1
|
Thimoteo RRC, Neto PN, Costa DSS, da Mota Ramalho Costa F, Brito DC, Costa PRR, de Almeida Simão T, Dias AG, Justo G. Microarray data analysis of antileukemic action of Cinnamoylated benzaldehyde LQB-461 in Jurkat cell line. Mol Biol Rep 2024; 51:187. [PMID: 38270684 DOI: 10.1007/s11033-023-09030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Leukemias stand out for being the main type of childhood cancer in the world. Current treatments have strong side effects for patients, and there is still a high rate of development of resistance to multidrug therapy. Previously, our research group developed a structure-activity study with novel synthetic molecules analogous to LQB-278, described as an essential molecule with in vitro antileukemic action. Among these analogs, LQB-461 stood out, presenting more significant antileukemic action compared to its derivative LQB-278, with cytostatic and cytotoxicity effect by apoptosis, inducing caspase-3, and increased sub-G1 phase on cell cycle analysis. METHODS AND RESULTS Deepening the study of the mechanism of action of LQB-461 in Jurkat cells in vitro, a microarray assay was carried out, which confirmed the importance of the apoptosis pathway in the LQB-461 activity. Through real-time PCR, we validated an increased expression of CDKN1A and BAX genes, essential mediators of the apoptosis intrinsic pathway. Through the extrinsic apoptosis pathway, we found an increased expression of the Fas receptor by flow cytometry, showing the presence of a more sensitive population and another more resistant to death. Considering the importance of autophagy in cellular resistance, it was demonstrated by western blotting that LQB-461 decreased LC-3 protein expression, an autophagic marker. CONCLUSIONS These results suggest that this synthetic molecule LQB-461 induces cell death by apoptosis in Jurkat cells through intrinsic and extrinsic pathways and inhibits autophagy, overcoming some mechanisms of cell resistance related to this process, which differentiates LQB-461 of other drugs used for the leukemia treatment.
Collapse
Affiliation(s)
| | | | - Debora S S Costa
- Instituto de Pesquisas Biomédicas - HNMD Marinha do Brazil, Rio de Janeiro, RJ, Brazil
| | | | | | - Paulo R R Costa
- Laboratório de Química Bioorgânica, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Ayres G Dias
- Departamento de Química Orgânica, UERJ, Rio de Janeiro, RJ, Brazil
| | - Graça Justo
- Departamento de Bioquímica, UERJ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Wan JX, Wang YQ, Lan SN, Chen L, Feng MQ, Chen X. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Curr Med Sci 2023; 43:855-868. [PMID: 37558865 DOI: 10.1007/s11596-023-2774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
Collapse
Affiliation(s)
- Ji-Xi Wan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Qi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Na Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-Qian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
4
|
Cheng H, Wang SJ, Li Z, Ma Y, Song YR. ING2-WTAP is a potential therapeutic target in non-small cell lung cancer. Biochem Biophys Res Commun 2022; 605:31-38. [DOI: 10.1016/j.bbrc.2022.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
|
5
|
Jacquet K, Binda O. ING Proteins: Tumour Suppressors or Oncoproteins. Cancers (Basel) 2021; 13:cancers13092110. [PMID: 33925563 PMCID: PMC8123807 DOI: 10.3390/cancers13092110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The INhibitor of Growth family was defined in the mid-1990s by the identification of a tumour suppressor, ING1, and subsequent expansion of the family based essentially on sequence similarities. However, later work and more recent investigations demonstrate that at least a few ING proteins are actually required for normal proliferation of eukaryotic cells, from yeast to human. ING proteins are also part of a larger family of chromatin-associated factors marked by a plant homeodomain (PHD), which mediates interactions with methylated lysine residues. Herein, we discuss the role of ING proteins and their various roles in chromatin signalling in the context of cancer development and progression.
Collapse
Affiliation(s)
- Karine Jacquet
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5310, INSERM U 1217, 69008 Lyon, France;
| | - Olivier Binda
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5310, INSERM U 1217, 69008 Lyon, France;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
6
|
Zhang Y, Zhou R, Liu F, Ng TB. Purification and characterization of a novel protein with activity against non-small-cell lung cancer in vitro and in vivo from the edible mushroom Boletus edulis. Int J Biol Macromol 2021; 174:77-88. [PMID: 33508361 DOI: 10.1016/j.ijbiomac.2021.01.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
A new anti-tumor protein (designated as Boletus edulis or in short BEAP) was isolated from dried fruit bodies of the edible bolete mushroom Boletus edulis. The purification protocol employed comprised fast ion exchange chromatography on a Hitrap Q column and ion exchange chromatography on a DEAE-52 cellulose column. Superdex G75 gel filtration and SDS-PAGE analysis revealed that BEAP was a protein with a molecular weight of 16.7 KD. The protein exhibited potent anti-cancer activity on A549 cells both in vitro and in vivo. With the use of AO/EB staining, annexin V-FITC/PI, and Western blotting, it was demonstrated in vitro that the cytotoxicity of BEAP was mediated by induction of apoptosis and arrest of A549 cells in the G1 phase of the cell cycle. BEAP significantly suppressed the growth of A549 solid tumors in vivo. These results prove that BEAP is a new multifunctional protein with anti-tumor and anti-metastasis capabilities.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Rong Zhou
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
7
|
Dong X, Zheng T, Zhang Z, Bai X, Li H, Zhang J. [Luteolin reverses OPCML methylation to inhibit proliferation of breast cancer MDA-MB-231 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:550-555. [PMID: 32895125 DOI: 10.12122/j.issn.1673-4254.2020.04.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To observe the effect of luteolin on the proliferation and expression of OPCML in breast cancer cell line MDA-MB-231. METHODS Cultured MDA-MB-231 cells were treated with luteolin at the concentrations of 5, 10 and 20 μmol/L for 24 or 48 h. MTT assay was used to detect cell proliferation and flow cytometry was used to detect the cell apoptosis. The expressions of OPCML mRNA and protein were detected using real-time quantitative PCR and Western blotting, respectively. OPCML gene methylation in the promoter region was detected using methylation-specific PCR (MSP), and the activity of methylase in the cells was analyzed. RESULTS MTT assay showed that treatment with luteolin at 5, 10 and 20 μmol/L for 24 h concentration-dependently decreased the viability of MDA-MB-231 cells (P < 0.05). Flow cytometry also showed that luteolin at different concentrations could induce apoptosis of MDA-MB-231 cells (P < 0.05). Luteolin dose-dependently induced the expression of OPCML mRNA and protein in MDA-MB-231 cells (P < 0.05), down-regulated the methylation status in the promoter region of OPCML gene, up-regulated the level of non-methylated OPCML, and reduced the activity of methylase in the cells (P < 0.05). CONCLUSIONS Luteolin inhibits the proliferation of MDA-MB-231 breast cancer cells probably by upregulating OPCML expression and its demethylation.
Collapse
Affiliation(s)
- Xinmin Dong
- Department of Oncology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| | - Ti Zheng
- Medical Departmentn, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| | - Ziying Zhang
- Department of Basic Medicine, School of Pharmacology of Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiling Bai
- Department of Interventional Riadiology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010010, China
| | - Hua Li
- Department of Oncology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| | - Jian Zhang
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|