1
|
Bifulco M, Di Zazzo E, Napolitano F, Malfitano AM, Portella G. History of how viruses can fight cancer: From the miraculous healings to the approval of oncolytic viruses. Biochimie 2023; 206:89-92. [PMID: 36273765 DOI: 10.1016/j.biochi.2022.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Since the nineteenth century, several reports in the historical medical literature emphasized that, occasionally, cancer patients showed a clinical remission, called "Saint Peregrine tumor" as a result of natural infections. Moreover, additional evidence indicated that viruses show a tropism toward cancer cells, leading to the discovery of oncolytic activity of several viruses, called oncolytic viruses (OVs). With the technological and scientific advancements, the advent of rodent models, the establishment of in vitro cell lines, the introduction of methods for virus propagation, several attempts through the 1950s and 1970s have been made to increase OVs specificity, efficacy and safety; however, inconclusive/negative results have been reached and many researchers abandoned the field. Only in the later 1990s, the genetic engineering and the recombinant DNA techniques that allowed the generation of potent, specific and safe OVs and a better understanding of cancer cells renewed the interest in virotherapy. Currently, virotherapy represents a cancer therapeutic strategy based on the use of OVs that selectively infect and lyse cancer cells, without harming normal cells. Over the past years, several "natural" and "genetic engineered" viruses, have been investigated in clinical studies and some of them revealed encouraging results. Recently, the clinical use of OVs has also been supported by the immune stimulatory property of OVs against tumor cells. Here, we analyze the early oncolytic virotherapy before genetic engineering to highlight the relevant progresses reached, and the mechanism to stimulate host immune response, a significant challenge in current virotherapy field.
Collapse
Affiliation(s)
- Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Erika Di Zazzo
- Department of Health Science "V. Tiberio", 86100, Campobasso, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
2
|
Di Somma S, Napolitano F, Portella G, Malfitano AM. Cross Talk of Macrophages with Tumor Microenvironment Cells and Modulation of Macrophages in Cancer by Virotherapy. Biomedicines 2021; 9:biomedicines9101309. [PMID: 34680425 PMCID: PMC8533595 DOI: 10.3390/biomedicines9101309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular compartments constituting the tumor microenvironment including immune cells, fibroblasts, endothelial cells, and mesenchymal stromal/stem cells communicate with malignant cells to orchestrate a series of signals that contribute to the evolution of the tumor microenvironment. In this study, we will focus on the interplay in tumor microenvironment between macrophages and mesenchymal stem cells and macrophages and fibroblasts. In particular, cell–cell interaction and mediators secreted by these cells will be examined to explain pro/anti-tumor phenotypes induced in macrophages. Nonetheless, in the context of virotherapy, the response of macrophages as a consequence of treatment with oncolytic viruses will be analyzed regarding their polarization status and their pro/anti-tumor response.
Collapse
|
3
|
Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM. Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery. Curr Top Med Chem 2021; 20:2789-2800. [PMID: 33076809 DOI: 10.2174/1568026620666201019111524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Mao-Hua Cai
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Cheng-Wu Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Zhi-Ming Hu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| |
Collapse
|
4
|
Current understanding of nonsurgical interventions for refractory differentiated thyroid cancer: a systematic review. Future Sci OA 2021; 7:FSO738. [PMID: 34258030 PMCID: PMC8256328 DOI: 10.2144/fsoa-2021-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer incidence and related mortality is increasing year-on-year, and although treatment for early disease with surgery and radioiodine results in a 98% 5-year survival rate, recurrence and treatment refractory disease is evident in an unacceptable number of patients. Alternative treatment regimens have therefore been sought in the form of tyrosine kinase inhibitors, immunotherapy, vaccines, chimeric antigen receptor T-cell therapy and oncolytic viruses. The current review aims to consolidate knowledge and highlight the latest clinical trials using secondary therapies in thyroid cancer treatment, focusing on both in vitro and in vivo studies, which have investigated therapies other than radioiodine. The rates of thyroid cancer and related deaths are increasing. Differentiated thyroid cancer is the most common type of thyroid cancer. Early disease can be treated with surgery and radioactive iodine with very good outcomes. However, this therapy does not work for a small number of patients making it important to find different (secondary) treatment options. This review summarizes the results of published research about secondary treatment options for differentiated thyroid cancer. Ongoing research including laboratory-based and clinical trials are also highlighted.
Collapse
|
5
|
Houlihan OA, Moore R, Jamaluddin MF, Sharifah A, Redmond HP, O'Reilly S, Feeley L, Sheahan P, Rock K. Anaplastic thyroid cancer: outcomes of trimodal therapy. ACTA ACUST UNITED AC 2021; 26:416-422. [PMID: 34277095 PMCID: PMC8281918 DOI: 10.5603/rpor.a2021.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
Backround The purpose of this study is to assess the impact of trimodal therapy [surgery, chemotherapy and external beam radiotherapy (EBRT)] in patients with anaplastic thyroid cancer (ATC) treated with curative intent. Materials and methods Retrospective review of patients with ATC treated at a tertiary referral centre between January 2009 and June 2020. Data were collected regarding demographics, histology, staging, treatment and outcomes. Results Seven patients (4 female) were identified. Median age was 58 years (range 52–83 years). All patients received EBRT with concurrent doxorubicin. Six patients received surgery followed by chemoradiotherapy (CRT), and one underwent neoadjuvant CRT followed by surgery. Median radiological tumour size was 50mm (range 40–90 mm). Six patients had gross extrathyroidal extension and three had N1b disease. Prescribed radiotherapy schedules were 46.4 Gy in 29 bidaily fractions (n = 2, treated 2010), 60 Gy in 30 daily fractions (n = 2), 66 Gy in 30 fractions (n = 2) and 70 Gy in 35 fractions (n = 1; patient received neoadjuvant CRT). CRT was discontinued early for two patients due to toxicities. At median follow up of 5.8 months, 42.9% (3/7) patients were alive and disease-free. Only one patient developed a local failure. Three patients died from distant metastases without locoregional recurrence. Conclusions Despite poor prognosis of ATC, selected patients with operable tumours may achieve high locoregional control rates with trimodal therapy, with possibility of long-term survival in select cases.
Collapse
Affiliation(s)
- Orla A Houlihan
- Department of Radiation Oncology, Cork University Hospital, Cork, Ireland
| | - Richard Moore
- Department of Radiation Oncology, Cork University Hospital, Cork, Ireland
| | | | - Adrinda Sharifah
- Department of Otolaryngology - Head and Neck Surgery, South Infirmary Victoria University Hospital, Cork, Ireland
| | | | - Seamus O'Reilly
- Department of Medical Oncology, South Infirmary Victoria University Hospital, Cork, Ireland
| | - Linda Feeley
- Department of Pathology, Cork University Hospital, Cork, Ireland.,ENTO Research Institute, College of Medicine and Health, University College Cork, Ireland
| | - Patrick Sheahan
- Department of Otolaryngology - Head and Neck Surgery, South Infirmary Victoria University Hospital, Cork, Ireland.,ENTO Research Institute, College of Medicine and Health, University College Cork, Ireland
| | - Kathy Rock
- Department of Radiation Oncology, Cork University Hospital, Cork, Ireland.,ENTO Research Institute, College of Medicine and Health, University College Cork, Ireland
| |
Collapse
|
6
|
Zhang L, Xu S, Cheng X, Zheng J, Wang Y, Wu J, Wang X, Wu L, Yu H, Bao J. Diallyl trisulphide, a H 2 S donor, compromises the stem cell phenotype and restores thyroid-specific gene expression in anaplastic thyroid carcinoma cells by targeting AKT-SOX2 axis. Phytother Res 2021; 35:3428-3443. [PMID: 33751676 DOI: 10.1002/ptr.7065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022]
Abstract
It is widely accepted that anaplastic thyroid carcinoma (ATC), a rare, extremely aggressive malignant, is enriched by cancer stem cells (CSCs), which are closely related to the pathogenesis of ATC. In the present study, we demonstrated that diallyl trisulphide (DATS), a well-known hydrogen sulphide (H2 S) donor, suppressed sphere formation and restored the expression of iodide-metabolizing genes in human ATC cells, which were associated with H2 S generation. Two other H2 S donors, NaHS and GYY4137, could also suppress the self-renewal properties of ATC cells in vitro. Compared with normal thyroid tissues and papillary thyroid carcinomas (PTCs), the elevated expressions of SOX2 and MYC, two cancer stem cell markers, in ATCs were validated in the combined Gene Expression Omnibus (GEO) cohort. DATS decreased the expression of SOX2, which was mediated by H2 S generation. Furthermore, knockdown of AKT or inhibition of AKT by DATS led to a decrease of SOX2 expression in ATC cells. AKT knockdown phenocopied restoration of thyroid-specific gene expression in ATC cells. Our data suggest that H2 S donors treatment can compromise the stem cell phenotype and restore thyroid-specific gene expression of ATC cells by targeting AKT-SOX2 pathway, which may serve as a therapeutic strategy to intervene the CSC progression of ATC.
Collapse
Affiliation(s)
- Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China.,School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jiangxia Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
7
|
Liotti F, Kumar N, Prevete N, Marotta M, Sorriento D, Ieranò C, Ronchi A, Marino FZ, Moretti S, Colella R, Puxeddu E, Paladino S, Kano Y, Ohh M, Scala S, Melillo RM. PD-1 blockade delays tumor growth by inhibiting an intrinsic SHP2/Ras/MAPK signalling in thyroid cancer cells. J Exp Clin Cancer Res 2021; 40:22. [PMID: 33413561 PMCID: PMC7791757 DOI: 10.1186/s13046-020-01818-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The programmed cell death-1 (PD-1) receptor and its ligands PD-L1 and PD-L2 are immune checkpoints that suppress anti-cancer immunity. Typically, cancer cells express the PD-Ls that bind PD-1 on immune cells, inhibiting their activity. Recently, PD-1 expression has also been found in cancer cells. Here, we analysed expression and functions of PD-1 in thyroid cancer (TC). METHODS PD-1 expression was evaluated by immunohistochemistry on human TC samples and by RT-PCR, western blot and FACS on TC cell lines. Proliferation and migration of TC cells in culture were assessed by BrdU incorporation and Boyden chamber assays. Biochemical studies were performed by western blot, immunoprecipitation, pull-down and phosphatase assays. TC cell tumorigenicity was assessed by xenotransplants in nude mice. RESULTS Human TC specimens (47%), but not normal thyroids, displayed PD-1 expression in epithelial cells, which significantly correlated with tumour stage and lymph-node metastasis. PD-1 was also constitutively expressed on TC cell lines. PD-1 overexpression/stimulation promoted TC cell proliferation and migration. Accordingly, PD-1 genetic/pharmacologic inhibition caused the opposite effects. Mechanistically, PD-1 recruited the SHP2 phosphatase to the plasma membrane and potentiated its phosphatase activity. SHP2 enhanced Ras activation by dephosphorylating its inhibitory tyrosine 32, thus triggering the MAPK cascade. SHP2, BRAF and MEK were necessary for PD-1-mediated biologic functions. PD-1 inhibition decreased, while PD-1 enforced expression facilitated, TC cell xenograft growth in mice by affecting tumour cell proliferation. CONCLUSIONS PD-1 circuit blockade in TC, besides restoring anti-cancer immunity, could also directly impair TC cell growth by inhibiting the SHP2/Ras/MAPK signalling pathway.
Collapse
Affiliation(s)
- Federica Liotti
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Narender Kumar
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Nella Prevete
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Marotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Caterina Ieranò
- Functional Genomics, Istituto Nazionale Tumouri "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Andrea Ronchi
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Renato Colella
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Efiso Puxeddu
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Biochemistry Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale Tumouri "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Rosa Marina Melillo
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
8
|
Puxeddu E, Tallini G, Vanni R. What Is New in Thyroid Cancer: The Special Issue of the Journal Cancers. Cancers (Basel) 2020; 12:E3036. [PMID: 33086491 PMCID: PMC7603182 DOI: 10.3390/cancers12103036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
The incidence of thyroid cancer has increased over the past 3 to 4 decades. Nonetheless, the mortality from thyroid cancer has remained stable. The thyroid gland may develop nodules encompassing several types of cell proliferation, from frankly benign to very aggressive forms with many intermediate challenging variants. For this reason, there is growing interest in evaluating thyroid nodules from many points of view, from the clinical to the molecular aspects, in the search for innovative diagnostic and prognostic parameters. The aim of this Special Issue was to provide an overview of recent developments in understanding the biology and molecular oncology of thyroid tumors of follicular cell derivation and their repercussions on the diagnosis, prognosis, and therapy. The contributions of many experts in the field made up a Special Issue of Cancers journal, that focusing on different aspects, including mechanistic and functional facets, gives the status of art of clinical and biological perspectives of thyroid cancer.
Collapse
Affiliation(s)
- Efisio Puxeddu
- Department of Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40126 Bologna, Italy;
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
9
|
Pharmacological Inhibition of WEE1 Potentiates the Antitumoral Effect of the dl922-947 Oncolytic Virus in Malignant Mesothelioma Cell Lines. Int J Mol Sci 2020; 21:ijms21197333. [PMID: 33020398 PMCID: PMC7582744 DOI: 10.3390/ijms21197333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive asbestos-related cancer, for which no therapy proves to be effective. We have recently shown that the oncolytic adenovirus dl922-947 had antitumor effects in MM cell lines and murine xenografts. Previous studies demonstrated that dl922-947-induced host cell cycle checkpoint deregulation and consequent DNA lesions associated with the virus efficacy. However, the cellular DNA damage response (DDR) can counteract this virus action. Therefore, we assessed whether AZD1775, an inhibitor of the G2/M DNA damage checkpoint kinase WEE1, could enhance MM cell sensitivity to dl922-947. Through cell viability assays, we found that AZD1775 synergized with dl922-947 selectively in MM cell lines and increased dl922-947-induced cell death, which showed hallmarks of apoptosis (annexinV-positivity, caspase-dependency, BCL-XL decrease, chromatin condensation). Predictably, dl922-947 and/or AZD1775 activated the DDR, as indicated by increased levels of three main DDR players: phosphorylated histone H2AX (γ-H2AX), phospho-replication protein A (RPA)32, phospho-checkpoint kinase 1 (CHK1). Dl922-947 also increased inactive Tyr-15-phosphorylated cyclin-dependent kinase 1 (CDK1), a key WEE1 substrate, which is indicative of G2/M checkpoint activation. This increase in phospho-CDK1 was effectively suppressed by AZD1775, thus suggesting that this compound could, indeed, abrogate the dl922-947-induced DNA damage checkpoint in MM cells. Overall, our data suggest that the dl922-947-AZD1775 combination could be a feasible strategy against MM.
Collapse
|
10
|
Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G. Tumor-Associated Macrophage Status in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12071987. [PMID: 32708142 PMCID: PMC7409350 DOI: 10.3390/cancers12071987] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant innate immune cells in tumors. TAMs, exhibiting anti-inflammatory phenotype, are key players in cancer progression, metastasis and resistance to therapy. A high TAM infiltration is generally associated with poor prognosis, but macrophages are highly plastic cells that can adopt either proinflammatory/antitumor or anti-inflammatory/protumor features in response to tumor microenvironment stimuli. In the context of cancer therapy, many anticancer therapeutics, apart from their direct effect on tumor cells, display different effects on TAM activation status and density. In this review, we aim to evaluate the indirect effects of anticancer therapies in the modulation of TAM phenotypes and pro/antitumor activity.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| | - Simona Pisanti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| |
Collapse
|
11
|
Di Marco T, Bianchi F, Sfondrini L, Todoerti K, Bongarzone I, Maffioli EM, Tedeschi G, Mazzoni M, Pagliardini S, Pellegrini S, Neri A, Anania MC, Greco A. COPZ1 depletion in thyroid tumor cells triggers type I IFN response and immunogenic cell death. Cancer Lett 2020; 476:106-119. [PMID: 32061953 DOI: 10.1016/j.canlet.2020.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
The coatomer protein complex zeta 1 (COPZ1) represents a non-oncogene addiction for thyroid cancer (TC); its depletion impairs the viability of thyroid tumor cells, leads to abortive autophagy, ER stress, UPR and apoptosis, and reduces tumor growth of TC xenograft models. In this study we investigated the molecular pathways activated by COPZ1 depletion and the paracrine effects on cellular microenvironment and immune response. By comprehensive and target approaches we demonstrated that COPZ1 depletion in TPC-1 and 8505C thyroid tumor cell lines activates type I IFN pathway and viral mimicry responses. The secretome from COPZ1-depleted cells was enriched for several inflammatory molecules and damage-associated molecular patterns (DAMPs). Moreover, we found that dendritic cells, exposed to these secretomes, expressed high levels of differentiation and maturation markers, and stimulated the proliferation of naïve T cells. Interestingly, T cells stimulated with COPZ1-depleted cells showed increased cytotoxic activity against parental tumor cells. Collectively, our findings support the notion that targeting COPZ1 may represent a promising therapeutic approach for TC, considering its specificity for cancer cells, the lack of effect on normal cells, and the capacity to prompt an anti-tumor immune response.
Collapse
Affiliation(s)
- Tiziana Di Marco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Francesca Bianchi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per La Salute, University of Milan, Via Mangiagalli, 31, 20133, Milan, Italy.
| | - Katia Todoerti
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy.
| | - Italia Bongarzone
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | | | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milan, Via Celoria, 10, 20133, Milan, Italy; Fondazione Filarete, Via Celoria, 10, 20133, Milan, Italy.
| | - Mara Mazzoni
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Sonia Pagliardini
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Sandra Pellegrini
- Institut Pasteur, Unit of Cytokine Signaling, Inserm U1221, 75724, Paris, France.
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Italy Via Francesco Sforza, 35, 20122, Milan, Italy.
| | - Maria Chiara Anania
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Angela Greco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| |
Collapse
|
12
|
Malfitano AM, Di Somma S, Prevete N, Portella G. Reply to Comment on "Malfitano, A.M. et al. Virotherapy as a Potential Therapeutic Approach for the Treatment of Aggressive Thyroid Cancer" Cancers 2019, 11, 1532. Cancers (Basel) 2020; 12:cancers12020281. [PMID: 31979229 PMCID: PMC7073196 DOI: 10.3390/cancers12020281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
|
13
|
Comment on: Malfitano, A.M. et al. "Virotherapy as a Potential Therapeutic Approach for the Treatment of Aggressive Thyroid Cancer" Cancers 2019, 11, 1532. Cancers (Basel) 2020; 12:cancers12020263. [PMID: 31978984 PMCID: PMC7072266 DOI: 10.3390/cancers12020263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/15/2020] [Indexed: 11/17/2022] Open
Abstract
I read with interest the recent review on virotherapy in thyroid cancer by Malfitano et al. [...].
Collapse
|