1
|
Abstract
With the rapid development of science and technology, cell-free DNA (cfDNA) is rapidly becoming an important biomarker for tumor diagnosis, monitoring and prognosis, and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine. cfDNA is the total amount of free DNA in the systemic circulation, including DNA fragments derived from tumor cells and all other somatic cells. Tumor cells release fragments of DNA into the bloodstream, and this source of cfDNA is called circulating tumor DNA (ctDNA). cfDNA detection has become a major focus in the field of tumor research in recent years, which provides a new opportunity for non-invasive diagnosis and prognosis of cancer. In this paper, we discuss the limitations of the study on the origin and dynamics analysis of ctDNA, and how to solve these problems in the future. Although the future faces major challenges, it also contains great potential.
Collapse
|
2
|
Liu SC. Circulating tumor DNA in liquid biopsy: Current diagnostic limitation. World J Gastroenterol 2024; 30:2175-2178. [PMID: 38681986 PMCID: PMC11045476 DOI: 10.3748/wjg.v30.i15.2175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
With the rapid development of science and technology, cell-free DNA (cfDNA) is rapidly becoming an important biomarker for tumor diagnosis, monitoring and prognosis, and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine. cfDNA is the total amount of free DNA in the systemic circulation, including DNA fragments derived from tumor cells and all other somatic cells. Tumor cells release fragments of DNA into the bloodstream, and this source of cfDNA is called circulating tumor DNA (ctDNA). cfDNA detection has become a major focus in the field of tumor research in recent years, which provides a new opportunity for non-invasive diagnosis and prognosis of cancer. In this paper, we discuss the limitations of the study on the origin and dynamics analysis of ctDNA, and how to solve these problems in the future. Although the future faces major challenges, it also contains great potential.
Collapse
Affiliation(s)
- Shi-Cai Liu
- School of Medical Information, Wannan Medical College, Wuhu 241002, Anhui Province, China
| |
Collapse
|
3
|
Ma H, Xiong L, Zhao B, Hahan Z, Wei M, Shi H, Yang S, Ren Q. Comprehensive investigation into the influence of glycosylation on head and neck squamous cell carcinoma and development of a prognostic model for risk assessment and anticipating immunotherapy. Front Immunol 2024; 15:1364082. [PMID: 38562924 PMCID: PMC10982401 DOI: 10.3389/fimmu.2024.1364082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background It has been well established that glycosylation plays a pivotal role in initiation, progression, and therapy resistance of several cancers. However, the correlations between glycosylation and head and neck squamous cell carcinoma (HNSCC) have not been elucidated in detail. Methods The paramount genes governing glycosylation were discerned via the utilization of the Protein-Protein Interaction (PPI) network and correlation analysis, coupled with single-cell RNA sequencing (scRNA-seq) analysis. To construct risk models exhibiting heightened predictive efficacy, cox- and lasso-regression methodologies were employed, and the veracity of these models was substantiated across both internal and external datasets. Subsequently, an exploration into the distinctions within the tumor microenvironment (TME), immunotherapy responses, and enriched pathways among disparate risk cohorts ensued. Ultimately, cell experiments were conducted to validate the consequential impact of SMS in Head and Neck Squamous Cell Carcinoma (HNSCC). Results A total of 184 genes orchestrating glycosylation were delineated for subsequent scrutiny. Employing cox- and lasso-regression methodologies, we fashioned a 3-gene signature, proficient in prognosticating the outcomes for patients afflicted with HNSCC. Noteworthy observations encompassed distinctions in the Tumor Microenvironment (TME), levels of immune cell infiltration, and the presence of immune checkpoint markers among divergent risk cohorts, holding potentially consequential implications for the clinical management of HNSCC patients. Conclusion The prognosis of HNSCC can be proficiently anticipated through risk signatures based on Glycosylation-related genes (GRGs). A thorough delineation of the GRGs signature in HNSCC holds the potential to facilitate the interpretation of HNSCC's responsiveness to immunotherapy and provide innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Heng Ma
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ludan Xiong
- Department of GCP Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Bohui Zhao
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhuledesi Hahan
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Minghui Wei
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Susu Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianhe Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Igder S, Zamani M, Fakher S, Siri M, Ashktorab H, Azarpira N, Mokarram P. Circulating Nucleic Acids in Colorectal Cancer: Diagnostic and Prognostic Value. DISEASE MARKERS 2024; 2024:9943412. [PMID: 38380073 PMCID: PMC10878755 DOI: 10.1155/2024/9943412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in the world and the fourth leading cause of cancer-related mortality. DNA (cfDNA/ctDNA) and RNA (cfRNA/ctRNA) in the blood are promising noninvasive biomarkers for molecular profiling, screening, diagnosis, treatment management, and prognosis of CRC. Technological advancements that enable precise detection of both genetic and epigenetic abnormalities, even in minute quantities in circulation, can overcome some of these challenges. This review focuses on testing for circulating nucleic acids in the circulation as a noninvasive method for CRC detection, monitoring, detection of minimal residual disease, and patient management. In addition, the benefits and drawbacks of various diagnostic techniques and associated bioinformatics tools have been detailed.
Collapse
Affiliation(s)
- Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Fakher
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Negar Azarpira
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Ajithkumar P, Vasantharajan SS, Pattison S, McCall JL, Rodger EJ, Chatterjee A. Exploring Potential Epigenetic Biomarkers for Colorectal Cancer Metastasis. Int J Mol Sci 2024; 25:874. [PMID: 38255946 PMCID: PMC10815915 DOI: 10.3390/ijms25020874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metastatic progression is a complex, multistep process and the leading cause of cancer mortality. There is growing evidence that emphasises the significance of epigenetic modification, specifically DNA methylation and histone modifications, in influencing colorectal (CRC) metastasis. Epigenetic modifications influence the expression of genes involved in various cellular processes, including the pathways associated with metastasis. These modifications could contribute to metastatic progression by enhancing oncogenes and silencing tumour suppressor genes. Moreover, specific epigenetic alterations enable cancer cells to acquire invasive and metastatic characteristics by altering cell adhesion, migration, and invasion-related pathways. Exploring the involvement of DNA methylation and histone modification is crucial for identifying biomarkers that impact cancer prediction for metastasis in CRC. This review provides a summary of the potential epigenetic biomarkers associated with metastasis in CRC, particularly DNA methylation and histone modifications, and examines the pathways associated with these biomarkers.
Collapse
Affiliation(s)
- Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Sai Shyam Vasantharajan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
6
|
Hosseini ST, Nemati F. Identification of GUCA2A and COL3A1 as prognostic biomarkers in colorectal cancer by integrating analysis of RNA-Seq data and qRT-PCR validation. Sci Rep 2023; 13:17086. [PMID: 37816854 PMCID: PMC10564945 DOI: 10.1038/s41598-023-44459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
By 2030, it is anticipated that there will be 2.2 million new instances of colorectal cancer worldwide, along with 1.1 million yearly deaths. Therefore, it is critical to develop novel biomarkers that could help in CRC early detection. We performed an integrated analysis of four RNA-Seq data sets and TCGA datasets in this study to find novel biomarkers for diagnostic, prediction, and as potential therapeutic for this malignancy, as well as to determine the molecular mechanisms of CRC carcinogenesis. Four RNA-Seq datasets of colorectal cancer were downloaded from the Sequence Read Archive (SRA) database. The metaSeq package was used to integrate differentially expressed genes (DEGs). The protein-protein interaction (PPI) network of the DEGs was constructed using the string platform, and hub genes were identified using the cytoscape software. The gene ontology and KEGG pathway enrichment analysis were performed using enrichR package. Gene diagnostic sensitivity and its association to clinicopathological characteristics were demonstrated by statistical approaches. By using qRT-PCR, GUCA2A and COL3A1 were examined in colon cancer and rectal cancer. We identified 5037 differentially expressed genes, including (4752 upregulated, 285 downregulated) across the studies between CRC and normal tissues. Gene ontology and KEGG pathway analyses showed that the highest proportion of up-regulated DEGs was involved in RNA binding and RNA transport. Integral component of plasma membrane and mineral absorption pathways were identified as containing down-regulated DEGs. Similar expression patterns for GUCA2A and COL3A1 were seen in qRT-PCR and integrated RNA-Seq analysis. Additionally, this study demonstrated that GUCA2A and COL3A1 may play a significant role in the development of CRC.
Collapse
Affiliation(s)
- Seyed Taleb Hosseini
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran
- Young Researchers and Elite Club, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran
| | - Farkhondeh Nemati
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran.
| |
Collapse
|
7
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
8
|
Circulating Tumor DNA Methylation Biomarkers for Characterization and Determination of the Cancer Origin in Malignant Liver Tumors. Cancers (Basel) 2023; 15:cancers15030859. [PMID: 36765815 PMCID: PMC9913861 DOI: 10.3390/cancers15030859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Malignant liver tumors include primary malignant liver tumors and liver metastases. They are among the most common malignancies worldwide. The disease has a poor prognosis and poor overall survival, especially with liver metastases. Therefore, early detection and differentiation between malignant liver tumors are critical for patient treatment selection. The detection of cancer and the prediction of its origin is possible with a DNA methylation profile of the tumor DNA compared to that of normal cells, which reflects tissue differentiation and malignant transformation. New technologies enable the characterization of the tumor methylome in circulating tumor DNA (ctDNA), providing a variety of new ctDNA methylation biomarkers, which can provide additional information to clinical decision-making. Our review of the literature provides insight into methylation changes in ctDNA from patients with common malignant liver tumors and can serve as a starting point for further research.
Collapse
|
9
|
Ko B, Hanna M, Yu M, Grady WM. Epigenetic Alterations in Colorectal Cancer. EPIGENETICS AND HUMAN HEALTH 2023:331-361. [DOI: 10.1007/978-3-031-42365-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
De Robertis M, Greco MR, Cardone RA, Mazza T, Marzano F, Mehterov N, Kazakova M, Belev N, Tullo A, Pesole G, Sarafian V, Signori E. Upregulation of YKL-40 Promotes Metastatic Phenotype and Correlates with Poor Prognosis and Therapy Response in Patients with Colorectal Cancer. Cells 2022; 11:cells11223568. [PMID: 36428997 PMCID: PMC9688424 DOI: 10.3390/cells11223568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
- Correspondence: (M.D.R.); (E.S.); Tel.: +39-06-4993-4232 (E.S.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Nikolay Belev
- University Hospital Eurohospital, 4000 Plovdiv, Bulgaria
- Department of Propedeutics of Surgical Diseases, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
- Correspondence: (M.D.R.); (E.S.); Tel.: +39-06-4993-4232 (E.S.)
| |
Collapse
|
11
|
Chen CY, Wu JJ, Lin YJ, Hsu CH, Hu JM, Chang PK, Sun CA, Yang T, Su JQ, Chou YC. Significance of Hypermethylation of Tumor-Suppressor Genes PTGER4 and ZNF43 at CpG Sites in the Prognosis of Colorectal Cancer. Int J Mol Sci 2022; 23:ijms231810225. [PMID: 36142151 PMCID: PMC9499344 DOI: 10.3390/ijms231810225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
The status of DNA methylation in primary tumor tissue and adjacent tumor-free tissue is associated with the occurrence of aggressive colorectal cancer (CRC) and can aid personalized cancer treatments at early stages. Tumor tissue and matched adjacent nontumorous tissue were extracted from 208 patients with CRC, and the correlation between the methylation levels of PTGER4 and ZNF43 at certain CpG loci and the prognostic factors of CRC was determined using the MassARRAY System testing platform. The Wilcoxon signed-rank test, a Chi-square test, and McNemar’s test were used for group comparisons, and Kaplan–Meier curves and a log-rank test were used for prediction. The hypermethylation of PTGER4 at the CpG_4, CpG_5, CpG_15, and CpG_17 tumor tissue sites was strongly correlated with shorter recurrence-free survival (RFS), progression-free survival (PFS), and overall survival (OS) [hazard ratio (HR) = 3.26, 95% confidence interval (CI) = 1.38–7.73 for RFS, HR = 2.35 and 95% CI = 1.17–4.71 for PFS, HR = 4.32 and 95% CI = 1.8–10.5 for OS]. By contrast, RFS and PFS were significantly longer in the case of increased methylation of ZNF43 at the CpG_5 site of normal tissue [HR = 2.33, 95% CI = 1.07–5.08 for RFS, HR = 2.42 and 95% CI = 1.19–4.91 for PFS]. Aberrant methylation at specific CpG sites indicates tissue with aggressive behavior. Therefore, the differential methylation of PTGER4 and ZNF43 at specific loci can be employed for the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Chao-Yang Chen
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jia-Jheng Wu
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Jyun Lin
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hsiung Hsu
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Je-Ming Hu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Pi-Kai Chang
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Data Science Center, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung 912, Taiwan
| | - Jing-Quan Su
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Correspondence: (J.-Q.S.); (Y.-C.C.); Tel.: +886-7-3422121 (ext. 78058) (J.-Q.S.); +886-2-87923100 (ext. 18437) (Y.-C.C.); Fax: +886-7-3468056 (J.-Q.S.); +886-2-87923147 (Y.-C.C.)
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-Q.S.); (Y.-C.C.); Tel.: +886-7-3422121 (ext. 78058) (J.-Q.S.); +886-2-87923100 (ext. 18437) (Y.-C.C.); Fax: +886-7-3468056 (J.-Q.S.); +886-2-87923147 (Y.-C.C.)
| |
Collapse
|
12
|
Liu S, Wang J. Current and Future Perspectives of Cell-Free DNA in Liquid Biopsy. Curr Issues Mol Biol 2022; 44:2695-2709. [PMID: 35735625 PMCID: PMC9222159 DOI: 10.3390/cimb44060184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
A liquid biopsy is a minimally invasive or non-invasive method to analyze a range of tumor material in blood or other body fluids, including circulating tumor cells (CTCs), cell-free DNA (cfDNA), messenger RNA (mRNA), microRNA (miRNA), and exosomes, which is a very promising technology. Among these cancer biomarkers, plasma cfDNA is the most widely used in clinical practice. Compared with a tissue biopsy of traditional cancer diagnosis, in assessing tumor heterogeneity, a liquid biopsy is more reliable because all tumor sites release cfDNA into the blood. Therefore, a cfDNA liquid biopsy is less invasive and comprehensive. Moreover, the development of next-generation sequencing technology makes cfDNA sequencing more sensitive than a tissue biopsy, with higher clinical applicability and wider application. In this publication, we aim to review the latest perspectives of cfDNA liquid biopsy clinical significance and application in cancer diagnosis, treatment, and prognosis. We introduce the sequencing techniques and challenges of cfDNA detection, analysis, and clinical applications, and discuss future research directions.
Collapse
|
13
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
14
|
Lin S, Gu S, Qian S, Liu Y, Sheng J, Li Q, Yang J, Ying X, Li Z, Tang M, Wang J, Chen K, Jin M. Genome-Wide Methylation Profiling of lncRNAs Reveals a Novel Progression-Related and Prognostic Marker for Colorectal Cancer. Front Oncol 2022; 11:782077. [PMID: 35127488 PMCID: PMC8811200 DOI: 10.3389/fonc.2021.782077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Sporadic colorectal cancer (CRC) develops principally through the adenoma-carcinoma sequence. Previous studies revealed that DNA methylation alterations play a significant role in colorectal neoplastic transformation. On the other hand, long noncoding RNAs (lncRNAs) have been identified to be associated with some critical tumorigenic processes of CRC. Accumulating evidence indicates more intricate regulatory relationships between DNA methylation and lncRNAs in CRC. Nevertheless, the methylation alterations of lncRNAs at different stages of colorectal carcinogenesis based on a genome-wide scale remain elusive. Therefore, in this study, we first used an Illumina MethylationEPIC BeadChip (850K array) to identify the methylation status of lncRNAs in 12 pairs of colorectal cancerous and adjacent normal tissues from cohort I, followed by cross-validation with The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Then, the abnormal hypermethylation of candidate genes in colorectal lesions was successfully confirmed by MassARRAY EpiTYPER in cohort II including 48 CRC patients, and cohort III including 286 CRC patients, 81 advanced adenoma (AA) patients and 81 nonadvanced adenoma (NAA) patients. DLX6-AS1 hypermethylation was detected at all stages of colorectal neoplasms and occurred as early as the NAA stage during colorectal neoplastic progression. The methylation levels were significantly higher in the comparisons of CRC vs. NAA (P < 0.001) and AA vs. NAA (P = 0.004). Moreover, the hypermethylation of DLX6-AS1 promoter was also found in cell-free DNA samples collected from CRC patients as compared to healthy controls (Padj = 0.003). Multivariate Cox proportional hazards regression analysis revealed DLX6-AS1 promoter hypermethylation was independently associated with poorer disease-specific survival (HR = 2.52, 95% CI: 1.35-4.69, P = 0.004) and overall survival (HR = 1.64, 95% CI: 1.02-2.64, P = 0.042) in CRC patients. Finally, a nomogram was constructed and verified by a calibration curve to predict the survival probability of individual CRC patients (C-index: 0.789). Our findings indicate DLX6-AS1 hypermethylation might be an early event during colorectal carcinogenesis and has the potential to be a novel biomarker for CRC progression and prognosis.
Collapse
Affiliation(s)
- Shujuan Lin
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Simeng Gu
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Environmental Health, Institute of Endemic Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Sangni Qian
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaxin Liu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qilong Li
- Department of Screening, Jiashan Institute of Cancer Prevention and Treatment, Jiashan, China
| | - Jinhua Yang
- Department of Screening, Jiashan Institute of Cancer Prevention and Treatment, Jiashan, China
| | - Xiaojiang Ying
- Department of Anorectal Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Zhenjun Li
- Department of Anorectal Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Mengling Tang
- Department of Epidemiology and Biostatistics at School Public Health and the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbing Wang
- Department of Epidemiology and Biostatistics at School of Public Health and National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Chen
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingjuan Jin, ; Kun Chen,
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingjuan Jin, ; Kun Chen,
| |
Collapse
|
15
|
Dai Z, Wang K, Gao Y. The critical role of B4GALT4 in promoting microtubule spindle assembly in HCC through the regulation of PLK1 and RHAMM expression. J Cell Physiol 2022; 237:617-636. [PMID: 34270095 DOI: 10.1002/jcp.30531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Beta 1,4-galactosyltransferase (B4GALT)-family glycosyltransferases are involved in multiple biological processes promoting cancer progression, regulating the dynamic network of cancer cell proliferation and apoptosis, and are associated with metastasis. However, their roles in the dysregulation of expressions and functions in hepatocellular carcinoma (HCC) remain unclear. Herein, bioinformatic approaches have been applied to investigate their expression profiles, and to obtain correlations between gene expressions and clinicopathological parameters as well as downstream target genes in HCC. Multiple databases were used to screen the expressions of B4GALT family members in tumor tissues, and to evaluate their prognostic value among HCC patients in different aspects. Results indicated an overall upregulation of B4GALTs' transcription levels in tumor tissues and a strong correlation with poor prognosis. Through Gene Ontology analysis, gene set enrichment analysis, and verification of single-cell RNA sequencing data, we established a connection between the B4GALT family and microtubule spindle assembly, which particularly highlighted the role of B4GALT4 in this phenomenon. B4GALT4 knockdown downregulated the production of lumican, and repressed the expressions of polo-like kinase 1 and RHAMM by regulating the transforming growth factor-beta pathway, thus suggesting that B4GALT4 is a critical promotor for HCC. We believe that these studies will provide valuable insight into the role of B4GALT family members in HCC and lead to the development of new strategies to improve the outcomes for patients with HCC.
Collapse
Affiliation(s)
- Zhe Dai
- Department of Biochemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Kun Wang
- Division of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yin Gao
- Department of Biochemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
Application of droplet digital polymerase chain reaction of plasma methylated septin 9 on detection and early monitoring of colorectal cancer. Sci Rep 2021; 11:23446. [PMID: 34873218 PMCID: PMC8648834 DOI: 10.1038/s41598-021-02879-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Methylated septin 9 (SEPT9) has been approved for non-invasive screening of colorectal cancer (CRC), but data on monitoring of CRC is sparse. Droplet digital polymerase chain reaction (ddPCR), with higher detection precision and simpler quantification than conventional PCR, has not been applied in SEPT9 detection. We explored the role of SEPT9 ddPCR for CRC detection and to measure serial SEPT9 levels in blood samples of CRC patients before and 3-month after surgery. SEPT9 methylated ratio, methylated abundance, and CEA levels were all higher in CRC patients than normal controls (all P < 0.05). The area under the curve (AUC) for methylated ratio and abundance to detect CRC was 0.707 and 0.710, respectively. There was an increasing trend for SEPT9 methylated abundance from proximal to distal cancers (P = 0.017). At 3-month after surgery, both methylated abundance and ratio decreased (P = 0.005 and 0.053, respectively), especially methylated abundance in stage III and distal cancer (both P < 0.01). We have developed a ddPCR platform for the quantitative detection of plasma SEPT9 in CRC patients. SEPT9 methylated abundance had an early post-operative decline, which may be useful in monitoring of treatment response.
Collapse
|
17
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Deger T, Boers RG, de Weerd V, Angus L, van der Put MMJ, Boers JB, Azmani Z, van IJcken WFJ, Grünhagen DJ, van Dessel LF, Lolkema MPJK, Verhoef C, Sleijfer S, Martens JWM, Gribnau J, Wilting SM. High-throughput and affordable genome-wide methylation profiling of circulating cell-free DNA by methylated DNA sequencing (MeD-seq) of LpnPI digested fragments. Clin Epigenetics 2021; 13:196. [PMID: 34670587 PMCID: PMC8529776 DOI: 10.1186/s13148-021-01177-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023] Open
Abstract
Background DNA methylation detection in liquid biopsies provides a highly promising and much needed means for real-time monitoring of disease load in advanced cancer patient care. Compared to the often-used somatic mutations, tissue- and cancer-type specific epigenetic marks affect a larger part of the cancer genome and generally have a high penetrance throughout the tumour. Here, we describe the successful application of the recently described MeD-seq assay for genome-wide DNA methylation profiling on cell-free DNA (cfDNA). The compatibility of the MeD-seq assay with different types of blood collection tubes, cfDNA input amounts, cfDNA isolation methods, and vacuum concentration of samples was evaluated using plasma from both metastatic cancer patients and healthy blood donors (HBDs). To investigate the potential value of cfDNA methylation profiling for tumour load monitoring, we profiled paired samples from 8 patients with resectable colorectal liver metastases (CRLM) before and after surgery. Results The MeD-seq assay worked on plasma-derived cfDNA from both EDTA and CellSave blood collection tubes when at least 10 ng of cfDNA was used. From the 3 evaluated cfDNA isolation methods, both the manual QIAamp Circulating Nucleic Acid Kit (Qiagen) and the semi-automated Maxwell® RSC ccfDNA Plasma Kit (Promega) were compatible with MeD-seq analysis, whereas the QiaSymphony DSP Circulating DNA Kit (Qiagen) yielded significantly fewer reads when compared to the QIAamp kit (p < 0.001). Vacuum concentration of samples before MeD-seq analysis was possible with samples in AVE buffer (QIAamp) or water, but yielded inconsistent results for samples in EDTA-containing Maxwell buffer. Principal component analysis showed that pre-surgical samples from CRLM patients were very distinct from HBDs, whereas post-surgical samples were more similar. Several described methylation markers for colorectal cancer monitoring in liquid biopsies showed differential methylation between pre-surgical CRLM samples and HBDs in our data, supporting the validity of our approach. Results for MSC, ITGA4, GRIA4, and EYA4 were validated by quantitative methylation specific PCR. Conclusions The MeD-seq assay provides a promising new method for cfDNA methylation profiling. Potential future applications of the assay include marker discovery specifically for liquid biopsy analysis as well as direct use as a disease load monitoring tool in advanced cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01177-4.
Collapse
Affiliation(s)
- Teoman Deger
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ruben G Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Lindsay Angus
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marjolijn M J van der Put
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joachim B Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Z Azmani
- Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Dirk J Grünhagen
- Department of Oncologic Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Lisanne F van Dessel
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Martijn P J K Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Cornelis Verhoef
- Department of Oncologic Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
19
|
Guo X, Liang X, Wang Y, Cheng A, Qin C, Zhang H, Wang Z. Construction and Comprehensive Prognostic Analysis of a lncRNA-miRNA-mRNA Regulatory Network and Tumor Immune Cell Infiltration in Colorectal Cancer. Front Genet 2021; 12:652601. [PMID: 34276767 PMCID: PMC8281064 DOI: 10.3389/fgene.2021.652601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with high morbidity and mortality worldwide. Recent studies have shown that long noncoding RNAs (lncRNAs) play an important role in almost all human tumors, including CRC. Competitive endogenous RNA (ceRNA) regulatory networks have become hot topics in cancer research. Tumor-infiltrating immune cells (TICs) have also been reported to be closely related to the survival and prognosis of CRC patients. In this study, we used the lncRNA–miRNA–mRNA regulatory network combined with tumor immune cell infiltration to predict the survival and prognosis of 598 CRC patients. First, we downloaded the lncRNA, mRNA, and miRNA transcriptome data of CRC patients from The Cancer Genome Atlas (TCGA) database and identified differentially expressed genes through “limma” package of R software. The ceRNA regulatory network was established by using the “GDCRNATools” R package. Then, univariate Cox analysis and least absolute shrinkage and selection operator analysis were performed to identify the optimal prognostic network nodes, including SRPX, UST, H19, SNHG7, hsa-miR-29b-3p, and TTYH3. Next, we analyzed the differences in 22 types of TICs between 58 normal subjects and 206 CRC patients and included memory CD4 T cells, dendritic cells and neutrophils in the construction of a prognostic model. Finally, we identified the relationship between the ceRNA prognostic model and the infiltrating immune cell prognostic model. In conclusion, we constructed two prognostic models that provide insights on the prognosis and treatment strategy of CRC.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujun Wang
- Department of Pathology, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Anqi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Han Zhang
- Department of Digestive Oncology, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
21
|
Nassar FJ, Msheik ZS, Nasr RR, Temraz SN. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction. Clin Epigenetics 2021; 13:111. [PMID: 34001239 PMCID: PMC8130320 DOI: 10.1186/s13148-021-01095-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) is a deadly disease whose death rate ranks second among cancers though its incidence ranks third. Early CRC detection is key and is associated with improved survival outcomes. However, existing tests for CRC diagnosis have several weaknesses thus rendering them inefficient. Moreover, reliable prognostic tests that can predict the overall cancer outcome and recurrence of the disease as well as predictive markers that can assess effectiveness of therapy are still lacking. Thus, shifting to noninvasive liquid biopsy or blood-based biomarkers is vital to improving CRC diagnosis, prognosis, and prediction. Methylated circulating tumor DNA (ctDNA) has gained increased attention as a type of liquid biopsy that is tumor-derived fragmented DNA with epigenetic alterations. Methylated ctDNA are more consistently present in blood of cancer patients as compared to mutated ctDNA. Hence, methylated ctDNA serves as a potential biomarker for CRC that is worth investigating. In this review, we explore what has been reported about methylated ctDNA as a biomarker for CRC diagnosis that can distinguish between CRC patients or those having adenoma and healthy controls as validated specifically through ROC curves. We also examine methylated ctDNA as a biomarker for CRC prognosis and prediction as confirmed through robust statistical analyses. Finally, we discuss the major technical challenges that limits the use of methylated ctDNA for clinical application and suggest possible recommendations to enhance its usage.
Collapse
Affiliation(s)
- Farah J Nassar
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon
| | - Zahraa S Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon
| | - Rihab R Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Sally N Temraz
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| |
Collapse
|
22
|
Grady WM. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv Cancer Res 2021; 151:425-468. [PMID: 34148620 DOI: 10.1016/bs.acr.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a leading cause of cancer related deaths worldwide. One of the hallmarks of cancer and a fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological process of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the initiation and progression of cancers, including colorectal cancer. Epigenetic alterations, which include changes affecting DNA methylation, histone modifications, chromatin structure, and noncoding RNA expression, have emerged as a major class of molecular alteration in colon polyps and colorectal cancer. The classes of epigenetic alterations, their status in colorectal polyps and cancer, their effects on neoplasm biology, and their application to clinical care will be discussed.
Collapse
Affiliation(s)
- William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
23
|
Rodriguez-Casanova A, Costa-Fraga N, Bao-Caamano A, López-López R, Muinelo-Romay L, Diaz-Lagares A. Epigenetic Landscape of Liquid Biopsy in Colorectal Cancer. Front Cell Dev Biol 2021; 9:622459. [PMID: 33614651 PMCID: PMC7892964 DOI: 10.3389/fcell.2021.622459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and is a major cause of cancer-related deaths worldwide. Thus, there is a clinical need to improve early detection of CRC and personalize therapy for patients with this disease. In the era of precision oncology, liquid biopsy has emerged as a major approach to characterize the circulating tumor elements present in body fluids, including cell-free DNA and RNA, circulating tumor cells, and extracellular vesicles. This non-invasive tool has allowed the identification of relevant molecular alterations in CRC patients, including some indicating the disruption of epigenetic mechanisms. Epigenetic alterations found in solid and liquid biopsies have shown great utility as biomarkers for early detection, prognosis, monitoring, and evaluation of therapeutic response in CRC patients. Here, we summarize current knowledge of the most relevant epigenetic mechanisms associated with cancer development and progression, and the implications of their deregulation in cancer cells and liquid biopsy of CRC patients. In particular, we describe the methodologies used to analyze these epigenetic alterations in circulating tumor material, and we focus on the clinical utility of epigenetic marks in liquid biopsy as tumor biomarkers for CRC patients. We also discuss the great challenges and emerging opportunities of this field for the diagnosis and personalized management of CRC patients.
Collapse
Affiliation(s)
- Aitor Rodriguez-Casanova
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
24
|
Grady WM, Yu M, Markowitz SD. Epigenetic Alterations in the Gastrointestinal Tract: Current and Emerging Use for Biomarkers of Cancer. Gastroenterology 2021; 160:690-709. [PMID: 33279516 PMCID: PMC7878343 DOI: 10.1053/j.gastro.2020.09.058] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer, liver cancer, stomach cancer, pancreatic cancer, and esophageal cancer are leading causes of cancer-related deaths worldwide. A fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological processes of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the clinical behavior of the precancers and cancers and can be used as biomarkers for cancer risk determination, early detection of cancer and precancer, determination of the prognosis of cancer and prediction of the response to therapy. Epigenetic alterations have emerged as one of most robust classes of biomarkers and are the basis for a growing number of clinical tests for cancer screening and surveillance.
Collapse
Affiliation(s)
- William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | |
Collapse
|
25
|
Mao XH, Ye Q, Zhang GB, Jiang JY, Zhao HY, Shao YF, Ye ZQ, Xuan ZX, Huang P. Identification of differentially methylated genes as diagnostic and prognostic biomarkers of breast cancer. World J Surg Oncol 2021; 19:29. [PMID: 33499882 PMCID: PMC7839189 DOI: 10.1186/s12957-021-02124-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background Aberrant DNA methylation is significantly associated with breast cancer. Methods In this study, we aimed to determine novel methylation biomarkers using a bioinformatics analysis approach that could have clinical value for breast cancer diagnosis and prognosis. Firstly, differentially methylated DNA patterns were detected in breast cancer samples by comparing publicly available datasets (GSE72245 and GSE88883). Methylation levels in 7 selected methylation biomarkers were also estimated using the online tool UALCAN. Next, we evaluated the diagnostic value of these selected biomarkers in two independent cohorts, as well as in two mixed cohorts, through ROC curve analysis. Finally, prognostic value of the selected methylation biomarkers was evaluated breast cancer by the Kaplan-Meier plot analysis. Results In this study, a total of 23 significant differentially methylated sites, corresponding to 9 different genes, were identified in breast cancer datasets. Among the 9 identified genes, ADCY4, CPXM1, DNM3, GNG4, MAST1, mir129-2, PRDM14, and ZNF177 were hypermethylated. Importantly, individual value of each selected methylation gene was greater than 0.9, whereas predictive value for all genes combined was 0.9998. We also found the AUC for the combined signature of 7 genes (ADCY4, CPXM1, DNM3, GNG4, MAST1, PRDM14, ZNF177) was 0.9998 [95% CI 0.9994–1], and the AUC for the combined signature of 3 genes (MAST1, PRDM14, and ZNF177) was 0.9991 [95% CI 0.9976–1]. Results from additional validation analyses showed that MAST1, PRDM14, and ZNF177 had high sensitivity, specificity, and accuracy for breast cancer diagnosis. Lastly, patient survival analysis revealed that high expression of ADCY4, CPXM1, DNM3, PRDM14, PRKCB, and ZNF177 were significantly associated with better overall survival. Conclusions Methylation pattern of MAST1, PRDM14, and ZNF177 may represent new diagnostic biomarkers for breast cancer, while methylation of ADCY4, CPXM1, DNM3, PRDM14, PRKCB, and ZNF177 may hold prognostic potential for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02124-6.
Collapse
Affiliation(s)
- Xiao-Hong Mao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qiang Ye
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guo-Bing Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jin-Ying Jiang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hong-Ying Zhao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan-Fei Shao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zi-Qi Ye
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zi-Xue Xuan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
26
|
Age-Related Macular Degeneration: From Epigenetics to Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:221-235. [PMID: 33848004 DOI: 10.1007/978-3-030-66014-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aberrant regulation of epigenetic mechanisms, including the two most common types; DNA methylation and histone modification have been implicated in common chronic progressive conditions, including Alzheimer disease, cardiovascular disease, and age-related macular degeneration (AMD). All these conditions are complex, meaning that environmental factors, genetic factors, and their interactions play a role in disease pathophysiology. Although genome wide association studies (GWAS), and studies on twins demonstrate the genetic/hereditary component to these complex diseases, including AMD, this contribution is much less than 100%. Moreover, the contribution of the hereditary component decreases in the advanced, later onset forms of these chronic diseases including AMD. This underscores the need to elucidate how the genetic and environmental factors function to exert their influence on disease pathophysiology. By teasing out epigenetic mechanisms and how they exert their influence on AMD, therapeutic targets can be tailored to prevent and/or slow down disease progression. Epigenetic studies that incorporate well-characterized patient tissue samples (including affected tissues and peripheral blood), similar to those relevant to gene expression studies, along with genetic and epidemiological information, can be the first step in developing appropriate functional assays to validate findings and identify potential therapies.
Collapse
|
27
|
Wei FZ, Mei SW, Wang ZJ, Chen JN, Shen HY, Zhao FQ, Li J, Liu Z, Liu Q. Differential Expression Analysis Revealing CLCA1 to Be a Prognostic and Diagnostic Biomarker for Colorectal Cancer. Front Oncol 2020; 10:573295. [PMID: 33251137 PMCID: PMC7673386 DOI: 10.3389/fonc.2020.573295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive tract and lacks specific diagnostic markers. In this study, we utilized 10 public datasets from the NCBI Gene Expression Omnibus (NCBI-GEO) database to identify a set of significantly differentially expressed genes (DEGs) between tumor and control samples and WGCNA (Weighted Gene Co-Expression Network Analysis) to construct gene co-expression networks incorporating the DEGs from The Cancer Genome Atlas (TCGA) and then identify genes shared between the GEO datasets and key modules. Then, these genes were screened via MCC to identify 20 hub genes. We utilized regression analyses to develop a prognostic model and utilized the random forest method to validate. All hub genes had good diagnostic value for CRC, but only CLCA1 was related to prognosis. Thus, we explored the potential biological value of CLCA1. The results of gene set enrichment analysis (GSEA) and immune infiltration analysis showed that CLCA1 was closely related to tumor metabolism and immune invasion of CRC. These analysis results revealed that CLCA1 may be a candidate diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Fang-Ze Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| | - Shi-Wen Mei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| | - Zhi-Jie Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| | - Jia-Nan Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| | - Hai-Yu Shen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| | - Fu-Qiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| | - Juan Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union College, Beijing, China
| |
Collapse
|
28
|
Dai QX, Liao YH, Deng XH, Xiao XL, Zhang L, Zhou L. A novel epigenetic signature to predict recurrence-free survival in patients with colon cancer. Clin Chim Acta 2020; 508:54-60. [PMID: 32423860 DOI: 10.1016/j.cca.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND DNA methylation plays an important role in the initiation and progression of colon cancer. The aim of the present study was to perform a comprehensive analysis of DNA methylation and gene expression profiles in order to develop a signature to predict recurrence-free survival (RFS) of colon cancer. METHODS DNA methylation and mRNA expression data were obtained from TCGA database, and were analyzed using an R package MethylMix. Functional enrichment analysis was performed on statistically significant genes identified by MethylMix criteria. The epigenetic signature and nomogram associated with the RFS of colon cancer were established by the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. Additionally, a joint survival analysis of gene expression and methylation was performed to identify potential prognostic factors for patients with colon cancer. RESULTS A total of 179 differentially methylated genes were obtained using MethylMix algorithm. An epigenetic signature for RFS was developed using LASSO. Patients with high-risk had significantly worse RFS than those with low-risk. The signature is independent of clinicopathological variables and indicated better predictive power than other clinicopathological variables in patients with colon cancer. Moreover, joint survival analysis of gene expression and methylation revealed that seven methylated genes could be independent prognostic factors for RFS in colon cancer. CONCLUSIONS Our proposed epigenetic signature presents potential prognostic significance in assessing recurrence risk stratification for patients with colon cancer.
Collapse
Affiliation(s)
- Qi-Xin Dai
- Department of Hepatopancreatobiliary surgery, The Affiliated Ganzhou Hospital of Nanchang University, 18 Meiguan Avenue, Ganzhou, Jiangxi 341000, China
| | - Yong-Hui Liao
- Department of Hepatopancreatobiliary surgery, The Affiliated Ganzhou Hospital of Nanchang University, 18 Meiguan Avenue, Ganzhou, Jiangxi 341000, China
| | - Xiao-Hong Deng
- Department of Hepatopancreatobiliary surgery, The Affiliated Ganzhou Hospital of Nanchang University, 18 Meiguan Avenue, Ganzhou, Jiangxi 341000, China
| | - Xiu-Lin Xiao
- Department of Hepatopancreatobiliary surgery, The Affiliated Ganzhou Hospital of Nanchang University, 18 Meiguan Avenue, Ganzhou, Jiangxi 341000, China
| | - Long Zhang
- Department of Hepatopancreatobiliary surgery, The Affiliated Ganzhou Hospital of Nanchang University, 18 Meiguan Avenue, Ganzhou, Jiangxi 341000, China
| | - Lin Zhou
- Department of Hepatopancreatobiliary surgery, The Affiliated Ganzhou Hospital of Nanchang University, 18 Meiguan Avenue, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
29
|
De Vitis C, Corleone G, Salvati V, Ascenzi F, Pallocca M, De Nicola F, Fanciulli M, di Martino S, Bruschini S, Napoli C, Ricci A, Bassi M, Venuta F, Rendina EA, Ciliberto G, Mancini R. B4GALT1 Is a New Candidate to Maintain the Stemness of Lung Cancer Stem Cells. J Clin Med 2019; 8:E1928. [PMID: 31717588 PMCID: PMC6912435 DOI: 10.3390/jcm8111928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND According to the cancer stem cells (CSCs) hypothesis, a population of cancer cells with stem cell properties is responsible for tumor propagation, drug resistance, and disease recurrence. Study of the mechanisms responsible for lung CSCs propagation is expected to provide better understanding of cancer biology and new opportunities for therapy. METHODS The Lung Adenocarcinoma (LUAD) NCI-H460 cell line was grown either as 2D or as 3D cultures. Transcriptomic and genome-wide chromatin accessibility studies of 2D vs. 3D cultures were carried out using RNA-sequencing and Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), respectively. Reverse transcription polymerase chain reaction (RT-PCR) was also carried out on RNA extracted from primary cultures derived from malignant pleural effusions to validate RNA-seq results. RESULTS RNA-seq and ATAC-seq data disentangled transcriptional and genome accessibility variability of 3D vs. 2D cultures in NCI-H460 cells. The examination of genomic landscape of genes upregulated in 3D vs. 2D cultures led to the identification of 2D cultures led to the identification of Beta-1,4-galactosyltranferase 1 (B4GALT1) as the top candidate. B4GALT1 as the top candidate. B4GALT1 was validated as a stemness factor, since its silencing caused strong inhibition of 3D spheroid formation. CONCLUSION Combined transcriptomic and chromatin accessibility study of 3D vs. 2D LUAD cultures led to the identification of B4GALT1 as a new factor involved in the propagation and maintenance of LUAD CSCs.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (C.D.V.); (R.M.)
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesca Ascenzi
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Matteo Pallocca
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Simona di Martino
- Pathology Unit, IRCSS “Regina Elena” National Cancer Institute, 00144 Rome, Italy;
| | - Sara Bruschini
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00189 Rome, Italy;
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Division of Pneumology, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy;
| | - Massimiliano Bassi
- Department of Thoracic Surgery, University of Rome Sapienza, 00161 Rome, Italy; (M.B.); (F.V.)
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome Sapienza, 00161 Rome, Italy; (M.B.); (F.V.)
| | - Erino Angelo Rendina
- Department of Thoracic Surgery, Sant’Andrea Hospital, “Sapienza” University of Rome, 00189 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (C.D.V.); (R.M.)
| |
Collapse
|