1
|
Zhang S, Tan YQ, Zhang X, Basappa B, Zhu T, Pandey V, Lobie PE. TFF3 drives Hippo dependent EGFR-TKI resistance in lung adenocarcinoma. Oncogene 2024:10.1038/s41388-024-03244-5. [PMID: 39658649 DOI: 10.1038/s41388-024-03244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Intrinsic and acquired resistance represent major obstacles to optimize outcomes in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) targeted therapy in lung adenocarcinoma (LUAD). Hence, a deeper understanding of EGFR-TKI resistance mechanisms in LUAD will potentially assist in formulating strategies to delay or overcome such resistance. Herein, it was observed that trefoil factor 3 (TFF3) is a crucial mediator of the LUAD EGFR-TKI response. TFF3 conferred intrinsic resistance to EGFR inhibition in LUAD by promotion of EGFR activation. TFF3 expression was also increased in acquired EGFR-TKI resistant LUAD, accompanied by reduced EGFR activation. YAP, a key mediator of the Hippo signaling, was positively regulated by TFF3 by post-transcriptional mechanisms and was responsible for acquired EGFR-TKI resistance mediated by TFF3. Inhibition of TFF3 by a small molecule inhibitor not only enhanced EGFR-TKI sensitivity in LUAD cells but also restored the sensitivity of acquired EGFR-TKI resistant LUAD cells to EGFR-TKIs in vitro and in vivo. These findings demonstrate a pivotal function of TFF3 in mediating both intrinsic and acquired EGFR-TKI resistance in LUAD and may offer a potential therapeutic mechanism for delaying or overcoming resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
- Guangdong Provincial Key Laboratory IRADS and Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
| | - Basappa Basappa
- Labortory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570005, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China.
| |
Collapse
|
2
|
Huang P, Wolde T, Bhardwaj V, Zhang X, Pandey V. TFF3 and PVRL2 co-targeting identified by multi-omics approach as an effective cancer immunosuppression strategy. Life Sci 2024; 357:123113. [PMID: 39369842 DOI: 10.1016/j.lfs.2024.123113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The immunosuppressive tumour microenvironment (TME) plays a critical role in cancer progression and relapse by significantly influencing cancer pathogenesis through autocrine and paracrine signalling. Trefoil factor 3 (TFF3), a secreted protein, has been implicated in modulating the TME to promote cancer advancement. Herein, we investigated the potential association between TFF3 and key immunosuppressive TME components to distinguish a co-targetable oncotherapeutic strategy. METHODS The TFF3-PVRL2 association were identified and investigated by integrating multiple bioinformatic-tools. The virtual compound screening for PVRL2 inhibitors was done with EasyVS. The TFF3-PVRL2 protein-level correlation was validated by immunoblotting, and the effectiveness of co-inhibiting TFF3 and PVRL2 was assessed using siRNA and AMPC (a TFF3 inhibitor). RESULTS Analysis of the TISIDB database revealed a positive correlation between TFF3 and PVRL2 mRNA levels across multiple cancer types. This correlation was confirmed at the protein level through immunoblot analysis. Further evaluation using TCGA pan-cancer datasets demonstrated that TFF3 and PVRL2 interact to establish an immunosuppressive TME, promoting cancer progression in BRCA, LUAD, PAAD, PRAD, and STAD. Enrichment analyses of positively correlated genes, PPI network hub proteins, and ceRNA networks involving TFF3 and PVRL2, conducted using LinkedOmics, STRING, and Cytoscape, provided insights into their potential co-functions in cancer. A cell-based assay was performed to evaluate the combined therapeutic efficacy of targeting both, TFF3 and PVRL2 and virtual screening identified potential drugs for inhibiting PVRL2. CONCLUSION PVRL2 has emerged as a promising immunoinhibitory target with significant associations with TFF3 and represents a key co-targetable molecule for effective oncotherapeutic strategies.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Tesfaye Wolde
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Tian X, Zhang Y, Zhang M, Liu G, Hao Y, Liu W. Nanoparticles-encapsulated doxorubicin alleviates drug resistance of osteosarcoma via inducing ferroptosis. Nanotoxicology 2024; 18:401-409. [PMID: 38907601 DOI: 10.1080/17435390.2024.2369602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
To determine the effects of polymeric nanoparticle for doxorubicin (Dox) delivery and treatment of drug-resistant Osteosarcoma (OS) cells. Methoxy-polyethylene glycol amino (mPEG-NH2) and platinum bio-mimetic polycaprolactone-cysteine (PtBMLC) were crosslinked to obtain glutathione (GSH)-responsive mPEG-NH2-PtBMLC polymer to encapsulate Dox (named as Nano-Dox). The particle size and zeta potential of the nanoparticles were measured, and internalization of Dox by OS cells was observed. After treatment with Nano-Dox, cell proliferation was determined by cell counting kit 8 (CCK-8) and colony formation assay. Cell migration and invasion were determined by Transwell assay. Cell cycle arrest was assessed by flow cytometry. The induction of ferroptosis was analyzed by abnormal accumulation of total iron, Fe2+. Nano-Dox exhibited a stronger localization in OS cells (p < 0.01). Nano-Dox induced more significant suppression of drug-resistant OS cell growth (p < 0.01), migration (p < 0.01), and invasion (p < 0.01), compared with the single Dox treatment group, along with decreased expression of N-cadherin, Snail, and Vimentin, suggesting impaired cancer migration and invasion. The treatment with Nano-Dox induced notable cell cycle arrest at G0/G1 phase (p < 0.01) and accumulation of iron, Fe2+, and MDA (p < 0.01), as well as suppressed the protein levels of glutathione peroxidase 4 (GPX4) and SLC7A11. Administration of ferroptosis inhibitor (Fer-1) reversed the anti-proliferation effects of Nano-Dox (p < 0.01). The Dox delivered by the polymeric nanoparticle system notably enhanced its effects on suppressing the growth, migration, and invasion of drug-resistant OS cells via inducing ferroptosis. The application of environment response polymer enhanced the delivery of Dox and the therapeutic effects on OS.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| | - Yunpeng Zhang
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| | - Meng Zhang
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| | - Gang Liu
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| | - Yuedong Hao
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| | - Weidong Liu
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| |
Collapse
|
4
|
Park H. Unveiling Gene Regulatory Networks That Characterize Difference of Molecular Interplays Between Gastric Cancer Drug Sensitive and Resistance Cell Lines. J Comput Biol 2024; 31:257-274. [PMID: 38394313 DOI: 10.1089/cmb.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer is a leading cause of cancer-related deaths globally and chemotherapy is widely accepted as the standard treatment for gastric cancer. However, drug resistance in cancer cells poses a significant obstacle to the success of chemotherapy, limiting its effectiveness in treating gastric cancer. Although many studies have been conducted to unravel the mechanisms of acquired drug resistance, the existing studies were based on abnormalities of a single gene, that is, differential gene expression (DGE) analysis. Single gene-based analysis alone is insufficient to comprehensively understand the mechanisms of drug resistance in cancer cells, because the underlying processes of the mechanism involve perturbations of the molecular interactions. To uncover the mechanism of acquired gastric cancer drug resistance, we perform for identification of differentially regulated gene networks between drug-sensitive and drug-resistant cell lines. We develop a computational strategy for identifying phenotype-specific gene networks by extending the existing method, CIdrgn, that quantifies the dissimilarity of gene networks based on comprehensive information of network structure, that is, regulatory effect between genes, structure of edge, and expression levels of genes. To enhance the efficiency of identifying differentially regulated gene networks and improve the biological relevance of our findings, we integrate additional information and incorporate knowledge of network biology, such as hubness of genes and weighted adjacency matrices. The outstanding capabilities of the developed strategy are validated through Monte Carlo simulations. By using our strategy, we uncover gene regulatory networks that specifically capture the molecular interplays distinguishing drug-sensitive and drug-resistant profiles in gastric cancer. The reliability and significance of the identified drug-sensitive and resistance-specific gene networks, as well as their related markers, are verified through literature. Our analysis for differentially regulated gene network identification has the capacity to characterize the drug-sensitive and resistance-specific molecular interplays related to mechanisms of acquired drug resistance that cannot be revealed by analysis based solely on abnormalities of a single gene, for example, DGE analysis. Through our analysis and comprehensive examination of relevant literature, we suggest that targeting the suppressors of the identified drug-resistant markers, such as the Melanoma Antigen (MAGE) family, Trefoil Factor (TFF) family, and Ras-Associated Binding 25 (RAB25), while enhancing the expression of inducers of the drug sensitivity markers [e.g., Serum Amyloid A (SAA) family], could potentially reduce drug resistance and enhance the effectiveness of chemotherapy for gastric cancer. We expect that the developed strategy will serve as a useful tool for uncovering cancer-related phenotype-specific gene regulatory networks that provide essential clues for uncovering not only drug resistance mechanisms but also complex biological systems of cancer.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
5
|
Guo H, Tan YQ, Huang X, Zhang S, Basappa B, Zhu T, Pandey V, Lobie PE. Small molecule inhibition of TFF3 overcomes tamoxifen resistance and enhances taxane efficacy in ER+ mammary carcinoma. Cancer Lett 2023; 579:216443. [PMID: 37858772 DOI: 10.1016/j.canlet.2023.216443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Even though tamoxifen has significantly improved the survival of estrogen receptor positive (ER+) mammary carcinoma (MC) patients, the development of drug resistance with consequent disease recurrence has limited its therapeutic efficacy. Trefoil factor-3 (TFF3) has been previously reported to mediate anti-estrogen resistance in ER+MC. Herein, the efficacy of a small molecule inhibitor of TFF3 (AMPC) in enhancing sensitivity and mitigating acquired resistance to tamoxifen in ER+MC cells was investigated. AMPC induced apoptosis of tamoxifen-sensitive and resistant ER+MC cells and significantly reduced cell survival in 2D and 3D culture in vitro. In addition, AMPC reduced cancer stem cell (CSC)-like behavior in ER+MC cells in a BCL2-dependent manner. Synergistic effects of AMPC and tamoxifen were demonstrated in ER+MC cells and AMPC was observed to improve tamoxifen efficacy in tamoxifen-sensitive cells and to re-sensitize cells to tamoxifen in tamoxifen-resistant ER+MC in vitro and in vivo. Additionally, tamoxifen-resistant ER+MC cells were concomitantly resistant to anthracycline, platinum and fluoropyrimidine drugs, but not to Taxanes. Taxane treatment of tamoxifen-sensitive and resistant ER+MC cells increased TFF3 expression indicating a combination vulnerability for tamoxifen-resistant ER+MC cells. Taxanes increased CSC-like behavior of tamoxifen-sensitive and resistant ER+MC cells which was reduced by AMPC treatment. Taxanes synergized with AMPC to promote apoptosis and reduce CSC-like behavior in vitro and in vivo. Hence, AMPC restored the sensitivity of tamoxifen and enhanced the efficacy of Taxanes in tamoxifen-resistant ER+MC. In conclusion, pharmacological inhibition of TFF3 may serve as an effective combinatorial therapeutic strategy for the treatment of tamoxifen-resistant ER+MC.
Collapse
Affiliation(s)
- Hui Guo
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoming Huang
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, 570006, India
| | - Tao Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
6
|
Pandey V, Zhang X, Poh HM, Wang B, Dukanya D, Ma L, Yin Z, Bender A, Periyasamy G, Zhu T, Rangappa KS, Basappa B, Lobie PE. Monomerization of Homodimeric Trefoil Factor 3 (TFF3) by an Aminonitrile Compound Inhibits TFF3-Dependent Cancer Cell Survival. ACS Pharmacol Transl Sci 2022; 5:761-773. [PMID: 36110371 PMCID: PMC9469493 DOI: 10.1021/acsptsci.2c00044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3) is a secreted protein with an established oncogenic function and a highly significant association with clinical progression of various human malignancies. Herein, a novel small molecule that specifically targets TFF3 homodimeric functions was identified. Utilizing the concept of reversible covalent interaction, 2-amino-4-(4-(6-fluoro-5-methylpyridin-3-yl)phenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (AMPC) was identified as a molecule that interacted with TFF3. AMPC monomerized the cellular and secreted TFF3 homodimer at the cysteine (Cys)57-Cys57 residue with subsequent more rapid degradation of the generated TFF3 monomers. Hence, AMPC treatment also resulted in cellular depletion of TFF3 with consequent decreased cell viability in various human carcinoma-derived TFF3 expressing cell lines, including estrogen receptor positive (ER+) mammary carcinoma (MC). AMPC treatment of TFF3 expressing ER+ MC cells significantly suppressed total cell number in a dose-dependent manner. Consistently, exposure of TFF3 expressing ER+ MC cells to AMPC decreased soft agar colony formation, foci formation, and growth in suspension culture and inhibited growth of preformed colonies in 3D Matrigel. AMPC increased apoptosis in TFF3 expressing ER+ MC cells associated with decreased activity of EGFR, p38, STAT3, AKT, and ERK, decreased protein levels of CCND1, CCNE1, BCL2, and BCL-XL, and increased protein levels of TP53, CDKN1A, CASP7, and CASP9. siRNA-mediated depletion of TFF3 expression in ER+ MC cells efficiently abrogated AMPC-stimulated loss of cell viability and CASPASE 3/7 activities. Furthermore, in mice bearing ER+ MC cell-generated xenografts, AMPC treatment significantly impeded xenograft growth. Hence, AMPC exemplifies a novel mechanism by which small molecule drugs may inhibit a dimeric oncogenic protein and provides a strategy to impede TFF3-dependent cancer progression.
Collapse
Affiliation(s)
- Vijay Pandey
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
| | - Han-Ming Poh
- Cancer Science
Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
| | - Baocheng Wang
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
| | - Dukanya Dukanya
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Lan Ma
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
| | - Zhinan Yin
- Biomedical
Translational Research Institute, Jinan
University, 601 Huangpu Avenue West, Guangzhou 510632, PR China
- Zhuhai Institute
of Translational Medicine Zhuhai People’s Hospital Affiliated
with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Andreas Bender
- Centre for
Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Ganga Periyasamy
- DOS in Chemistry, Bangalore University, JB Campus, Bangalore 560001, India
| | - Tao Zhu
- Department
of Oncology of the First Affiliated Hospital, Division of Life Sciences
and Medicine, University of Science and
Technology of China, Hefei, Anhui 230027, China
- Hefei National
Laboratory for Physical Sciences, the CAS Key Laboratory of Innate
Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kanchugarakoppal S. Rangappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Basappa Basappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Peter E. Lobie
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
- Cancer Science
Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
| |
Collapse
|
7
|
Inhibition of BAD-Ser99 phosphorylation synergizes with PARP inhibition to ablate PTEN-deficient endometrial carcinoma. Cell Death Dis 2022; 13:558. [PMID: 35725817 PMCID: PMC9209517 DOI: 10.1038/s41419-022-04982-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Loss of phosphatase and tensin homolog (PTEN) impairs DNA double-strand repair and confers sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPis). However, PARPis also hyperactivate the MAPK and PI3K/AKT/mTOR pathways in PTEN-deficient endometrial carcinoma (EC), which allows the emergence of PARPi resistance. BCL-2-associated death promoter (BAD), integrates the common cell survival effects of the RAS/MEK/MAPK and PI3K/AKT/mTOR pathways. Herein, it was observed that increased BADSer99 (BADS99) phosphorylation in EC cells was significantly associated with PTEN-deficient status. Forced expression of phosphorylation deficient human BADS99A in PTEN-deficient EC cells significantly increased CASPASE 3/7 activity and decreased EC cell viability. Using NPB as a pharmacological inhibitor of pBADS99 phosphorylation, it was demonstrated that NPB synergized with PARPis (Olaparib, Rucaparib and Talazoparib) to enhance PARPi IC50 up to 60-fold and decreased survival, foci formation, and growth in 3D ex vivo culture of PTEN-deficient EC cells. Combined NPB-PARPi treatment of PTEN-deficient EC cells stimulated apoptosis and promoted DNA damage by impairment of homologous recombination. Using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease system it was demonstrated that deletion of PTEN in PTEN replete EC cells enhanced the efficacy of combined NPB-PARPi treatment. Furthermore, combined inhibition of BADS99 phosphorylation and PARP ablated xenograft growth of PTEN-deficient EC cells. Similarly, a combination of NPB and PARPis significantly suppressed the growth of PTEN deficient patient-derived EC organoids. Hence, combined inhibition of BADS99 phosphorylation and PARP represents a rational and efficacious strategy to improve the prognosis of recurrent EC patients.
Collapse
|
8
|
Cheng F, Wang X, Chiou YS, He C, Guo H, Tan YQ, Basappa B, Zhu T, Pandey V, Lobie PE. Trefoil factor 3 promotes pancreatic carcinoma progression via WNT pathway activation mediated by enhanced WNT ligand expression. Cell Death Dis 2022; 13:265. [PMID: 35332126 PMCID: PMC8948291 DOI: 10.1038/s41419-022-04700-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-related mortality with a dismal prognosis that has changed little over the past few decades. Further understanding of the molecular pathology of PDAC progression is urgently required in order to improve the prognosis of patients with PDAC. Herein, it was observed that trefoil factor 3 (TFF3) expression was elevated in PDAC, and was positively correlated with a worse overall patient survival outcome. Forced expression of TFF3 promoted oncogenic functions of PDAC cells in vitro including cell proliferation, survival, foci formation, cancer stem cell-like behavior and invasion, ex vivo colony growth in 3D-Matrigel, and xenograft growth in vivo. Depletion or pharmacological inhibition of TFF3 inhibited these same processes. RNA-Seq analysis and subsequent mechanistic analyses demonstrated that TFF3 increased the expression of various WNT ligands to mediate WNT pathway activation required for TFF3-stimulated PDAC progression. Combined pharmacological inhibition of TFF3 and WNT signaling significantly attenuated PDAC xenograft growth and potentiated the therapeutic efficacy of gemcitabine in both ex vivo and in vivo models. Hence, a mechanistic basis for combined inhibition of pathways enhancing PDAC progression is provided and suggests that inhibition of TFF3 may assist to ameliorate outcomes in PDAC.
Collapse
Affiliation(s)
- Feifei Cheng
- Tsinghua-Berkeley Shenzhen Institute and The Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xuejuan Wang
- Tsinghua-Berkeley Shenzhen Institute and The Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yi-Shiou Chiou
- Tsinghua-Berkeley Shenzhen Institute and The Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, People's Republic of China
| | - Chuyu He
- Tsinghua-Berkeley Shenzhen Institute and The Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Tsinghua-Berkeley Shenzhen Institute and The Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yan Qin Tan
- Tsinghua-Berkeley Shenzhen Institute and The Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, 570005, India
| | - Tao Zhu
- Department of Oncology of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, Hefei, 230027, People's Republic of China
| | - Vijay Pandey
- Tsinghua-Berkeley Shenzhen Institute and The Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, People's Republic of China.
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute and The Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
9
|
Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci 2022; 298:120463. [DOI: 10.1016/j.lfs.2022.120463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
10
|
Shen M, Yang L, Lei T, Zhang P, Xiao L, Cao S, Chen F, Li L, Ye F, Bu H. Correlation between CA12 and TFF3 and their prediction value of neoadjuvant chemotherapy response in breast cancer. J Clin Pharm Ther 2022; 47:609-618. [PMID: 35229335 DOI: 10.1111/jcpt.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Compared with other molecular subtypes, hormone receptor-positive breast cancer often shows worse neoadjuvant chemotherapy efficacy. This study aims to explore the relationship between the oestrogen receptor (ER)-related genes carbonic anhydrase 12 (CA12) and trefoil factor 3 (TFF3) and their predictive value of neoadjuvant chemotherapy for breast cancer. METHODS We investigated the relationships between CA12, TFF3 and ER status and their predictive value of anthracycline-taxane neoadjuvant chemotherapy in 115 female breast cancer patients via real-time polymerase chain reaction (RT-PCR) and 4 GEO datasets: GSE41998, GSE25065, GSE20194 and GSE20271. Then, the effects of CA12 and TFF3 on the chemotherapy drugs doxorubicin and docetaxel were verified in vitro in the breast cancer cell lines MCF-7 and BT474. RESULTS AND DISCUSSION The GEO datasets and RT-PCR results showed that the relative expression of both CA12 and TFF3 was higher in oestrogen receptor-positive samples compared with the other samples (p < 0.05). CA12 was significantly correlated with TFF3 (p < 0.05). In MCF-7 cells, inhibition of TFF3 induced downregulation of CA12 and ESR1 (p < 0.05) at both the mRNA and the protein levels, while inhibition of CA12 also downregulated TFF3 and ESR1 (p < 0.05). In BT474 cells, inhibition of TFF3 downregulated CA12 and ESR1 (p < 0.05) at both the mRNA and the protein levels, while inhibition of CA12 led to slight upregulation of TFF3 and ESR1 (p > 0.05). Moreover, GEO datasets and RT-PCR results showed that CA12 and TFF3 were more highly expressed in nonpathological complete response (non-pCR) samples than in pCR samples (p < 0.05). Cell viability assays of MCF-7 and BT474 cells showed that inhibiting CA12 and TFF3 could enhance sensitivity to doxorubicin and docetaxel (p < 0.05). WHAT IS NEW AND CONCLUSION CA12 and TFF3 were correlated with each other, and their high expression might explain the worse efficacy of neoadjuvant chemotherapy in oestrogen receptor-positive breast cancer patients.
Collapse
Affiliation(s)
- Mengjia Shen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Libo Yang
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Lei
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peichuan Zhang
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xiao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyu Cao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Bu
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Vishwanath D, Girimanchanaika SS, Dukanya D, Rangappa S, Yang JR, Pandey V, Lobie PE, Basappa B. Design and Activity of Novel Oxadiazole Based Compounds That Target Poly(ADP-ribose) Polymerase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030703. [PMID: 35163965 PMCID: PMC8839658 DOI: 10.3390/molecules27030703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Novel PARP inhibitors with selective mode-of-action have been approved for clinical use. Herein, oxadiazole based ligands that are predicted to target PARP-1 have been synthesized and screened for the loss of cell viability in mammary carcinoma cells, wherein seven compounds were observed to possess significant IC50 values in the range of 1.4 to 25 µM. Furthermore, compound 5u, inhibited the viability of MCF-7 cells with an IC50 value of 1.4µM, when compared to Olaparib (IC50 = 3.2 µM). Compound 5s also decreased cell viability in MCF-7 and MDA-MB-231 cells with IC50 values of 15.3 and 19.2 µM, respectively. Treatment of MCF-7 cells with compounds 5u and 5s produced PARP cleavage, H2AX phosphorylation and CASPASE-3 activation comparable to that observed with Olaparib. Compounds 5u and 5s also decreased foci-formation and 3D Matrigel growth of MCF-7 cells equivalent to or greater than that observed with Olaparib. Finally, in silico analysis demonstrated binding of compound 5s towardsthe catalytic site of PARP-1, indicating that these novel oxadiazoles synthesized herein may serve as exemplars for the development of new therapeutics in cancer.
Collapse
Affiliation(s)
- Divakar Vishwanath
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India; (D.V.); (S.S.G.); (D.D.)
| | - Swamy S. Girimanchanaika
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India; (D.V.); (S.S.G.); (D.D.)
| | - Dukanya Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India; (D.V.); (S.S.G.); (D.D.)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Mandya 571448, India;
| | - Ji-Rui Yang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.-R.Y.); (V.P.)
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.-R.Y.); (V.P.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peter E. Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.-R.Y.); (V.P.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: (P.E.L.); (B.B.)
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India; (D.V.); (S.S.G.); (D.D.)
- Correspondence: (P.E.L.); (B.B.)
| |
Collapse
|
13
|
Yang Y, Lin Z, Lin Q, Bei W, Guo J. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective. Cell Death Dis 2022; 13:62. [PMID: 35039476 PMCID: PMC8763889 DOI: 10.1038/s41419-022-04504-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Trefoil factor 3 (TFF3) is the last small-molecule peptide found in the trefoil factor family, which is mainly secreted by intestinal goblet cells and exerts mucosal repair effect in the gastrointestinal tract. Emerging evidence indicated that the TFF3 expression profile and biological effects changed significantly in pathological states such as cancer, colitis, gastric ulcer, diabetes mellitus, non-alcoholic fatty liver disease, and nervous system disease. More importantly, mucosal protection would no longer be the only effect of TFF3, it gradually exhibits carcinogenic activity and potential regulatory effect of nervous and endocrine systems, but the inner mechanisms remain unclear. Understanding the molecular function of TFF3 in specific diseases might provide a new insight for the clinical development of novel therapeutic strategies. This review provides an up-to-date overview of the pathological effects of TFF3 in different disease and discusses the binding proteins, signaling pathways, and clinical application.
Collapse
Affiliation(s)
- Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Quanyou Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
14
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
15
|
Girimanchanaika SS, Dukanya D, Swamynayaka A, Govindachar DM, Madegowda M, Periyasamy G, Rangappa KS, Pandey V, Lobie PE, Basappa B. Investigation of NPB Analogs That Target Phosphorylation of BAD-Ser99 in Human Mammary Carcinoma Cells. Int J Mol Sci 2021; 22:ijms222011002. [PMID: 34681659 PMCID: PMC8540132 DOI: 10.3390/ijms222011002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022] Open
Abstract
The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported. Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively. The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore, these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional theory calculations suggested possibilities for other analogs of NPB that may be more suitable for further development.
Collapse
Affiliation(s)
- Swamy Savvemala Girimanchanaika
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
| | - Dukanya Dukanya
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
| | - Ananda Swamynayaka
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India; (A.S.); (M.M.)
| | | | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006, India; (A.S.); (M.M.)
| | - Ganga Periyasamy
- Department of Chemistry, Bangalore University, Bangalore 560056, India; (D.M.G.); (G.P.)
| | | | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peter E. Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzen Bay Laboratory, Shenzhen 518055, China
- Correspondence: (P.E.L.); (B.B.)
| | - Basappa Basappa
- Laboratory Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (S.S.G.); (D.D.)
- Correspondence: (P.E.L.); (B.B.)
| |
Collapse
|
16
|
Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Azami N, Hamzehlou S, Farahani MV, Hushmandi K, Ashrafizadeh M, Khan H, Kumar AP. Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10030349. [PMID: 33652780 PMCID: PMC7996755 DOI: 10.3390/antiox10030349] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Doxorubicin (DOX) is extensively applied in cancer therapy due to its efficacy in suppressing cancer progression and inducing apoptosis. After its discovery, this chemotherapeutic agent has been frequently used for cancer therapy, leading to chemoresistance. Due to dose-dependent toxicity, high concentrations of DOX cannot be administered to cancer patients. Therefore, experiments have been directed towards revealing underlying mechanisms responsible for DOX resistance and ameliorating its adverse effects. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is activated to increase levels of reactive oxygen species (ROS) in cells to protect them against oxidative stress. It has been reported that Nrf2 activation is associated with drug resistance. In cells exposed to DOX, stimulation of Nrf2 signaling protects cells against cell death. Various upstream mediators regulate Nrf2 in DOX resistance. Strategies, both pharmacological and genetic interventions, have been applied for reversing DOX resistance. However, Nrf2 induction is of importance for alleviating side effects of DOX. Pharmacological agents with naturally occurring compounds as the most common have been used for inducing Nrf2 signaling in DOX amelioration. Furthermore, signaling networks in which Nrf2 is a key player for protection against DOX adverse effects have been revealed and are discussed in the current review.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Mahdi Vasheghani Farahani
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
17
|
Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020; 12:pharmaceutics12111084. [PMID: 33187385 PMCID: PMC7697177 DOI: 10.3390/pharmaceutics12111084] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a well-known chemotherapeutic agent extensively applied in the field of cancer therapy. However, similar to other chemotherapeutic agents such as cisplatin, paclitaxel, docetaxel, etoposide and oxaliplatin, cancer cells are able to obtain chemoresistance that limits DOX efficacy. In respect to dose-dependent side effect of DOX, enhancing its dosage is not recommended for effective cancer chemotherapy. Therefore, different strategies have been considered for reversing DOX resistance and diminishing its side effects. Phytochemical are potential candidates in this case due to their great pharmacological activities. Curcumin is a potential antitumor phytochemical isolated from Curcuma longa with capacity of suppressing cancer metastasis and proliferation and affecting molecular pathways. Experiments have demonstrated the potential of curcumin for inhibiting chemoresistance by downregulating oncogene pathways such as MMP-2, TGF-β, EMT, PI3K/Akt, NF-κB and AP-1. Furthermore, coadministration of curcumin and DOX potentiates apoptosis induction in cancer cells. In light of this, nanoplatforms have been employed for codelivery of curcumin and DOX. This results in promoting the bioavailability and internalization of the aforementioned active compounds in cancer cells and, consequently, enhancing their antitumor activity. Noteworthy, curcumin has been applied for reducing adverse effects of DOX on normal cells and tissues via reducing inflammation, oxidative stress and apoptosis. The current review highlights the anticancer mechanism, side effects and codelivery of curcumin and DOX via nanovehicles.
Collapse
|