1
|
Khan HY, Ansari MF, Tabassum S, Arjmand F. A review on the recent advances of interaction studies of anticancer metal-based drugs with therapeutic targets, DNA and RNAs. Drug Discov Today 2024; 29:104055. [PMID: 38852835 DOI: 10.1016/j.drudis.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Metal-based drugs hold promise as potent anticancer agents owing to their unique interactions with cellular targets. This review discusses recent advances in our understanding of the intricate molecular interactions of metal-based anticancer compounds with specific therapeutic targets in cancer cells. Advanced computational and experimental methodologies delineate the binding mechanisms, structural dynamics and functional outcomes of these interactions. In addition, the review sheds light on the precise modes of action of these drugs, their efficacy and the potential avenues for further optimization in cancer-treatment strategies and the development of targeted and effective metal-based therapies for combating various forms of cancer.
Collapse
Affiliation(s)
- Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | | | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
2
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Arjmand F, Yasir Khan H, Tabassum S. Progress of Metal-Based Anticancer Chemotherapeutic Agents in Last two Decades and their Comprehensive Biological (DNA/RNA Binding, Cleavage and Cytotoxicity Activity) Studies. CHEM REC 2023; 23:e202200247. [PMID: 36762719 DOI: 10.1002/tcr.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/31/2022] [Indexed: 02/11/2023]
Abstract
During last two decades, there has been an enormous growth in the discovery of innovative active inorganic anticancer complexes (exerting remarkable cytotoxicity at sub micro-molar levels) derived from myriad ligand scaffolds, mainly acting on cancerous vs healthy cells by either halting or inhibiting their uncontrolled growth. The phenomenal success of cisplatin to treat numerous forms of solid malignancies has placed metal-based drugs to the forefront of treatment strategies against cancers. More than 10,000 platinum anticancer complexes have been developed during the past 40 years, but only five drugs have been approved for usage in humans while ten more complexes are currently undergoing clinical trials. Most of the compounds have failed either at R&D stages or in preclinical trails. This has led to extensive investigations by researchers of medicinal chemistry, including our group to design and prepare tailored 3d-metallo-drugs and organotin(IV) compounds from some naturally occurring bioactive compounds, such as amino-acids, peptides, chromone derivatives and NSAID's etc. that were used either alone or in cocktail combination, capable of specifically targeting DNA, lnc RNAs and proteins. Furthermore, 3d-metal ions such as copper, cobalt and zinc etc. incorporated in these ligand framework are biocompatible and induce a unique multi-modal mechanism of cytotoxic action involving angiogenesis, ROS-induced DNA damage, apoptosis by p53 mitochondrial genes and caspases etc. The results observed a positive correlation between the binding affinity of complexes with DNA (as quantified by intrinsic binding constant values) and their cytotoxic behavior. Complexes with high DNA binding propensity were typically lethal against a diverse panel of malignant cell types compared to normal cells.
Collapse
Affiliation(s)
- Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India-, 202002
| | - Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India-, 202002
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India-, 202002
| |
Collapse
|
4
|
Khan A, Zhang X. Function of the Long Noncoding RNAs in Hepatocellular Carcinoma: Classification, Molecular Mechanisms, and Significant Therapeutic Potentials. Bioengineering (Basel) 2022; 9:406. [PMID: 36004931 PMCID: PMC9405066 DOI: 10.3390/bioengineering9080406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and serious type of primary liver cancer. HCC patients have a high death rate and poor prognosis due to the lack of clear signs and inadequate treatment interventions. However, the molecular pathways that underpin HCC pathogenesis remain unclear. Long non-coding RNAs (lncRNAs), a new type of RNAs, have been found to play important roles in HCC. LncRNAs have the ability to influence gene expression and protein activity. Dysregulation of lncRNAs has been linked to a growing number of liver disorders, including HCC. As a result, improved understanding of lncRNAs could lead to new insights into HCC etiology, as well as new approaches for the early detection and treatment of HCC. The latest results with respect to the role of lncRNAs in controlling multiple pathways of HCC were summarized in this study. The processes by which lncRNAs influence HCC advancement by interacting with chromatin, RNAs, and proteins at the epigenetic, transcriptional, and post-transcriptional levels were examined. This critical review also highlights recent breakthroughs in lncRNA signaling pathways in HCC progression, shedding light on the potential applications of lncRNAs for HCC diagnosis and therapy.
Collapse
Affiliation(s)
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Liu J, Gu L, Zhang D, Li W. Determining the Prognostic Value of Spliceosome-Related Genes in Hepatocellular Carcinoma Patients. Front Mol Biosci 2022; 9:759792. [PMID: 35281269 PMCID: PMC8907852 DOI: 10.3389/fmolb.2022.759792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The spliceosome plays an important role in mRNA alternative splicing and is aberrantly expressed in several tumors. However, the potential roles of spliceosome-related genes in the progression of hepatocellular carcinoma (HCC) remain poorly understood. Materials and Methods: Patient data were acquired from public databases. Expression differences and survival analyses were used to assess the importance of spliceosome-related genes in HCC prognosis. To explore the potential regulatory mechanisms of these genes, a protein-protein interaction network was constructed and screened using univariate and multivariate Cox regression and random forest analyses. This was used to create a five-gene prognostic model. The prognostic value and predictive power of the five-gene signature were assessed using the Kaplan-Meier and time-dependent receiver operating characteristic analyses in the training set. These results were further validated in an independent external set. To facilitate clinical application, a nomogram was prepared to predict the overall survival of HCC patients. The relative expression of five genes was detected using real-time quantitative polymerase chain reaction. Results: The analysis revealed that LSM1-7, SNRPB, SNRPD1-3, SNRPE, SNRPF, SNRPG, and SNRPN could be used as prognostic biomarkers in HCC patients. Moreover, the five-gene risk model could clearly distinguish between the high-and low-risk groups. Furthermore, the risk model was associated with the tumor mutation burden, immune cell infiltration of CD8+ T cells, natural killer T cells, M2 macrophages, and immune checkpoint inhibitors, which also demonstrated the predictive efficacy of this risk model in HCC immunotherapy. Conclusion: Spliceosome-related genes and the five-gene signature could serve as novel prognostic biomarkers for HCC patients, aiding clinical patient monitoring and follow-up.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Liming Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Center of Pathogen Biology and Immunology, Shantou University Medical College, Shantou, China
| | - Dangui Zhang
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| |
Collapse
|
6
|
LncRNA TLR8-AS1 suppresses miR-34a maturation in hepatocellular carcinoma to suppress cell proliferation and migration. Mamm Genome 2021; 32:530-536. [PMID: 34665305 DOI: 10.1007/s00335-021-09920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
TLR8-AS1 has been characterized as an oncogenic lncRNA in ovarian cancer, while its role in hepatocellular carcinoma (HCC) is unknown. This study aimed to explore the role of TLR8-AS1 in HCC. TLR8-AS1 expression in HCC and paired non-tumor tissues from 62 HCC patients was determined by RT-qPCR. The prognostic value of TLR8-AS1 for HCC was analyzed by performing a 5-year follow-up. Correlations between TLR8-AS1 and mature miR-34a and miR-34a precursor were analyzed by Pearson's correlation coefficient. The roles of TLR8-AS1 and miR-34a in regulating the proliferation and migration were explored by CCK-8 assay and Transwell migration assay. We found that TLR8-AS1 was upregulated in HCC and predicted poor survival. Across HCC tissues, TLR8-AS1 was inversely correlated with mature miR-34a, but not miR-34a precursor. In HCC cells, TLR8-AS1 overexpression downregulated mature miR-34a, but not miR-34a precursor. Cell proliferation and Transwell migration assay showed that TLR8-AS1 overexpression reduced the enhancing effects of miR-34a on cell proliferation and migration. TLR8-AS1 may suppress miR-34a maturation in HCC to suppress cell proliferation and migration.
Collapse
|
7
|
Pi YN, Qi WC, Xia BR, Lou G, Jin WL. Long Non-Coding RNAs in the Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential. Front Immunol 2021; 12:697083. [PMID: 34295338 PMCID: PMC8290853 DOI: 10.3389/fimmu.2021.697083] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy (CIT) is considered a revolutionary advance in the fight against cancer. The complexity of the immune microenvironment determines the success or failure of CIT. Long non-coding RNA (lncRNA) is an extremely versatile molecule that can interact with RNA, DNA, or proteins to promote or inhibit the expression of protein-coding genes. LncRNAs are expressed in many different types of immune cells and regulate both innate and adaptive immunity. Recent studies have shown that the discovery of lncRNAs provides a novel perspective for studying the regulation of the tumor immune microenvironment (TIME). Tumor cells and the associated microenvironment can change to escape recognition and elimination by the immune system. LncRNA induces the formation of an immunosuppressive microenvironment through related pathways, thereby controlling the escape of tumors from immune surveillance and promoting the development of metastasis and drug resistance. Using lncRNA as a therapeutic target provides a strategy for studying and improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ya-Nan Pi
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen-Cai Qi
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bai-Rong Xia
- Department of Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Daisy PS, Shreyas KS, Anitha TS. Will CRISPR-Cas9 Have Cards to Play Against Cancer? An Update on its Applications. Mol Biotechnol 2021; 63:93-108. [PMID: 33386579 PMCID: PMC7775740 DOI: 10.1007/s12033-020-00289-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Genome editing employs targeted nucleases as powerful tools to precisely alter the genome of target cells and regulate functional genes. Various strategies have been risen so far as the molecular scissors-mediated genome editing that includes zinc finger nuclease, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats-CRISPR-related protein 9. These tools allow researchers to understand the basics of manipulating the genome, create animal models to study human diseases, understand host-pathogen interactions and design disease targets. Targeted genome modification utilizing RNA-guided nucleases are of recent curiosity, as it is a fast and effective strategy that enables the researchers to manipulate the gene of interest, carry out functional studies, understand the molecular basis of the disease and design targeted therapies. CRISPR-Cas9, a bacterial defense system employed against viruses, consists of a single-strand RNA-guided Cas9 nuclease connected to the corresponding complementary target sequence. This powerful and versatile tool has gained tremendous attention among the researchers, owing to its ability to correct genetic disorders. To help illustrate the potential of this gene editor in unexplored corners of oncology, we describe the history of CRISPR-Cas9, its rapid progression in cancer research as well as future perspectives.
Collapse
Affiliation(s)
- Precilla S Daisy
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India
| | - Kuduvalli S Shreyas
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India.
| |
Collapse
|
10
|
Khan H, Maurya SK, Siddique HR, Yousuf S, Arjmand F. New Tailored RNA-Targeted Organometallic Drug Candidates against Huh7 (Liver) and Du145 (Prostate) Cancer Cell Lines. ACS OMEGA 2020; 5:15218-15228. [PMID: 32637795 PMCID: PMC7331047 DOI: 10.1021/acsomega.0c01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/10/2020] [Indexed: 05/03/2023]
Abstract
New organometallic drug candidates [Ph2Sn(HL)], 1, and [Ru(η6--p-cymene)(HL)Cl], 2, were designed and synthesized by in situ reaction of a Schiff base ligand (HL) and diphenyltin dichloride and [RuCl2(p-cymene)]2, respectively. The drug candidates 1 and 2 have been characterized by spectroscopic methods (Fourier-transform infrared spectroscopy, UV-vis, and 1H/13C NMR), elemental analysis, and single X-ray crystallographic studies (in case of 1). The ground-state geometry optimization of 1 and 2 was performed by density functional theory calculations. The interaction of 1 and 2 with tRNA was assessed by absorption spectroscopy, cyclic voltammetry, circular dichroism, and ethidium bromide displacement assay using fluorescence emission spectroscopy to determine their potential to act as antitumor agents. The cytotoxicity of 1 and 2 was screened against human liver carcinoma (Huh7), prostate cancer (Du145), and the normal prostate cell line (PNT 2). The results implicated a dose-dependent growth inhibition of the two cancer cells at concentrations (2.5-15 μM) of 1 and 2 with the treatment after 48 h. Interestingly, 1 revealed good selective activity toward the liver cancer cell line (Huh7). Furthermore, both the drug candidates 1 and 2 were found to be nontoxic toward the PNT 2 normal cell line. These studies lay a paradigm for rational efficacious drug design for chemotherapeutic intervention in cancers using new tailored organometallic drug entities; organotin(IV) and organoruthenium(II) have been demonstrated to be viable for the safe administration and specific targeted drug uptake by the resistant cancerous cell lines at low intracellular concentrations.
Collapse
Affiliation(s)
- Huzaifa
Yasir Khan
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Santosh K. Maurya
- Section
of Genetics, Department of Zoology, Aligarh
Muslim University, Aligarh 202002, India
| | - Hifzur R. Siddique
- Section
of Genetics, Department of Zoology, Aligarh
Muslim University, Aligarh 202002, India
| | - Shariq Yousuf
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Farukh Arjmand
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
11
|
Abstract
Long noncoding RNAs (lncRNAs) have multiple functions in the regulation of cellular homeostasis. In recent years, numerous studies have shown that tumor-associated lncRNAs play key roles in promoting and maintaining tumor initiation and progression by shaping the tumor microenvironment through changing tumor cell intrinsic properties. Here, we focus on the roles of lncRNAs in cancer immunology. In the first part, we provide an overview of the roles played by lncRNAs and their deregulation in cancer at the cancer cell- and tumor microenvironment-associated immune cell levels. We go on to describe preclinical strategies for targeting lncRNAs, particularly highlighting the effects on tumor microenvironments. We then discuss the possibility of combining lncRNA targeting and tumor immune checkpoint inhibitor antibodies to treat cancer.
Collapse
|
12
|
Wang F, Xu X, Zhang N, Chen Z. Identification and integrated analysis of hepatocellular carcinoma-related circular RNA signature. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:294. [PMID: 32355738 PMCID: PMC7186732 DOI: 10.21037/atm.2020.03.06] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Circular RNAs (circRNAs), a novel type of non-coding RNA, play a vital role in the pathogenesis and development of cancer. CircRNAs signatures may be useful as prognostic and predictive factors as well as clinical tools for evaluating disease status and prognosis. This study was carried out to explore novel circRNA signatures in hepatocellular carcinoma (HCC). Methods The expression profiles of circRNAs were retrieved from the Gene Expression Omnibus (GEO). The expression profiles of miRNAs and mRNAs were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. The results of the microarray were validated by quantitative real-time RCR (qPCR). Based on circRNA-miRNA pairs and miRNA-mRNA pairs, a competitive endogenous RNA (ceRNA) network was constructed. Functional analysis was performed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA). Furthermore, survival analysis was carried out using the Kaplan-Meier curve and the log-rank test. Results Differentially expressed circRNAs in HCC from GEO databases (GSE94508 and GSE97332) were screened and analyzed using the bioinformatics method. We detected a total of 26 differentially expressed circRNAs by qPCR and then selected 6 circRNAs to construct the circRNA-miRNA-mRNA networks. Through prognostic analysis, 3 target hub genes (AURKA, KIF5B, and RHOA) of circRNAs were discovered. Moreover, GSEA and GSVA were used to reveal the functions of AURKA, KIF5B, and RHOA in HCC. Conclusions We identified three hub genes, and our results suggest that the circHMGCS1/miR-581/AURKA, circHMGCS1/miR-892a/KIF5B, and circTMCO3/miR-577/RHOA axes may play a vital role in HCC progression.
Collapse
Affiliation(s)
- Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Xiaodong Xu
- Department of General Surgery, the 4th Affiliated Hospital of Nantong University, Yancheng 224000, China
| | - Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| |
Collapse
|