1
|
Jaszek N, Bogdanowicz A, Siwiec J, Starownik R, Kwaśniewski W, Mlak R. Epigenetic Biomarkers as a New Diagnostic Tool in Bladder Cancer-From Early Detection to Prognosis. J Clin Med 2024; 13:7159. [PMID: 39685620 DOI: 10.3390/jcm13237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) currently ranks as the 9th most common cancer worldwide. It is characterised by very high rates of recurrence and metastasis. Most cases of BC are of urothelial origin, and due to its ability to penetrate muscle tissue, BC is divided into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC). The current diagnosis of BC is still based primarily on invasive cystoscopy, which is an expensive and invasive method that carries a risk of various complications. Urine sediment cytology is often used as a complementary test, the biggest drawback of which is its very low sensitivity concerning the detection of BC at early stages, which is crucial for prompt implementation of appropriate treatment. Therefore, there is a great need to develop innovative diagnostic techniques that would enable early detection and accurate prognosis of BC. Great potential in this regard is shown by epigenetic changes, which are often possible to observe long before the onset of clinical symptoms of the disease. In addition, these changes can be detected in readily available biological material, such as urine or blood, indicating the possibility of constructing non-invasive diagnostic tests. Over the past few years, many studies have emerged using epigenetic alterations as novel diagnostic and prognostic biomarkers of BC. This review provides an update on promising diagnostic biomarkers for the detection and prognosis of BC based on epigenetic changes such as DNA methylation and expression levels of selected non-coding RNAs (ncRNAs), taking into account the latest literature data.
Collapse
Affiliation(s)
- Natalia Jaszek
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Alicja Bogdanowicz
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Siwiec
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Radosław Starownik
- Department of Urology and Urological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Torres-Bustamante MI, Vazquez-Urrutia JR, Solorzano-Ibarra F, Ortiz-Lazareno PC. The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer. Int J Mol Sci 2024; 25:2178. [PMID: 38396855 PMCID: PMC10889402 DOI: 10.3390/ijms25042178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Bladder cancer (BC) is one of the most common types of cancer worldwide, with significant differences in survival depending on the degree of muscle and surrounding tissue invasion. For this reason, the timely detection and monitoring of the disease are important. Surveillance cystoscopy is an invasive, costly, and uncomfortable procedure to monitor BC, raising the need for new, less invasive alternatives. In this scenario, microRNAs (miRNAs) represent attractive prognostic tools given their role as gene regulators in different biological processes, tissue expression, and their ease of evaluation in liquid samples. In cancer, miRNA expression is dynamically modified depending on the tumor type and cancer staging, making them potential biomarkers. This review describes the most recent studies in the last five years exploring the utility of miRNA-based strategies to monitor progression, stratify, and predict relevant clinical outcomes of bladder cancer. Several studies have shown that multimarker miRNA models can better predict overall survival, recurrence, and progression in BC patients than traditional strategies, especially when combining miRNA expression with clinicopathological variables. Future studies should focus on validating their use in different cohorts and liquid samples.
Collapse
Affiliation(s)
| | - Jorge Raul Vazquez-Urrutia
- Department of Medicine, The Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Fabiola Solorzano-Ibarra
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Estancias Posdoctorales por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONACYT), México City 03940, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
3
|
Jeruzal-Świątecka J, Borkowska EM, Borkowska M, Pietruszewska W. TAS2R38 Bitter Taste Receptor Polymorphisms in Patients with Chronic Rhinosinusitis with Nasal Polyps Preliminary Data in Polish Population. Biomedicines 2024; 12:168. [PMID: 38255273 PMCID: PMC10813606 DOI: 10.3390/biomedicines12010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic rhinosinusitis (CRS) affects 5-12% of the general population, and the most challenging patients are those with nasal polyposis (CRSwNP). Its complexity, unpredictability, and difficulties in selecting a treatment plan individually for each patient prompted scientists to look for possible genetic causes of this disease. It was proven that single nucleotide polymorphisms (SNPs) in the TAS2R38 gene may affect the mobility and the activity of the ciliated epithelium of the upper respiratory tract what can contribute to individual differences in susceptibility to CRS. There are two common haplotypes: a "protective" type (PAV), and a "non-protective" type (AVI). CRS patients who are homozygous PAV/PAV are considered as less susceptible to the severe course of the disease, whereas patients with AVI/AVI haplotype are more vulnerable. The aim of this study was to examine TAS2R38 gene polymorphisms among CRSwNP patients and control group (N = 544) with the evaluation of the association between the distribution of studied polymorphic variants and the incidence as well as severity of CRSwNP in the study group. Whole blood samples from CRSwNP patients (N = 106) and the control group (N = 438) were analyzed for alleles of the TAS2R38 gene using real-time PCR single nucleotide polymorphism genotyping assays for rs713598, rs1726866, and rs10246939. PAV (SG: 41%; CG: 49%) and AVI (SG: 59%; CG: 51%) haplotypes were the only ones detected in the study. The AVI haplotypes were 1.5 times more frequent in the study group than in the control group (p = 0.0204; OR = 1.43). AVI/AVI individuals tended to have more severe symptoms in the VAS scale, less QoL in the SNOT-22 test, and a bigger nasal obstruction upon endoscopic examination. Patients with PAV/PAV were twice more likely to have minor changes in preoperative CT scans (p = 0.0158; OR = 2.1; Fi = 0.24). Our study confirmed that the PAV/PAV diplotype might have some protective properties and carrying the AVI haplotype might predispose to the development of CRSwNP.
Collapse
Affiliation(s)
- Joanna Jeruzal-Świątecka
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, al. Tadeusza Kościuszki 4, 90-419 Lodz, Poland;
| | - Edyta Marta Borkowska
- Department of Clinical Genetics, Medical University of Lodz, 90-419 Lodz, Poland; (E.M.B.); (M.B.)
| | - Martyna Borkowska
- Department of Clinical Genetics, Medical University of Lodz, 90-419 Lodz, Poland; (E.M.B.); (M.B.)
| | - Wioletta Pietruszewska
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, al. Tadeusza Kościuszki 4, 90-419 Lodz, Poland;
| |
Collapse
|
4
|
Liu X, Liu Z, Liu Y, Wang N. ATG9A modulated by miR-195-5p can boost the malignant progression of cervical cancer cells. Epigenetics 2023; 18:2257538. [PMID: 37782756 PMCID: PMC10547073 DOI: 10.1080/15592294.2023.2257538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Cervical cancer (CC) is a major public health problem, and its molecular mechanism requires further investigation. The goal of this study was to determine the role of miR-195-5p and the autophagy-related protein ATG9A in tumour metastasis, epithelial - mesenchymal transition (EMT), apoptosis, and autophagy of CC cells. Using bioinformatics analysis, we predicted ATG9A as a downstream target gene of miR-195-5p, an integral membrane protein required for autophagosome formation and involved in tumorigenesis. Next, western blotting and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that upregulation of miR-195-5p decreased protein and mRNA expression of ATG9A, and downregulation of miR-195-5p promoted ATG9A protein and mRNA expression. In addition, detection of the dual luciferase reporter gene further indicated ATG9A is a direct downstream target gene of miR-195-5p. Finally, the effects of miR-195-5p and ATG9A on CC cell proliferation, migration, invasion, EMT, autophagy, and apoptosis were evaluated in vitro. Our results showed that upregulation of miR-195-5p not only inhibits proliferation, migration, and the EMT of CC cells, but also induces apoptosis and autophagy. Conversely, downregulation of miR-195-5p increased malignant metastasis and the EMT of CC cells, and inhibited apoptosis as well as autophagy. In addition, miR-195-5p targeted and negatively regulated ATG9A, and rescue experiments suggested that overexpression of ATG9A could partially abolish miR-195-5p-mediated suppression of CC cells. Our findings improve our understanding of the mechanism of action of miR-195-5p in the malignant behaviour of CC. miR-195-5p is likely to be a promising cancer suppressor gene, which provides clinical evidence for targeted therapy of CC.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Zhen Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Yonggang Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Ning Wang
- Department of Gynecology, The Second Hospital of Dalian Medical University, DaLian, China
| |
Collapse
|
5
|
Zaidi N, Siddiqui Z, Sankhwar SN, Srivastava AN. Urinary microRNA-10a levels in diagnosis and prognosis of urinary bladder cancer. J Cancer Res Ther 2023; 19:1324-1329. [PMID: 37787302 DOI: 10.4103/jcrt.jcrt_1014_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Urinary bladder cancer (UBC) is a disease quite common in developed countries; however, its incidence is increasing in developing countries as well. The diagnosis of UBC is generally based on a number of methods, of which urinary cytology is a very commonly used one. But it is not very reliable. Therefore many new markers and methods are being investigated to make non-invasive diagnosis of UBC easy and reliable. Objective This study was carried out to find the usefulness of microRNA (miRNA)-10a as a diagnostic and prognostic marker in non-muscle-invasive urinary bladder carcinoma. Material and Method Twenty patients with UBC were taken as cases with 20 controls. Urine cytological examination was done, as well as histopathological examination of tumor tissue of cases. Urinary miRNA-10a estimation of both the cases and controls were done. Result and Conclusion It was found that miRNA-10a is significantly high in urine of patients with UBC. Its value also significantly correlated with the grade and stage of the tumor. Hence it can be concluded that urinary miRNA-10a is a potential candidate in the diagnosis and prognosis of UBC.
Collapse
Affiliation(s)
- Noorin Zaidi
- Department of Pathology, Eras Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Zainab Siddiqui
- Department of Pathology, Eras Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Satya N Sankhwar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anand N Srivastava
- Director Research, Eras Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Su Z, Monshaugen I, Klungland A, Ougland R, Dutta A. Characterization of novel small non-coding RNAs and their modifications in bladder cancer using an updated small RNA-seq workflow. Front Mol Biosci 2022; 9:887686. [PMID: 35923465 PMCID: PMC9340255 DOI: 10.3389/fmolb.2022.887686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/27/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Bladder cancer (BLCA) is one of the most common cancer types worldwide. The disease is responsible for about 200,000 deaths annually, thus improved diagnostics and therapy is needed. A large body of evidence reveal that small RNAs of less than 40 nucleotides may act as tumor suppressors, oncogenes, and disease biomarkers, with a major focus on microRNAs. However, the role of other families of small RNAs is not yet deciphered. Recent results suggest that small RNAs and their modification status, play a role in BLCA development and are promising biomarkers due to their high abundance in the exomes and body fluids (including urine). Moreover, free modified nucleosides have been detected at elevated levels from the urine of BLCA patients. A genome-wide view of small RNAs, and their modifications, will help pinpoint the molecules that could be used as biomarker or has important biology in BLCA development. Methods: BLCA tumor tissue specimens were obtained from 12 patients undergoing transurethral resection of non-muscle invasive papillary urothelial carcinomas. Genome-wide profiling of small RNAs less than 40 bases long was performed by a modified protocol with TGIRT (thermostable group II reverse transcriptase) to identify novel small RNAs and their modification status. Results: Comprehensive analysis identified not only microRNAs. Intriguingly, 57 ± 15% (mean ± S.D.) of sequencing reads mapped to non-microRNA-small RNAs including tRNA-derived fragments (tRFs), ribosomal RNA-derived fragments (rRFs) and YRNA-derived fragments (YRFs). Misincorporation (mismatch) sites identified potential base modification positions on the small RNAs, especially on tRFs, corresponding to m1A (N1-methyladenosine), m1G (N1-methylguanosine) and m2 2G (N2, N2-dimethylguanosine). We also detected mismatch sites on rRFs corresponding to known modifications on 28 and 18S rRNA. Conclusion: We found abundant non-microRNA-small RNAs in BLCA tumor samples. Small RNAs, especially tRFs and rRFs, contain modifications that can be captured as mismatch by TGIRT sequencing. Both the modifications and the non-microRNA-small RNAs should be explored as a biomarker for BLCA detection or follow-up.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Ida Monshaugen
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Rune Ougland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
| | - Anindya Dutta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Jeruzal-Świątecka J, Borkowska E, Łaszczych M, Nowicka Z, Pietruszewska W. TAS2R38 Bitter Taste Receptor Expression in Chronic Rhinosinusitis with Nasal Polyps: New Data on Polypoid Tissue. Int J Mol Sci 2022; 23:ijms23137345. [PMID: 35806350 PMCID: PMC9266535 DOI: 10.3390/ijms23137345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Studies have shown differences in TAS2R38 receptor expression in patients with chronic rhinosinusitis (CRS) compared to healthy controls. Known agonists of TAS2R38 stimulate epithelial cells, leading to robust intracellular nitric oxide (NO) production, which damages bacterial membranes, enzymes, and DNA, but also increases ciliary beat frequency. In this study we examined, using qRT-PCR, the expression of TAS2R38 receptor in nasal polyps (NP) of patients with CRS (N = 107) and in inferior turbinate mucosa (ITM) of patients with CRS and controls (N = 39), and confronted it with clinical features and the severity of the disease. The expression was shown in 43 (50.00%) samples of ITM in the study group (N = 107), in 28 (71.79%) in the control group (N = 39) (p = 0.037), and in 43 (46.24%) of NP. There were no differences in levels of the expression in all analyzed tissues. Patients who rated their symptoms at 0–3 showed higher TAS2R38 expression in ITM in comparison to the patients with 8–10 points on the VAS scale (p = 0.020). A noticeable, however not significant, correlation between the TAS2R38 expression in ITM and the Lund–Mackay CT score was shown (p = 0.068; R = −0.28). Patients with coexisting asthma had significantly higher receptor expression in the NP (p = 0.012). Our study is the first to confirm the presence of the TAS2R38 receptor in NP. Expression of the TAS2R38 receptor is reduced in the sinonasal mucosa in patients with more advanced CRS with NP.
Collapse
Affiliation(s)
- Joanna Jeruzal-Świątecka
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
- Correspondence: ; Tel.: +48-501-785470
| | - Edyta Borkowska
- Department of Clinical Genetics, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Mateusz Łaszczych
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (M.Ł.); (Z.N.)
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (M.Ł.); (Z.N.)
| | - Wioletta Pietruszewska
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
8
|
Wen Z, Huang G, Lai Y, Xiao L, Peng X, Liu K, Zhang C, Chen X, Li R, Li X, Lai Y, Ni L. Diagnostic panel of serum miR-125b-5p, miR-182-5p, and miR-200c-3p as non-invasive biomarkers for urothelial bladder cancer. Clin Transl Oncol 2022; 24:909-918. [PMID: 35028929 DOI: 10.1007/s12094-021-02741-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aimed to identify a diagnostic panel of serum microRNAs (miRNAs) for the early detection of bladder cancer (BC). METHODS Serum samples were collected from 112 BC patients and 112 normal controls (NCs). A three-stage selection was conducted to identify differentially expressed miRNAs as candidates to construct the diagnostic panel. Further, to explore their potential roles in urothelial BC, bioinformatics analyses, including target genes prediction and functional annotation, were used. RESULTS Six downregulated miRNAs (miR-1-3p, miR-30a-5p, miR-100-5p, miR-125b-5p, miR-143-3p, and miR-200c-3p) and one upregulated, miR-182-5p, in BC patients' serum were detected compared to NCs and were selected to establish the diagnostic panel. Based on a backward stepwise logistic regression analysis, miR-125b-5p, miR-182-5p, and miR-200c-3p comprehended the diagnostic panel [area under the curve (AUC) = 0.959, sensitivity = 91.67%, specificity = 92.5%]. CONCLUSION The panel of three miRNAs had an excellent diagnostic capability, representing a potential non-invasive method for early BC detection.
Collapse
Affiliation(s)
- Z Wen
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - G Huang
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Y Lai
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, People's Republic of China
| | - L Xiao
- Department of Urology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518109, People's Republic of China
| | - X Peng
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - K Liu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - C Zhang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - X Chen
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - R Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - X Li
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Y Lai
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - L Ni
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| |
Collapse
|
9
|
Shiina M, Hashimoto Y, Kulkarni P, Dasgupta P, Shahryari V, Yamamura S, Tanaka Y, Dahiya R. Role of miR-182/PDCD4 axis in aggressive behavior of prostate cancer in the African Americans. BMC Cancer 2021; 21:1028. [PMID: 34525952 PMCID: PMC8444584 DOI: 10.1186/s12885-021-08723-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed cancers among men. African Americans (AA) are at an increased risk of developing prostate cancer compared to European Americans (EA). miRNAs play a critical role in these tumors, leading to tumor progression. In this study, we investigated the role of miR-182 in racial disparity in prostate cancer. Results We found significantly increased levels of miR-182 in prostate cancer tissues compared to BPH. Also, miR-182 shows increased expression in AA prostate cancer cell line and tissue samples compared to EA. We performed biochemical recurrence (BCR) - free survival time in AA and EA patients and found that high miR-182 expression had significantly shorter BCR-free survival than patients with low miR-182 expression (P = 0.031). To elucidate the role of miR-182, we knocked down miR-182 in EA (DU-145 and LNCaP) and AA (MDA-PCa-2b) cell lines and found an increase in apoptosis, arrest of the cell cycle, and inhibition of colony formation in the AA cell line to a greater extent than EA cell lines. Conclusions Our results showed that PDCD4 is a direct miR-182 target and its inhibition is associated with aggressiveness and high Gleason grade in prostate cancer among AA. These findings show that miR-182 is highly expressed in AA patients and miR-182 may be a target for effective therapy in AA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08723-6.
Collapse
Affiliation(s)
- Marisa Shiina
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Yutaka Hashimoto
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Priyanka Kulkarni
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Pritha Dasgupta
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Varahram Shahryari
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Soichiro Yamamura
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Yuichiro Tanaka
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Rajvir Dahiya
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| |
Collapse
|
10
|
Deciphering miRNA-Target Relationships to Understand miRNA-Mediated Carcinogenesis. Cancers (Basel) 2021; 13:cancers13102415. [PMID: 34067691 PMCID: PMC8156494 DOI: 10.3390/cancers13102415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
|
11
|
Expression of Transcript Variants of PTGS1 and PTGS2 Genes among Patients with Chronic Rhinosinusitis with Nasal Polyps. Diagnostics (Basel) 2021; 11:diagnostics11010135. [PMID: 33467191 PMCID: PMC7830232 DOI: 10.3390/diagnostics11010135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
To date, there has been no reliable test to identify unfavorable course of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP), especially in aspirin intolerant patients. The research aimed to analyze the expression of transcript variants of PTGS1 and PTGS2 genes in the pathobiology of the disease. The study was performed on 409 adult patients: 206 CRSwNP patients including 44 (21.36%) aspirin intolerant patients and 203 healthy volunteers in the control group. Transcript variants of the PTGS1 and PTGS2 genes named as follows: COX1.1 for NM_000962, COX1.2 for NM_080591, COX1.3 for NM_001271165.1, COX1.4 for NM_001271368.1, COX1.5 for NM_001271166.1, COX2.1 for NM_000963.3, COX2.2 for AY_151286 and COX2.3 for BQ_722004 were confirmed using direct sequencing and quantified using targeted qPCR. The coexistence of all examined transcript variants in the study and the control group and significant differences between both were found. In aspirin sensitive patients, the levels of COX1.2, COX1.3, COX1.4 and COX1.5 isoforms were higher compared to aspirin-tolerant patients. The severity of symptoms was bigger in patients with higher expressions of variants: COX1.1 (R with dCt = −0.134; p = 0.0490), COX1.3 (R = −0.1429; p = 0.0400) and COX1.5 (Rs = −0.1499; p = 0.032). The expression of COX1.1 (Rs = −0.098; p = 0.049) and COX1.5 (Rs = −0.141; p = 0.043) isoforms increased with polyposis advancement in endoscopy. With the CT extent of sinuses opacification, COX1.1 isoform also significantly increased (Rs = −0.163; p = 0.020). The isoforms COX1.3, COX1.4, COX1.5 and COX2.1 may promote milder CRSwNP course. On the contrary, the variants COX1.1, COX1.2 and COX2.2 may be involved in a more aggressive disease.
Collapse
|
12
|
Blinova E, Buzdin A, Enikeev D, Roshchin D, Suntsova M, Samyshina E, Drobyshev A, Deryabina O, Demura T, Blinov D, Shich E, Barakat H, Borger P, Merinov D, Kachmazov A, Serebrianyi S, Tumutolova O, Potoldykova N, Zhdanov P, Grigoryan V, Perepechin D. Prognostic Role of FGFR3 Expression Status and Tumor-Related MicroRNAs Level in Association with PD-L1 Expression in Primary Luminal Non-Muscular Invasive Bladder Carcinoma. Life (Basel) 2020; 10:life10110305. [PMID: 33238591 PMCID: PMC7700587 DOI: 10.3390/life10110305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND bladder cancer is one of the most common urinary tract malignancies. Establishment of robust predictors of disease progression and outcome is important for personalizing treatment of non-muscular invasive bladder carcinoma (NMIBC). In this study we evaluated association of PD-L1 expression with other prognostic biomarkers, such as expression of miRNA-145 and miRNA-200a, FGFR3 gene expression, and mutation status in tissue specimens of the luminal subtype of newly diagnosed high and low grade NMIBC. METHODS twenty patients with primary luminal NMIBC were enrolled in the study. Tumor grade and risk level were determined in accordance with European Organization for Research and Treatment of Cancer (EORTC) guidelines and World Health Organization (WHO) classification. Neoplasm molecular subtype and PD-L1 expression level were assessed by immunohistochemistry. We used real-time PCR to evaluate the expression of microRNAs and FGFR3. We detected FGFR3 hotspot mutations in codons 248 and 249 by Sanger sequencing. RESULTS high grade primary luminal NMIBC showed comparatively higher expression of PD-L1 and microRNA-145 than a low grade tumor, whereas the latter had a higher FGFR3 expression and hotspot mutation rate. The tumor grade (HR = 571.72 [11.03-2.96] p = 0.002), PD-L1 expression (HR = 2.33 [0.92-1.92] p = 0.012), and FGFR3 expression (HR = 0.08 [0.17-0.42] p = 0.003) were associated with relapse-free survival. CONCLUSIONS tumor grade in association with PD-L1 and FGFR3 expression can be considered as a complex predictor for primary luminal NMIBC progression.
Collapse
Affiliation(s)
- Ekaterina Blinova
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Urology and Reproductive Health, Sechenov University, 119991 Moscow, Russia; (E.B.); (D.E.); (T.D.); (E.S.); (N.P.); (P.Z.); (V.G.)
| | - Anton Buzdin
- Laboratory of Bioinformatics, Institute for Personalized Medicine, Sechenov University, 119991 Moscow, Russia; (A.B.); (M.S.); (A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry Enikeev
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Urology and Reproductive Health, Sechenov University, 119991 Moscow, Russia; (E.B.); (D.E.); (T.D.); (E.S.); (N.P.); (P.Z.); (V.G.)
| | - Dmitry Roshchin
- Russian National Research Center of Radiology, Department of Oncological Urology, 125284 Moscow, Russia; (D.R.); (D.M.); (A.K.); (S.S.); (D.P.)
| | - Maria Suntsova
- Laboratory of Bioinformatics, Institute for Personalized Medicine, Sechenov University, 119991 Moscow, Russia; (A.B.); (M.S.); (A.D.)
| | - Elena Samyshina
- All-Union Research Center for Biological Active Compounds Safety, Laboratory of Molecular Pharmacology and Drug Design, 142450 Staraja Kupavna, Russia;
| | - Aleksey Drobyshev
- Laboratory of Bioinformatics, Institute for Personalized Medicine, Sechenov University, 119991 Moscow, Russia; (A.B.); (M.S.); (A.D.)
| | - Olga Deryabina
- Laboratory of Pharmacology, Department of Oncology, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (O.D.); (O.T.)
| | - Tatiana Demura
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Urology and Reproductive Health, Sechenov University, 119991 Moscow, Russia; (E.B.); (D.E.); (T.D.); (E.S.); (N.P.); (P.Z.); (V.G.)
| | - Dmitry Blinov
- All-Union Research Center for Biological Active Compounds Safety, Laboratory of Molecular Pharmacology and Drug Design, 142450 Staraja Kupavna, Russia;
- Correspondence: ; Tel.: +7-927-197-1422
| | - Evgenia Shich
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Urology and Reproductive Health, Sechenov University, 119991 Moscow, Russia; (E.B.); (D.E.); (T.D.); (E.S.); (N.P.); (P.Z.); (V.G.)
| | - Haydar Barakat
- Department of Propaedeutics of Dental Diseases, People’s Friendship University of Russia, 117198 Moscow, Russia;
| | - Pieter Borger
- Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, Department of Surgery, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Dmitrij Merinov
- Russian National Research Center of Radiology, Department of Oncological Urology, 125284 Moscow, Russia; (D.R.); (D.M.); (A.K.); (S.S.); (D.P.)
| | - Aleksandr Kachmazov
- Russian National Research Center of Radiology, Department of Oncological Urology, 125284 Moscow, Russia; (D.R.); (D.M.); (A.K.); (S.S.); (D.P.)
| | - Stanislav Serebrianyi
- Russian National Research Center of Radiology, Department of Oncological Urology, 125284 Moscow, Russia; (D.R.); (D.M.); (A.K.); (S.S.); (D.P.)
| | - Oxana Tumutolova
- Laboratory of Pharmacology, Department of Oncology, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (O.D.); (O.T.)
| | - Natalia Potoldykova
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Urology and Reproductive Health, Sechenov University, 119991 Moscow, Russia; (E.B.); (D.E.); (T.D.); (E.S.); (N.P.); (P.Z.); (V.G.)
| | - Pavel Zhdanov
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Urology and Reproductive Health, Sechenov University, 119991 Moscow, Russia; (E.B.); (D.E.); (T.D.); (E.S.); (N.P.); (P.Z.); (V.G.)
| | - Vagarshak Grigoryan
- Department of Clinical Anatomy and Operative Surgery, Department of Pathological Anatomy, Institute for Urology and Reproductive Health, Sechenov University, 119991 Moscow, Russia; (E.B.); (D.E.); (T.D.); (E.S.); (N.P.); (P.Z.); (V.G.)
| | - Dmitrij Perepechin
- Russian National Research Center of Radiology, Department of Oncological Urology, 125284 Moscow, Russia; (D.R.); (D.M.); (A.K.); (S.S.); (D.P.)
| |
Collapse
|
13
|
A potential prognostic model based on miRNA expression profile in The Cancer Genome Atlas for bladder cancer patients. ACTA ACUST UNITED AC 2020; 27:6. [PMID: 32477968 PMCID: PMC7236498 DOI: 10.1186/s40709-020-00116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/24/2020] [Indexed: 01/24/2023]
Abstract
Background This study aimed to construct prognostic model by screening prognostic miRNA signature of bladder cancer. Methods The miRNA expression profile data of bladder cancer (BC) in The Cancer Genome Atlas (TCGA) were obtained and randomly divided into the training set and the validation set. Differentially expressed miRNAs (DEMs) between BC and normal control samples in the training set were firstly identified, and DEMs related to prognosis were screened by Cox Regression analysis. Then, the MiR Score system was constructed using X-Tile based cutoff points and verified in the validation set. The prognostic clinical factors are selected out by univariate and multivariate Cox Regression analysis. Finally, the mRNAs related to prognosis were screened and the biological pathway analysis was carried out. Results We identified the 7-miRNA signature was significantly associated with the patient’s Overall Survival (OS). A prognostic model was constructed based on the prognostic 7-miRNA signature, and possessed a relative satisfying predicted ability both in the training set and validation set. In addition, univariate and multivariate Cox Regression analysis showed that age, lymphovascular invasion and MiR Score were considered as independent prognostic factors in BC patients. Furthermore, based on MiR Score prognostic model, several differentially expressed genes (DEGs), such as WISP3 and UNC5C, as well as their related biological pathway(s), including cell–cell adhesion and neuroactive ligand-receptor interaction, were considered to be related to BC prognosis. Conclusion The prognostic model which was constructed based on the prognostic 7-miRNA signature presented a high predictive ability for BC.
Collapse
|
14
|
Immunotherapy in Bladder Cancer: Current Methods and Future Perspectives. Cancers (Basel) 2020; 12:cancers12051181. [PMID: 32392774 PMCID: PMC7281703 DOI: 10.3390/cancers12051181] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is one of the most significant genitourinary cancer, causing high morbidity and mortality in a great number of patients. Over the years, various treatment methods for this type of cancer have been developed. The most common is the highly efficient method using Bacillus Calmette-Guerin, giving a successful effect in a high percentage of patients. However, due to the genetic instability of bladder cancer, together with individual needs of patients, the search for different therapy methods is ongoing. Immune checkpoints are cell surface molecules influencing the immune response and decreasing the strength of the immune response. Among those checkpoints, the PD-1 (programmed cell death protein-1)/PD-L1 (programmed cell death protein ligand 1) inhibitors aim at blocking those molecules, which results in T cell activation, and in bladder cancer the use of Atezolizumab, Avelumab, Durvalumab, Nivolumab, and Pembrolizumab has been described. The inhibition of another pivotal immune checkpoint, CTLA-4 (cytotoxic T cell antigen), may result in the mobilization of the immune system against bladder cancer and, among anti-CTLA-4 antibodies, the use of Ipilimumab and Tremelimumab has been discussed. Moreover, several different approaches to successful bladder cancer treatment exists, such as the use of ganciclovir and mTOR (mammalian target of rapamycin) kinase inhibitors, IL-12 (interleukin-12) and COX-2 (cyclooxygenase-2). The use of gene therapies and the disruption of different signaling pathways are currently being investigated. Research suggests that the combination of several methods increases treatment efficiency and the positive outcome in individual.
Collapse
|