1
|
Fröhlich K, Fahrner M, Brombacher E, Seredynska A, Maldacker M, Kreutz C, Schmidt A, Schilling O. Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics. Mol Cell Proteomics 2024; 23:100800. [PMID: 38880244 PMCID: PMC11380018 DOI: 10.1016/j.mcpro.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
Data-independent acquisition (DIA) has revolutionized the field of mass spectrometry (MS)-based proteomics over the past few years. DIA stands out for its ability to systematically sample all peptides in a given m/z range, allowing an unbiased acquisition of proteomics data. This greatly mitigates the issue of missing values and significantly enhances quantitative accuracy, precision, and reproducibility compared to many traditional methods. This review focuses on the critical role of DIA analysis software tools, primarily focusing on their capabilities and the challenges they address in proteomic research. Advances in MS technology, such as trapped ion mobility spectrometry, or high field asymmetric waveform ion mobility spectrometry require sophisticated analysis software capable of handling the increased data complexity and exploiting the full potential of DIA. We identify and critically evaluate leading software tools in the DIA landscape, discussing their unique features, and the reliability of their quantitative and qualitative outputs. We present the biological and clinical relevance of DIA-MS and discuss crucial publications that paved the way for in-depth proteomic characterization in patient-derived specimens. Furthermore, we provide a perspective on emerging trends in clinical applications and present upcoming challenges including standardization and certification of MS-based acquisition strategies in molecular diagnostics. While we emphasize the need for continuous development of software tools to keep pace with evolving technologies, we advise researchers against uncritically accepting the results from DIA software tools. Each tool may have its own biases, and some may not be as sensitive or reliable as others. Our overarching recommendation for both researchers and clinicians is to employ multiple DIA analysis tools, utilizing orthogonal analysis approaches to enhance the robustness and reliability of their findings.
Collapse
Affiliation(s)
- Klemens Fröhlich
- Proteomics Core Facility, Biozentrum Basel, University of Basel, Basel, Switzerland
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Eva Brombacher
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Adrianna Seredynska
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian Maldacker
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum Basel, University of Basel, Basel, Switzerland
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany.
| |
Collapse
|
2
|
Thiery J, Fahrner M. Integration of proteomics in the molecular tumor board. Proteomics 2024; 24:e2300002. [PMID: 38143279 DOI: 10.1002/pmic.202300002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Cancer remains one of the most complex and challenging diseases in mankind. To address the need for a personalized treatment approach for particularly complex tumor cases, molecular tumor boards (MTBs) have been initiated. MTBs are interdisciplinary teams that perform in-depth molecular diagnostics to cooperatively and interdisciplinarily advise on the best therapeutic strategy. Current molecular diagnostics are routinely performed on the transcriptomic and genomic levels, aiming to identify tumor-driving mutations. However, these approaches can only partially capture the actual phenotype and the molecular key players of tumor growth and progression. Thus, direct investigation of the expressed proteins and activated signaling pathways provide valuable complementary information on the tumor-driving molecular characteristics of the tissue. Technological advancements in mass spectrometry-based proteomics enable the robust, rapid, and sensitive detection of thousands of proteins in minimal sample amounts, paving the way for clinical proteomics and the probing of oncogenic signaling activity. Therefore, proteomics is currently being integrated into molecular diagnostics within MTBs and holds promising potential in aiding tumor classification and identifying personalized treatment strategies. This review introduces MTBs and describes current clinical proteomics, its potential in precision oncology, and highlights the benefits of multi-omic data integration.
Collapse
Affiliation(s)
- Johanna Thiery
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| |
Collapse
|
3
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
4
|
Munro MJ, Wickremesekera SK, Tan ST, Peng L. Proteomic analysis of low- and high-grade human colon adenocarcinoma tissues and tissue-derived primary cell lines reveals unique biological functions of tumours and new protein biomarker candidates. Clin Proteomics 2022; 19:27. [PMID: 35842572 PMCID: PMC9287856 DOI: 10.1186/s12014-022-09364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Colon cancer is the third most common cancer and second highest cause of cancer deaths worldwide. The aim of the study was to find new biomarkers for diagnosis, prognosis and therapeutic drug targets for this disease. Methods Four low-grade and four high-grade human colon adenocarcinoma tumours with patient-matched normal colon tissues were analysed. Additionally, tissue-derived primary cell lines were established from each tumour tissue. The cell lines were validated using DNA sequencing to confirm that they are a suitable in vitro model for colon adenocarcinoma based on conserved gene mutations. Label-free quantitation proteomics was performed to compare the proteomes of colon adenocarcinoma samples to normal colon samples, and of colon adenocarcinoma tissues to tissue-derived cell lines to find significantly differentially abundant proteins. The functions enriched within the differentially expressed proteins were assessed using STRING. Proteomics data was validated by Western blotting. Results A total of 4767 proteins were identified across all tissues, and 4711 across primary tissue-derived cell lines. Of these, 3302 proteins were detected in both the tissues and the cell lines. On average, primary cell lines shared about 70% of proteins with their parent tissue, and they retained mutations to key colon adenocarcinoma-related genes and did not diverge far genetically from their parent tissues. Colon adenocarcinoma tissues displayed upregulation of RNA processing, steroid biosynthesis and detoxification, and downregulation of cytoskeletal organisation and loss of normal muscle function. Tissue-derived cell lines exhibited increased interferon-gamma signalling and aberrant ferroptosis. Overall, 318 proteins were significantly up-regulated and 362 proteins significantly down-regulated by comparisons of high-grade with low-grade tumours and low-grade tumour with normal colon tissues from both sample types. Conclusions The differences exhibited between tissues and cell lines highlight the additional information that can be obtained from patient-derived primary cell lines. DNA sequencing and proteomics confirmed that these cell lines can be considered suitable in vitro models of the parent tumours. Various potential biomarkers for colon adenocarcinoma initiation and progression and drug targets were identified and discussed, including seven novel markers: ACSL4, ANK2, AMER3, EXOSC1, EXOSC6, GCLM, and TFRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09364-y.
Collapse
Affiliation(s)
- Matthew J Munro
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, 6140, New Zealand.,Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand.,Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Wellington, 6021, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand. .,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, 5040, New Zealand. .,Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia.
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
5
|
Phosphorylation of eIF4E in the stroma drives the production and spatial organisation of collagen type I in the mammary gland. Matrix Biol 2022; 111:264-288. [PMID: 35842012 DOI: 10.1016/j.matbio.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) plays critical roles in breast cancer development. Whether ECM composition is regulated by the phosphorylation of eIF4E on serine 209, an event required for tumorigenesis, has not been explored. Herein, we used proteomics and mouse modelling to investigate the impact of mutating serine 209 to alanine on eIF4E (i.e., S209A) on mammary gland (MG) ECM. The proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD028953. We discovered that S209A knock-in mice, expressing a non-phosphorylatable form of eIF4E, have less collagen-I deposition in native and tumor-bearing MGs, leading to altered tumor cell invasion. Additionally, phospho-eIF4E-deficiency impacts collagen topology; fibers at the tumor-stroma boundary in phospho-eIF4E-deficient mice run parallel to the tumor edge but radiate outwards in wild-type mice. Finally, a phospho-eIF4E-deficient tumor microenvironment resists anti-PD-1 therapy-induced collagen deposition, correlating with an increased anti-tumor response to immunotherapy. Clinically, we showed that collagen-I and phospho-eIF4E are positively correlated in human breast cancer samples, and that stromal phospho-eIF4E expression is influenced by tumor proximity. Together, our work defines the importance of phosphorylation of eIF4E on S209 as a regulator of MG collagen architecture in the tumor microenvironment, thereby positioning phospho-eIF4E as a therapeutic target to augment response to therapy.
Collapse
|
6
|
Wong GYM, Diakos C, Hugh TJ, Molloy MP. Proteomic Profiling and Biomarker Discovery in Colorectal Liver Metastases. Int J Mol Sci 2022; 23:ijms23116091. [PMID: 35682769 PMCID: PMC9181741 DOI: 10.3390/ijms23116091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal liver metastases (CRLM) are the leading cause of death among patients with metastatic colorectal cancer (CRC). As part of multimodal therapy, liver resection is the mainstay of curative-intent treatment for select patients with CRLM. However, effective treatment of CRLM remains challenging as recurrence occurs in most patients after liver resection. Proposed clinicopathologic factors for predicting recurrence are inconsistent and lose prognostic significance over time. The rapid development of next-generation sequencing technologies and decreasing DNA sequencing costs have accelerated the genomic profiling of various cancers. The characterisation of genomic alterations in CRC has significantly improved our understanding of its carcinogenesis. However, the functional context at the protein level has not been established for most of this genomic information. Furthermore, genomic alterations do not always result in predicted changes in the corresponding proteins and cancer phenotype, while post-transcriptional and post-translational regulation may alter synthesised protein levels, affecting phenotypes. More recent advancements in mass spectrometry-based technology enable accurate protein quantitation and comprehensive proteomic profiling of cancers. Several studies have explored proteomic biomarkers for predicting CRLM after oncologic resection of primary CRC and recurrence after curative-intent resection of CRLM. The current review aims to rationalise the proteomic complexity of CRC and explore the potential applications of proteomic biomarkers in CRLM.
Collapse
Affiliation(s)
- Geoffrey Yuet Mun Wong
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- Northern Clinical School, The University of Sydney, Sydney, NSW 2065, Australia;
- Correspondence:
| | - Connie Diakos
- Northern Clinical School, The University of Sydney, Sydney, NSW 2065, Australia;
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Thomas J. Hugh
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- Northern Clinical School, The University of Sydney, Sydney, NSW 2065, Australia;
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Research Laboratory, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
7
|
Vitorino R, Choudhury M, Guedes S, Ferreira R, Thongboonkerd V, Sharma L, Amado F, Srivastava S. Peptidomics and proteogenomics: background, challenges and future needs. Expert Rev Proteomics 2021; 18:643-659. [PMID: 34517741 DOI: 10.1080/14789450.2021.1980388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION With available genomic data and related information, it is becoming possible to better highlight mutations or genomic alterations associated with a particular disease or disorder. The advent of high-throughput sequencing technologies has greatly advanced diagnostics, prognostics, and drug development. AREAS COVERED Peptidomics and proteogenomics are the two post-genomic technologies that enable the simultaneous study of peptides and proteins/transcripts/genes. Both technologies add a remarkably large amount of data to the pool of information on various peptides associated with gene mutations or genome remodeling. Literature search was performed in the PubMed database and is up to date. EXPERT OPINION This article lists various techniques used for peptidomic and proteogenomic analyses. It also explains various bioinformatics workflows developed to understand differentially expressed peptides/proteins and their role in disease pathogenesis. Their role in deciphering disease pathways, cancer research, and biomarker discovery using biofluids is highlighted. Finally, the challenges and future requirements to overcome the current limitations for their effective clinical use are also discussed.
Collapse
Affiliation(s)
- Rui Vitorino
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Manisha Choudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Powai, India
| | - Sofia Guedes
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Francisco Amado
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Powai, India
| |
Collapse
|
8
|
Gambaro K, Marques M, McNamara S, Couetoux du Tertre M, Diaz Z, Hoffert C, Srivastava A, Hébert S, Samson B, Lespérance B, Ko Y, Dalfen R, St‐Hilaire E, Sideris L, Couture F, Burkes R, Harb M, Camlioglu E, Gologan A, Pelsser V, Constantin A, Greenwood CM, Tejpar S, Kavan P, Kleinman CL, Batist G. Copy number and transcriptome alterations associated with metastatic lesion response to treatment in colorectal cancer. Clin Transl Med 2021; 11:e401. [PMID: 33931971 PMCID: PMC8087915 DOI: 10.1002/ctm2.401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Therapeutic resistance is the main cause of death in metastatic colorectal cancer. To investigate genomic plasticity, most specifically of metastatic lesions, associated with response to first-line systemic therapy, we collected longitudinal liver metastatic samples and characterized the copy number aberration (CNA) landscape and its effect on the transcriptome. METHODS Liver metastatic biopsies were collected prior to treatment (pre, n = 97) and when clinical imaging demonstrated therapeutic resistance (post, n = 43). CNAs were inferred from whole exome sequencing and were correlated with both the status of the lesion and overall patient progression-free survival (PFS). We used RNA sequencing data from the same sample set to validate aberrations as well as independent datasets to prioritize candidate genes. RESULTS We identified a significantly increased frequency gain of a unique CN, in liver metastatic lesions after first-line treatment, on chr18p11.32 harboring 10 genes, including TYMS, which has not been reported in primary tumors (GISTIC method and test of equal proportions, FDR-adjusted p = 0.0023). CNA lesion profiles exhibiting different treatment responses were compared and we detected focal genomic divergences in post-treatment resistant lesions but not in responder lesions (two-tailed Fisher's Exact test, unadjusted p ≤ 0.005). The importance of examining metastatic lesions is highlighted by the fact that 15 out of 18 independently validated CNA regions found to be associated with PFS in this study were only identified in the metastatic lesions and not in the primary tumors. CONCLUSION This investigation of genomic-phenotype associations in a large colorectal cancer liver metastases cohort identified novel molecular features associated with treatment response, supporting the clinical importance of collecting metastatic samples in a defined clinical setting.
Collapse
Affiliation(s)
- Karen Gambaro
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Maud Marques
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Suzan McNamara
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
| | | | - Zuanel Diaz
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
| | - Cyrla Hoffert
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Archana Srivastava
- Canadian National Centres of Excellence—Exactis Innovation5450 Cote‐des‐NeigesMontrealQuebecH3T 1Y6Canada
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Steven Hébert
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Benoit Samson
- Charles LeMoyne Hospital3120 Taschereau Blvd.Greenfield ParkQuebecJ4V 2H1Canada
| | | | - Yoo‐Joung Ko
- Sunnybrook Health Science Centre2075 Bayview Ave.TorontoOntarioM4N 3M5Canada
| | - Richard Dalfen
- St. Mary's Hospital3830 LacombeMontrealQuebecH3T 1M5Canada
| | - Eve St‐Hilaire
- Georges Dumont Hospital220 Avenue UniversiteMonctonNew BrunswickE1C 2Z3Canada
| | - Lucas Sideris
- Hôpital Maisonneuve Rosemont5415 Assumption BlvdMontrealQuebecH1T 2M4Canada
| | - Felix Couture
- Hôtel‐Dieu de Quebec11 Cote du PalaisMontrealQuebecG1R 2J6Canada
| | - Ronald Burkes
- Mount Sinai Hospital600 University AvenueTorontoOntarioM5G 1X5Canada
| | - Mohammed Harb
- Moncton Hospital135 Macbeath AveMonctonNew BrunswickE1C 6Z8Canada
| | - Errol Camlioglu
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Adrian Gologan
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Vincent Pelsser
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - André Constantin
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Celia M.T. Greenwood
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
- Gerald Bronfman Department of OncologyMcGill University3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
- Department of Epidemiology, Biostatistics and Occupational HealthMcGill University3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Sabine Tejpar
- Digestive Oncology UnitKatholieke Universiteit LeuvenOude Markt 13Leuven3000Belgium
| | - Petr Kavan
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Claudia L. Kleinman
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
- Department of Human GeneticsLady Davis Research Institute, McGill University3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| | - Gerald Batist
- McGill University‐Segal Cancer Centre, Jewish General Hospital3755 Côte Ste‐CatherineMontrealQuebecH3T 1E2Canada
| |
Collapse
|
9
|
Safabakhsh S, Panwar P, Barichello S, Sangha SS, Hanson PJ, Van Petegem F, Laksman Z. THE ROLE OF PHOSPHORYLATION IN ATRIAL FIBRILLATION: A FOCUS ON MASS SPECTROMETRY APPROACHES. Cardiovasc Res 2021; 118:1205-1217. [PMID: 33744917 DOI: 10.1093/cvr/cvab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide. It is associated with significant increases in morbidity in the form of stroke and heart failure, and a doubling in all-cause mortality. The pathophysiology of AF is incompletely understood, and this has contributed to a lack of effective treatments and disease-modifying therapies. An important cellular process that may explain how risk factors give rise to AF includes post-translational modification (PTM) of proteins. As the most commonly occurring PTM, protein phosphorylation is especially relevant. Although many methods exist for studying protein phosphorylation, a common and highly resolute technique is mass spectrometry (MS). This review will discuss recent evidence surrounding the role of protein phosphorylation in the pathogenesis of AF. MS-based technology to study phosphorylation and uses of MS in other areas of medicine such as oncology will also be presented. Based on these data, future goals and experiments will be outlined that utilize MS technology to better understand the role of phosphorylation in AF and elucidate its role in AF pathophysiology. This may ultimately allow for the development of more effective AF therapies.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pankaj Panwar
- AbCellera Biologicals Inc., Vancouver, British Columbia, Canada
| | - Scott Barichello
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarabjit S Sangha
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Paul J Hanson
- UBC Heart Lung Innovation Centre, Vancouver, British Columbia, Canada.,UBC Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Salama AAA, Allam RM. Promising targets of chrysin and daidzein in colorectal cancer: Amphiregulin, CXCL1, and MMP-9. Eur J Pharmacol 2020; 892:173763. [PMID: 33249075 DOI: 10.1016/j.ejphar.2020.173763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is one of the primary causes of cancer-related mortality worldwide. The tumor microenvironment contains growth factors; inflammatory chemokines, matrix metalloproteinases, and pro-oxidants leading to cancer development and progression. Phytochemicals have been used as the main source of anti-cancer agents. Accordingly, the effect of two natural flavonoids (Chrysin and Daidzein) was investigated on the level of amphiregulin (AREG), chemokine ligand (CXCL1), and matrix metalloproteinase-9 (MMP-9) in 1, 2-dimethylhydrazine dihydrochloride (DMH) induced colorectal cancer. Rats were injected by DMH (40 mg/kg/week S.C.) for 16 weeks concomitantly with 2% dextran sodium sulfate (DSS) in drinking water for three cycles. Rats were orally treated with chrysin (125 and 250 mg/kg) and daidzein (5 and10 mg/kg) three times/week for the last 8 weeks. DMH + DSS group showed a significant (P < 0.05) increase in the levels of AREG (2386 ± 18 vs 1377 ± 10 pg/ml), CXCL1 (18 ± 0.9 vs 6 ± 0.83 <mu>g/ml), MMP-9 (1355 ± 88 vs 452 ± 7 pg/ml) compared to normal rats. These findings were associated with a potent antioxidant activity against cytochrome P450 2E1; (CYP2E1). Histopathological findings of the DMH + DSS group showed focal hyperplasia of the mucosa lining overlying crypts with moderate inflammation, dysplastic epithelial cells, and loss of goblet cells. Chrysin and daidzein treatment significantly (P < 0.05) restored the biochemical alterations and reverted histopathological findings near to the normal status. Moreover, chrysin and daidzein exerted anticancer activity against SW620 cells that were associated with decreased the protein expression of p-ERK/ERK and p-AKT/AKT. In conclusion, this study highlighted the potential anticancer role of chrysin and daidzein in the treatment of colon cancer.
Collapse
Affiliation(s)
- Abeer A A Salama
- Department of Pharmacology, Medical Division, National Research Centre, Egypt.
| | - Rasha M Allam
- Department of Pharmacology, Medical Division, National Research Centre, Egypt.
| |
Collapse
|
11
|
Froehlich BC, Popp R, Sobsey CA, Ibrahim S, LeBlanc AM, Mohammed Y, Aguilar‐Mahecha A, Poetz O, Chen MX, Spatz A, Basik M, Batist G, Zahedi RP, Borchers CH. Systematic Optimization of the iMALDI Workflow for the Robust and Straightforward Quantification of Signaling Proteins in Cancer Cells. Proteomics Clin Appl 2020; 14:e2000034. [PMID: 32643306 PMCID: PMC7539945 DOI: 10.1002/prca.202000034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Immuno-MALDI (iMALDI) combines immuno-enrichment of biomarkers with MALDI-MS for fast, precise, and specific quantitation, making it a valuable tool for developing clinical assays. iMALDI assays are optimized for the PI3-kinase signaling pathway members phosphatase and tensin homolog (PTEN) and PI3-kinase catalytic subunit alpha (p110α), with regard to sensitivity, robustness, and throughput. A standardized template for developing future iMALDI assays, including automation protocols to streamline assay development and translation, is provided. EXPERIMENTAL DESIGN Conditions for tryptic digestion and immuno-enrichment (beads, bead:antibody ratios, incubation times, direct vs. indirect immuno-enrichment) are rigorously tested. Different strategies for calibration and data readout are compared. RESULTS Digestion using 1:2 protein:trypsin (wt:wt) for 1 h yielded high and consistent peptide recoveries. Direct immuno-enrichment (antibody-bead coupling prior to antigen-enrichment) yielded 30% higher peptide recovery with a 1 h shorter incubation time than indirect enrichment. Immuno-enrichment incubation overnight yielded 1.5-fold higher sensitivities than 1 h incubation. Quantitation of the endogenous target proteins is not affected by the complexity of the calibration matrix, further simplifying the workflow. CONCLUSIONS AND CLINICAL RELEVANCE This optimized and automated workflow will facilitate the clinical translation of high-throughput sensitive iMALDI assays for quantifying cell-signaling proteins in individual tumor samples, thereby improving patient stratification for targeted treatment.
Collapse
Affiliation(s)
- Bjoern C. Froehlich
- University of Victoria‐Genome BC Proteomics CentreUniversity of VictoriaVictoriaBCV8Z 7E8Canada
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Robert Popp
- University of Victoria‐Genome BC Proteomics CentreUniversity of VictoriaVictoriaBCV8Z 7E8Canada
| | - Constance A. Sobsey
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
| | - Sahar Ibrahim
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
| | - Andre M. LeBlanc
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
| | - Yassene Mohammed
- University of Victoria‐Genome BC Proteomics CentreUniversity of VictoriaVictoriaBCV8Z 7E8Canada
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeiden2333 ZAThe Netherlands
- Center for Computational and Data‐Intensive Science and EngineeringSkolkovo Institute of Science and TechnologyMoscow121205Russia
| | - Adriana Aguilar‐Mahecha
- Segal Cancer CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute University of TuebingenReutlingen72770Germany
- SIGNATOPE GmbHReutlingen72770Germany
| | - Michael X. Chen
- Department of Pathology and Laboratory MedicineFaculty of MedicineUniversity of British ColumbiaVancouverCanada
| | - Alan Spatz
- Segal Cancer CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
| | - Mark Basik
- Segal Cancer CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
| | - Gerald Batist
- Segal Cancer CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill UniversityMontrealQCH4A3T2Canada
| | - René P. Zahedi
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
- Center for Computational and Data‐Intensive Science and EngineeringSkolkovo Institute of Science and TechnologyMoscow121205Russia
| | - Christoph H. Borchers
- University of Victoria‐Genome BC Proteomics CentreUniversity of VictoriaVictoriaBCV8Z 7E8Canada
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQCH3T1E2Canada
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill UniversityMontrealQCH4A3T2Canada
- Center for Computational and Data‐Intensive Science and EngineeringSkolkovo Institute of Science and TechnologyMoscow121205Russia
| |
Collapse
|
12
|
Ibrahim S, Froehlich BC, Aguilar-Mahecha A, Aloyz R, Poetz O, Basik M, Batist G, Zahedi RP, Borchers CH. Using Two Peptide Isotopologues as Internal Standards for the Streamlined Quantification of Low-Abundance Proteins by Immuno-MRM and Immuno-MALDI. Anal Chem 2020; 92:12407-12414. [DOI: 10.1021/acs.analchem.0c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sahar Ibrahim
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Bjoern C. Froehlich
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria V8Z 7X8, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Raquel Aloyz
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen 72770, Germany
- SIGNATOPE GmbH, Reutlingen 72770, Germany
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Gerald Batist
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria V8Z 7X8, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
13
|
Binetti M, Lauro A, Vaccari S, Cervellera M, Tonini V. Proteogenomic biomarkers in colorectal cancers: clinical applications. Expert Rev Proteomics 2020; 17:355-363. [PMID: 32536221 DOI: 10.1080/14789450.2020.1782202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the leading cancers in terms of incidence and mortality, rate requiring a multidisciplinary approach. The discovery of specific CRC biomarkers has caused a paradigm shift in its clinical management. AREAS COVERED The aim is to illustrate the possible clinical applications of CRC biomarkers through an updated literature review (from 2015 to 2020) based on the PubMed database. A relationship between cancer localization and genetic profile has been identified. Nowadays, the tumor markers are largely used to select patients that could really benefit from a specific type of adjuvant therapy, in order to optimize treatment programs, especially in metastatic patients. This review highlights both CRC biomarkers' advantages and critical issues. EXPERT OPINION New biomarker discoveries allow to set noninvasive tests that could increase patient's compliance with therapy. They also permit a cost-effective early diagnosis, as well as patient-tailored treatments, improving the overall survival. The CRC biomarkers could also have a prognostic value, and usually, they are included in follow-up programs. However, despite the continuous progression of new technologies, their clinical validation is still debated. In this context, additional clinical studies are still necessary to identify, among potential markers, the most effective ones.
Collapse
Affiliation(s)
| | - Augusto Lauro
- Emergency Surgery Unit, St. Orsola University Hospital , Bologna, Italy
| | - Samuele Vaccari
- Department of Surgical Sciences, Umberto I University Hospital , Rome, Italy
| | | | - Valeria Tonini
- Emergency Surgery Unit, St. Orsola University Hospital , Bologna, Italy
| |
Collapse
|