1
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
2
|
Khalili P, Vatankhah R. Optimal control design for drug delivery of immunotherapy in chemoimmunotherapy treatment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107248. [PMID: 36463673 DOI: 10.1016/j.cmpb.2022.107248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE There are various approaches to control a mathematical dynamic of cancer, each of which is suitable for a special goal. Optimal control is considered as an applicable method to calculate the minimum necessary drug delivery in such systems. METHODS In this paper, a mathematical dynamic of cancer is proposed considering tumor cells, natural killer cells, CD8+T cells, circulating lymphocytes, IL-2 cytokine and Regulatory T cells as the system states, and chemotherapy, IL-2 and activated CD8+T cells injection rate as the control signals. After verifying the proposed mathematical model, the importance of the drug delivery timing and the effect of cancer cells initial condition are discussed. Afterwards, an optimal control is designed by defining a proper cost function with the goal of minimizing the number of tumor cells, and two immunotherapy drug amounts during treatment CONCLUSIONS: Results show that inappropriate injection of immunotherapy time schedule and the number of initial conditions of cancer cells might result in chemoimmunotherapy failure and auxiliary treatment must be prescribed to decrease tumor size before any treatment takes place. The obtained optimal control signals show that with lower amount of drug delivery and a suitable drug injection time schedule, tumor cells can be eliminated while a fixed immunotherapy time schedule protocol fails with larger amount of drug injection. This conclusion can be utilized with the aim of personalizing drug delivery and designing more accurate clinical trials based on the improved model simulations in order to save cost and time.
Collapse
Affiliation(s)
- Pariya Khalili
- PhD Candidate, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Ramin Vatankhah
- Associated Professor, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
3
|
Baram T, Oren N, Erlichman N, Meshel T, Ben-Baruch A. Inflammation-Driven Regulation of PD-L1 and PD-L2, and Their Cross-Interactions with Protective Soluble TNFα Receptors in Human Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:3513. [PMID: 35884574 PMCID: PMC9323351 DOI: 10.3390/cancers14143513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 12/02/2022] Open
Abstract
Pro-inflammatory cytokines play key roles in elevating cancer progression in triple-negative breast cancer (TNBC). We demonstrate that specific combinations between TNFα, IL-1β and IFNγ up-regulated the proportion of human TNBC cells co-expressing the inhibitory immune checkpoints PD-L1 and PD-L2: TNFα + IL-1β in MDA-MB-231 cells and IFNγ + IL-1β in BT-549 cells; in the latter cells, the process depended entirely on STAT1 activation, with no involvement of p65 (CRISPR-Cas9 experiments). Highly significant associations between the pro-inflammatory cytokines and PD-L1/PD-L2 expression were revealed in the TCGA dataset of basal-like breast cancer patients. In parallel, we found that the pro-inflammatory cytokines regulated the expression of the soluble receptors of tumor necrosis factor α (TNFα), namely sTNFR1 and sTNFR2; moreover, we revealed that sTNFR1 and sTNFR2 serve as anti-metastatic and protective factors in TNBC, reducing the TNFα-induced production of inflammatory pro-metastatic chemokines (CXCL8, CXCL1, CCL5) by TNBC cells. Importantly, we found that in the context of inflammatory stimulation and also without exposure to pro-inflammatory cytokines, elevated levels of PD-L1 have down-regulated the production of anti-tumor sTNFR1 and sTNFR2. These findings suggest that in addition to its immune-suppressive activities, PD-L1 may promote disease course in TNBC by inhibiting the protective effects of sTNFR1 and sTNFR2.
Collapse
Affiliation(s)
| | | | | | | | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (T.B.); (N.O.); (N.E.); (T.M.)
| |
Collapse
|
4
|
Corti C, Nicolò E, Curigliano G. Novel immune targets for the treatment of triple-negative breast cancer. Expert Opin Ther Targets 2021; 25:815-834. [PMID: 34763593 DOI: 10.1080/14728222.2021.2006187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION To overcome mechanisms of primary and secondary resistance to the anti-tumor immune response, novel targets such as ICOS, LAG3, and TIM3 are currently being explored at preclinical and early-phase clinical levels. AREAS COVERED This article examines the landscape of the immune therapeutics investigated in early-phase clinical trials for TNBC. Preclinical rationale is provided for each immune target, predominant expression, and function. Clinical implications and preliminary available trial results are discussed and finally, we reflect on aspects of future expectations and challenges in this field. EXPERT OPINION Several immune strategies have been investigated in TNBC, including co-inhibitory molecules beyond PD1-PD-L1 axis, co-stimulatory checkpoints, cancer vaccines, adoptive cell transfer, combination therapies, as well as different routes of administration. Most of approaches showed signs of anti-cancer activity and a good safety profile in early-phase clinical trials. Since IO provided benefit only to a small subgroup of TNBC patients so far, identifying predictive biomarkers is a priority to refine patient-selection. Data from ongoing clinical trials, with the gradually improving interpretation of the breast tumor immune environment, will hopefully refine the role of new immune targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| |
Collapse
|
5
|
Bonnelye E, Juárez P. Targeting Bone Metastasis in Cancers. Cancers (Basel) 2021; 13:cancers13174490. [PMID: 34503299 PMCID: PMC8431367 DOI: 10.3390/cancers13174490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
This Special Issue of Cancers covers different aspects of bone physiopathology in oncology that combine the microenvironment and the factors involved in bone metastasis dormancy and progression [...].
Collapse
Affiliation(s)
- Edith Bonnelye
- Department of Efficacy and Resistance to Anti-Tumor Targeted Therapies, University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Correspondence:
| | - Patricia Juárez
- Biomedical Innovation Deparment, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Ensenada 22860, Mexico;
| |
Collapse
|
6
|
Morein D, Rubinstein-Achiasaf L, Brayer H, Dorot O, Pichinuk E, Ben-Yaakov H, Meshel T, Pasmanik-Chor M, Ben-Baruch A. Continuous Inflammatory Stimulation Leads via Metabolic Plasticity to a Prometastatic Phenotype in Triple-Negative Breast Cancer Cells. Cells 2021; 10:cells10061356. [PMID: 34072893 PMCID: PMC8229065 DOI: 10.3390/cells10061356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation promotes cancer progression by affecting the tumor cells and their microenvironment. Here, we demonstrate that a continuous stimulation (~6 weeks) of triple-negative breast tumor cells (TNBC) by the proinflammatory cytokines tumor necrosis factor α (TNFα) + interleukin 1β (IL-1β) changed the expression of hundreds of genes, skewing the cells towards a proinflammatory phenotype. While not affecting stemness, the continuous TNFα + IL-1β stimulation has increased tumor cell dispersion and has induced a hybrid metabolic phenotype in TNBC cells; this phenotype was indicated by a transcription-independent elevation in glycolytic activity and by increased mitochondrial respiratory potential (OXPHOS) of TNBC cells, accompanied by elevated transcription of mitochondria-encoded OXPHOS genes and of active mitochondria area. The continuous TNFα + IL-1β stimulation has promoted in a glycolysis-dependent manner the activation of p65 (NF-κB), and the transcription and protein expression of the prometastatic and proinflammatory mediators sICAM-1, CCL2, CXCL8 and CXCL1. Moreover, when TNBC cells were stimulated continuously by TNFα + IL-1β in the presence of a glycolysis inhibitor, their conditioned media had reduced ability to recruit monocytes and neutrophils in vivo. Such inflammation-induced metabolic plasticity, which promotes prometastatic cascades in TNBC, may have important clinical implications in treatment of TNBC patients.
Collapse
Affiliation(s)
- Dina Morein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Linor Rubinstein-Achiasaf
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Hadar Brayer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Orly Dorot
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (O.D.); (E.P.)
| | - Edward Pichinuk
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (O.D.); (E.P.)
| | - Hagar Ben-Yaakov
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Tsipi Meshel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Adit Ben-Baruch
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (D.M.); (L.R.-A.); (H.B.); (H.B.-Y.); (T.M.)
- Correspondence: ; Tel.: +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
7
|
Göbel A, Dell’Endice S, Jaschke N, Pählig S, Shahid A, Hofbauer LC, Rachner TD. The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:5078. [PMID: 34064859 PMCID: PMC8151893 DOI: 10.3390/ijms22105078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.
Collapse
Affiliation(s)
- Andy Göbel
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefania Dell’Endice
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nikolai Jaschke
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Sophie Pählig
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Amna Shahid
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Lorenz C. Hofbauer
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Tilman D. Rachner
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| |
Collapse
|
8
|
Persistent Inflammatory Stimulation Drives the Conversion of MSCs to Inflammatory CAFs That Promote Pro-Metastatic Characteristics in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13061472. [PMID: 33806906 PMCID: PMC8004890 DOI: 10.3390/cancers13061472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
The pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) are expressed simultaneously and have tumor-promoting roles in breast cancer. In parallel, mesenchymal stem cells (MSCs) undergo conversion at the tumor site to cancer-associated fibroblasts (CAFs), which are generally connected to enhanced tumor progression. Here, we determined the impact of consistent inflammatory stimulation on stromal cell plasticity. MSCs that were persistently stimulated by TNFα + IL-1β (generally 14-18 days) gained a CAF-like morphology, accompanied by prominent changes in gene expression, including in stroma/fibroblast-related genes. These CAF-like cells expressed elevated levels of vimentin and fibroblast activation protein (FAP) and demonstrated significantly increased abilities to contract collagen gels. Moreover, they gained the phenotype of inflammatory CAFs, as indicated by the reduced expression of α smooth muscle actin (αSMA), increased proliferation, and elevated expression of inflammatory genes and proteins, primarily inflammatory chemokines. These inflammatory CAFs released factors that enhanced tumor cell dispersion, scattering, and migration; the inflammatory CAF-derived factors elevated cancer cell migration by stimulating the chemokine receptors CCR2, CCR5, and CXCR1/2 and Ras-activating receptors, expressed by the cancer cells. Together, these novel findings demonstrate that chronic inflammation can induce MSC-to-CAF conversion, leading to the generation of tumor-promoting inflammatory CAFs.
Collapse
|
9
|
Salamanna F, Borsari V, Pagani S, Brodano GB, Gasbarrini A, Fini M. Development and characterization of a novel human 3D model of bone metastasis from breast carcinoma in vitro cultured. Bone 2021; 143:115773. [PMID: 33249322 DOI: 10.1016/j.bone.2020.115773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
Breast cancer frequently metastasizes to the skeleton causing significant morbidity. None of the therapeutic strategies used to manage breast cancer bone metastases are really curative. Here, we set-up a novel and advanced model by using fresh tissue from human vertebral bone metastasis from breast carcinoma patients able to retain the tumor microenvironment. The tissue model is based on an ex-vivo culture for up to 40 days and on a constant monitoring of tissue viability, gene expression profile (IL10, IL1b, MMP1, MMP7, PTH1R, PTH2R, TNF, ACP5, SPI1, VEGFA, CTSK, TGF-β) and histological and immunohistochemical analyses (CDH1/E-cadherin, CDH2/N-cadherin, KRT8/Cytokeratin 8, KRT18/Cytokeratin 18, Ki67, CASP3/Caspase 3, ESR1/Estrogen Receptor Alpha, CD68 and CD8). Results confirmed the development of a reliable, reproducible and cost-effective advanced model of breast cancer bone metastasis able to preserve and maintain long-term tissue viability, as well as molecular markers, tissue histomorphology, tissue micro-architecture and antigen expression. The study provides for the first time the feasibility and rationale for the use of a human-derived advanced alternative model for cancer research and testing of drugs and innovative strategies, taking into account patient individual characteristics and specific tumor subtypes so predicting patient specific responses.
Collapse
Affiliation(s)
- Francesca Salamanna
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Veronica Borsari
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Stefania Pagani
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Giovanni Barbanti Brodano
- Spine Surgery Prevalently Oncologic and Degenerative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Alessandro Gasbarrini
- Spine Surgery Prevalently Oncologic and Degenerative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Milena Fini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
10
|
Baram T, Rubinstein-Achiasaf L, Ben-Yaakov H, Ben-Baruch A. Inflammation-Driven Breast Tumor Cell Plasticity: Stemness/EMT, Therapy Resistance and Dormancy. Front Oncol 2021; 10:614468. [PMID: 33585241 PMCID: PMC7873936 DOI: 10.3389/fonc.2020.614468] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular heterogeneity poses an immense therapeutic challenge in cancer due to a constant change in tumor cell characteristics, endowing cancer cells with the ability to dynamically shift between states. Intra-tumor heterogeneity is largely driven by cancer cell plasticity, demonstrated by the ability of malignant cells to acquire stemness and epithelial-to-mesenchymal transition (EMT) properties, to develop therapy resistance and to escape dormancy. These different aspects of cancer cell remodeling are driven by intrinsic as well as by extrinsic signals, the latter being dominated by factors of the tumor microenvironment. As part of the tumor milieu, chronic inflammation is generally regarded as a most influential player that supports tumor development and progression. In this review article, we put together recent findings on the roles of inflammatory elements in driving forward key processes of tumor cell plasticity. Using breast cancer as a representative research system, we demonstrate the critical roles played by inflammation-associated myeloid cells (mainly macrophages), pro-inflammatory cytokines [such as tumor necrosis factor α (TNFα) and interleukin 6 (IL-6)] and inflammatory chemokines [primarily CXCL8 (interleukin 8, IL-8) and CXCL1 (GROα)] in promoting tumor cell remodeling. These inflammatory components form a common thread that is involved in regulation of the three plasticity levels: stemness/EMT, therapy resistance, and dormancy. In view of the fact that inflammatory elements are a common denominator shared by different aspects of tumor cell plasticity, it is possible that their targeting may have a critical clinical benefit for cancer patients.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Linor Rubinstein-Achiasaf
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Ben-Yaakov
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Fang Z, Wang Y, Wang Z, Xu M, Ren S, Yang D, Hong M, Xie W. ERINA Is an Estrogen-Responsive LncRNA That Drives Breast Cancer through the E2F1/RB1 Pathway. Cancer Res 2020; 80:4399-4413. [PMID: 32826278 DOI: 10.1158/0008-5472.can-20-1031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 01/23/2023]
Abstract
Resistance to therapeutic drugs is a major challenge in the treatment of cancers, including breast cancer. Long noncoding RNAs (lncRNA) are known to have diverse physiologic and pathophysiologic functions, including in cancer. In searching for lncRNA responsible for cancer drug resistance, we identified an intergenic lncRNA ERINA (estrogen inducible lncRNA) as a novel lncRNA highly expressed in multiple cancer types, especially in estrogen receptor-positive (ER+) breast cancers. Expression of ERINA was inversely correlated with survival of patients with ER+ breast cancer and sensitivity to CDK inhibitor in breast cancer cell lines. Functional characterization established ERINA as an oncogenic lncRNA, as knockdown of ERINA in breast cancer cells inhibited cell-cycle progression and tumor cell proliferation in vitro and xenograft tumor growth in vivo. In contrast, overexpression of ERINA promoted cell growth and cell-cycle progression. ERINA promoted cell-cycle progression by interacting with the E2F transcription factor 1 (E2F1), which prevents the binding of E2F1 to the tumor suppressor retinoblastoma protein 1 (RB1). ERINA also functioned as an estrogen and ER-responsive gene, and an intronic ER-binding site was identified as an enhancer that mediates the transactivation of ERINA. In summary, ERINA is an estrogen-responsive oncogenic lncRNA that may serve as a novel biomarker and potential therapeutic target in breast cancer. SIGNIFICANCE: These findings identify ERINA as an estrogen-responsive, oncogenic lncRNA, whose elevated expression may contribute to drug resistance and poor survival of patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Zihui Fang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.,College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yue Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zehua Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China.
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Lappano R, Talia M, Cirillo F, Rigiracciolo DC, Scordamaglia D, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Sims AH, Maggiolini M. The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:153. [PMID: 32778144 PMCID: PMC7418191 DOI: 10.1186/s13046-020-01667-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Background Hypoxia plays a relevant role in tumor-related inflammation toward the metastatic spread and cancer aggressiveness. The pro-inflammatory cytokine interleukin-1β (IL-β) and its cognate receptor IL1R1 contribute to the initiation and progression of breast cancer determining pro-tumorigenic inflammatory responses. The transcriptional target of the hypoxia inducible factor-1α (HIF-1α) namely the G protein estrogen receptor (GPER) mediates a feedforward loop coupling IL-1β induction by breast cancer-associated fibroblasts (CAFs) to IL1R1 expression by breast cancer cells toward the regulation of target genes and relevant biological responses. Methods In order to ascertain the correlation of IL-β with HIF-1α and further hypoxia-related genes in triple-negative breast cancer (TNBC) patients, a bioinformatics analysis was performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets. Gene expression correlation, statistical analysis and gene set enrichment analysis (GSEA) were carried out with R studio packages. Pathway enrichment analysis was evaluated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. TNBC cells and primary CAFs were used as model system. The molecular mechanisms implicated in the regulation of IL-1β by hypoxia toward a metastatic gene expression profile and invasive properties were assessed performing gene and protein expression studies, PCR arrays, gene silencing and immunofluorescence analysis, co-immunoprecipitation and ChiP assays, ELISA, cell spreading, invasion and spheroid formation. Results We first determined that IL-1β expression correlates with the levels of HIF-1α as well as with a hypoxia-related gene signature in TNBC patients. Next, we demonstrated that hypoxia triggers a functional liaison among HIF-1α, GPER and the IL-1β/IL1R1 signaling toward a metastatic gene signature and a feed-forward loop of IL-1β that leads to proliferative and invasive responses in TNBC cells. Furthermore, we found that the IL-1β released in the conditioned medium of TNBC cells exposed to hypoxic conditions promotes an invasive phenotype of CAFs. Conclusions Our data shed new light on the role of hypoxia in the activation of the IL-1β/IL1R1 signaling, which in turn triggers aggressive features in both TNBC cells and CAFs. Hence, our findings provide novel evidence regarding the mechanisms through which the hypoxic tumor microenvironment may contribute to breast cancer progression and suggest further targets useful in more comprehensive therapeutic strategies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rita Guzzi
- Department of Physics, University of Calabria, 87036, Rende, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Andrew H Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
13
|
Liubomirski Y, Ben-Baruch A. Notch-Inflammation Networks in Regulation of Breast Cancer Progression. Cells 2020; 9:cells9071576. [PMID: 32605277 PMCID: PMC7407628 DOI: 10.3390/cells9071576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Members of the Notch family and chronic inflammation were each separately demonstrated to have prominent malignancy-supporting roles in breast cancer. Recent investigations indicate that bi-directional interactions that exist between these two pathways promote the malignancy phenotype of breast tumor cells and of their tumor microenvironment. In this review article, we demonstrate the importance of Notch-inflammation interplays in malignancy by describing three key networks that act in breast cancer and their impacts on functions that contribute to disease progression: (1) Cross-talks of the Notch pathway with myeloid cells that are important players in cancer-related inflammation, focusing mainly on macrophages; (2) Cross-talks of the Notch pathway with pro-inflammatory factors, exemplified mainly by Notch interactions with interleukin 6 and its downstream pathways (STAT3); (3) Cross-talks of the Notch pathway with typical inflammatory transcription factors, primarily NF-κB. These three networks enhance tumor-promoting functions in different breast tumor subtypes and act in reciprocal manners, whereby Notch family members activate inflammatory elements and vice versa. These characteristics illustrate the fundamental roles played by Notch-inflammation interactions in elevating breast cancer progression and propose that joint targeting of both pathways together may provide more effective and less toxic treatment approaches in this disease.
Collapse
|