPP-19 promoted Herceptin resistance of gastric cancer via up-regulation of CD44, our study suggested that ARPP-19 could be a potential diagnostic and therapeutic candidate for HER2-positive gastric cancer.
Collapse
Affiliation(s)
- Xiang Gao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Changwen Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Changyu Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kang Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Qixin Liang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Jianfeng Shuai
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Xiaoming Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuxing Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| |
Collapse
|
11
|
Multifunctional Roles of miR-34a in Cancer: A Review with the Emphasis on Head and Neck Squamous Cell Carcinoma and Thyroid Cancer with Clinical Implications. Diagnostics (Basel) 2020; 10:diagnostics10080563. [PMID: 32764498 PMCID: PMC7459507 DOI: 10.3390/diagnostics10080563] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
MiR-34a belongs to the class of small non-coding regulatory RNAs and functions as a tumor suppressor. Under physiological conditions, miR-34a has an inhibitory effect on all processes related to cell proliferation by targeting many proto-oncogenes and silencing them on the post-transcriptional level. However, deregulation of miR-34a was shown to play important roles in tumorigenesis and processes associated with cancer progression, such as tumor-associated epithelial-mesenchymal transition, invasion, and metastasis. Moreover, further understanding of miR-34a molecular mechanisms in cancer are indispensable for the development of effective diagnosis and treatments. In this review, we summarized the current knowledge on miR-34a functions in human disease with an emphasis on its regulation and dysregulation, its role in human cancer, specifically head and neck squamous carcinoma and thyroid cancer, and emerging role as a disease diagnostic and prognostic biomarker and the novel therapeutic target in oncology.
Collapse
|
12
|
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, Hsu FC, Chan MWY, Lin HY. Emerging Challenges of Radiation-Associated Cardiovascular Dysfunction (RACVD) in Modern Radiation Oncology: Clinical Practice, Bench Investigation, and Multidisciplinary Care. Front Cardiovasc Med 2020; 7:16. [PMID: 32154267 PMCID: PMC7047711 DOI: 10.3389/fcvm.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a crucial treatment modality in managing cancer patients. However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable, generating treatment toxicities, such as radiation-associated cardiovascular dysfunction (RACVD), particularly for those patients with combined therapies or pre-existing adverse features/comorbidities. Radiation oncologists implement several efforts to decrease heart dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold (DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides, available clinical methods are limited for early detecting and managing RACVD. The present study reviewed emerging challenges of RACVD in modern radiation oncology, in terms of clinical practice, bench investigation, and multidisciplinary care. Several molecules are potential for serving as biomarkers and therapeutic targets. Of these, miRNAs, endogenous small non-coding RNAs that function in regulating gene expression, are of particular interest because low-dose irradiation, i.e., 200 mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the development of RACVD, further demonstrating the potential bio-application in RACVD. Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and progressively worse. Thus, multidisciplinary care from oncologists and cardiologists is crucial. Combined managements with commodities control (such as hypertension, hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are recommended. Some agents show abilities for preventing and managing RACVD, such as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles should be confirmed by further prospective trials.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chen-Lin Chi
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|