1
|
Iweala EEJ, Amuji DN, Oluwajembola AM, Ugbogu EA. Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100204. [PMID: 39524211 PMCID: PMC11543557 DOI: 10.1016/j.crphar.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer presents a significant challenge due to its heterogeneity and propensity for developing chemoresistance, particularly in the triple-negative subtype. c-Mesenchymal epithelial transition factor (c-Met), a receptor tyrosine kinase, presents a promising target for breast cancer therapy due to its involvement in disease progression and poor prognosis. However, the heterogeneous expression of c-Met within breast cancer subtypes and individual tumors complicates targeted therapy. Also, cancer cells can develop resistance to c-Met inhibitors through various mechanisms, including bypass signaling pathways and genetic mutations. The off-target effects of c-Met inhibitors further limit their clinical utility, necessitating the development of more selective agents. To overcome these challenges, personalized treatment approaches and combination therapies are being explored to improve treatment efficacy while minimizing adverse effects. Novel c-Met inhibitors with improved selectivity and reduced off-target toxicity show promise in preclinical studies. Additionally, targeted delivery systems aim to enhance drug localization and reduce systemic toxicity. Future directions involve refining inhibitor design and integrating c-Met inhibition into personalized treatment regimens guided by molecular profiling. This review explores the mechanisms by which c-Met contributes to chemoresistance in breast cancer and current challenges in targeting c-Met for breast cancer therapy. It discusses strategies to optimize treatment outcomes, ultimately improving patient prognosis and reducing mortality rates associated with this devastating disease.
Collapse
Affiliation(s)
- Emeka Eze Joshua Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Doris Nnenna Amuji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Abimbola Mary Oluwajembola
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | | |
Collapse
|
2
|
Tsoi H, Lok J, Man EP, Cheng CN, Leung MH, You CP, Chan SY, Chan WL, Khoo US. Overexpression of BQ323636.1 contributes to anastrozole resistance in AR+ve/ER+ve breast cancer. J Pathol 2023; 261:156-168. [PMID: 37555303 DOI: 10.1002/path.6157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 08/10/2023]
Abstract
Aromatase inhibitors (Ais) are used as adjuvant endocrine therapy for oestrogen receptor-positive (ER+ve) post-menopausal breast cancer patients. Ais, by inhibiting the enzyme aromatase, block the conversion of androgen to oestrogen, reducing oestrogen levels. Resistance to Ais limits their clinical utilisation. Here, we show that overexpression of BQ323636.1 (BQ), a novel splice variant of nuclear co-repressor NCOR2, is associated with resistance to the non-steroidal aromatase inhibitor anastrozole in ER+ve post-menopausal breast cancer. Mechanistic study indicates that BQ overexpression enhances androgen receptor (AR) activity and in the presence of anastrozole, causes hyper-activation of AR signalling, which unexpectedly enhanced cell proliferation, through increased expression of CDK2, CDK4, and CCNE1. BQ overexpression reverses the effect of anastrozole in ER+ve breast cancer in an AR-dependent manner, whilst co-treatment with the AR antagonist bicalutamide recovered its therapeutic effect both in vitro and in vivo. Thus, for BQ-overexpressing breast cancer, targeting AR can combat anastrozole resistance. Clinical study of 268 primary breast cancer samples of ER+ve patients who had been treated with non-steroidal Ais showed 32.5% (38/117) of cases with combined high nuclear expression of BQ and AR, which were found to be significantly associated with Ai resistance. Non-steroidal Ai-treated patients with high nuclear expression of both BQ and AR had poorer overall, disease-specific, and disease-free survival. These findings suggest the importance of assessing BQ and AR expression status in the primary ER+ve breast tumour prior to Ai treatment. This may save patients from inappropriate treatment and enable effective therapy to be given at an early stage. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Johann Lok
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Ellen Ps Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Cheuk-Nam Cheng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Man-Hong Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Chan-Ping You
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Sum-Yin Chan
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, SAR, PR China
| | - Wing-Lok Chan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|
3
|
Tsoi H, Fung NNC, Man EPS, Leung MH, You CP, Chan WL, Chan SY, Khoo US. SRSF5 Regulates the Expression of BQ323636.1 to Modulate Tamoxifen Resistance in ER-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15082271. [PMID: 37190199 DOI: 10.3390/cancers15082271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
About 70% of breast cancer patients are oestrogen receptor-positive (ER +ve). Adjuvant endocrine therapy using tamoxifen (TAM) is an effective approach for preventing local recurrence and metastasis. However, around half of the patients will eventually develop resistance. Overexpression of BQ323636.1 (BQ) is one of the mechanisms that confer TAM resistance. BQ is an alternative splice variant of NCOR2. The inclusion of exon 11 generates mRNA for NCOR2, while the exclusion of exon 11 produces mRNA for BQ. The expression of SRSF5 is low in TAM-resistant breast cancer cells. Modulation of SRSF5 can affect the alternative splicing of NCOR2 to produce BQ. In vitro and in vivo studies confirmed that the knockdown of SRSF5 enhanced BQ expression, and conferred TAM resistance; in contrast, SRSF5 overexpression reduced BQ expression and, thus, reversed TAM resistance. Clinical investigation using a tissue microarray confirmed the inverse correlation of SRSF5 and BQ. Low SRSF5 expression was associated with TAM resistance, local recurrence and metastasis. Survival analyses showed that low SRSF5 expression was associated with poorer prognosis. We showed that SRPK1 can interact with SRSF5 to phosphorylate it. Inhibition of SRPK1 by a small inhibitor, SRPKIN-1, suppressed the phosphorylation of SRSF5. This enhanced the proportion of SRSF5 interacting with exon 11 of NCOR2, reducing the production of BQ mRNA. As expected, SRPKIN-1 reduced TAM resistance. Our study confirms that SRSF5 is essential for BQ expression. Modulating the activity of SRSF5 in ER +ve breast cancer will be a potential approach to combating TAM resistance.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nicholas Nok-Ching Fung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ellen P S Man
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Hong Leung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chan-Ping You
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing-Lok Chan
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sum-Yin Chan
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong SAR, China
| | - Ui-Soon Khoo
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Tsoi H, Tsang WC, Man EPS, Leung MH, You CP, Chan SY, Chan WL, Khoo US. Checkpoint Kinase 2 Inhibition Can Reverse Tamoxifen Resistance in ER-Positive Breast Cancer. Int J Mol Sci 2022; 23:ijms232012290. [PMID: 36293165 PMCID: PMC9604393 DOI: 10.3390/ijms232012290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is a heterogeneous disease. Tamoxifen is frequently used to treat ER-positive breast cancer. Our team has identified a novel splice variant of NCOR2, BQ323636.1 (BQ), that mediates tamoxifen resistance. However, the upstream factors that modulate BQ expression are not apparent. This study reveals that tamoxifen treatment causes induction of DNA damage which can enhance BQ expression. We show that DNA damage can activate the ATM/CHK2 and ATR/CHK1 signalling cascades and confirm that ATM/CHK2 signalling is responsible for enhancing the protein stability of BQ. siRNA or a small inhibitor targeting CHK2 resulted in the reduction in BQ expression through reduced phosphorylation and enhanced poly-ubiquitination of BQ. Inhibition of CHK2 by CCT241533 could reverse tamoxifen resistance in vitro and in vivo. Using clinical samples in the tissue microarray, we confirmed that high p-CHK2 expression was significantly associated with high nuclear BQ expression, tamoxifen resistance and poorer overall and disease-specific survival. In conclusion, tamoxifen treatment can enhance BQ expression in ER-positive breast cancer by activating the ATM/CHK2 axis. Targeting CHK2 is a promising approach to overcoming tamoxifen resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai-Chung Tsang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ellen P. S. Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Hong Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chan-Ping You
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sum-Yin Chan
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong SAR, China
| | - Wing-Lok Chan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-2255-2664; Fax: +852-2218-5205
| |
Collapse
|
5
|
Clinical and genomic analyses of neuroendocrine neoplasms of the breast. Mod Pathol 2022; 35:495-505. [PMID: 34728787 DOI: 10.1038/s41379-021-00965-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
Breast neuroendocrine neoplasms (NENs) constitute a rare histologic subtype that includes both neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs). In this study, we aimed to gain insight into the clinical and molecular characteristics of NENs of the breast. NEN and paired distant normal fresh tissues and clinicopathological data were obtained from 17 patients with NENs, and clinicopathological data were collected from 755 patients with invasive breast carcinomas of no special type (IBCs-NST). We compared the clinicopathological characteristics of NENs and IBCs-NST and performed whole-exome sequencing (WES) of both NEN and paired normal tissues. Compared with the IBC-NST patients, the NEN patients had a higher mean age, lower clinical stage, and lower pathological nodal (pN) stage (P < 0.001, P < 0.001, and P = 0.017, respectively). The most frequently mutated gene in NENs was KMT2C (3/17, 17.6%). NENs had copy number variations (CNVs) of 8q, 11q, and 17q amplification and 17q and 11q deletion and harbored the following specific genes related to tumorigenesis: (i) suppressor genes with loss of heterozygosity (LOH) such as ACE (2/17, 11.8%); (ii) tumor driver genes such as GATA3 (2/17, 11.8%); and (iii) susceptibility genes such as MAP3K4 (17/17, 100%) and PDE4DIP (17/17, 100%). The oncogenic/likely oncogenic mutations of NETs in PI3K pathway genes (50.0%, 18.2%; P < 0.001) and MAPK signaling pathway genes (83.3%, 18.2%; P = 0.035) affected higher proportions than those of NECs. In conclusion, this study provides certain clinical and molecular evidence supporting NENs as a distinct subtype of breast cancer and provides some potential molecular features for distinguishing NETs from NECs.
Collapse
|
6
|
Zhang L, Liu H, Tian Y, Wang H, Yang X. A novel NCOR2-NTRK1 fusion detected in a patient of lung adenocarcinoma and response to larotrectinib: a case report. BMC Pulm Med 2021; 21:125. [PMID: 33865348 PMCID: PMC8052639 DOI: 10.1186/s12890-021-01490-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The identification of NTRK fusions in tumours has become critically important due to the actionable events predictive of response to TRK inhibitor. It is not clear whether the NTRK breakpoint location is different for response to targeted therapy and NTRK fusions affects the efficacy of immunotherapy. CASE PRESENTATION Here we reported a 60-year-old female diagnosed with advanced lung adenocarcinoma. NGS-based molecular profiling identified a novel NCOR2-NTRK1 fusion and high tumor mutational burden (TMB) (58.58 mutations/Mb) in this case. Additionally, program death-ligand 1 (PD-L1) expression was detected in 20-30% of the tumor cells by immunohistochemical (IHC) staining. The patient received treatment with anti-PD-1 immune checkpoint inhibitor of camrelizumab. After two cycles of treatment, the CT scan showed some tumor nodules were still enlarged, indicating disease progression. She was then changed to TRK inhibitor larotrectinib. One month later, the CT scan showed the volume of some lesions started to decrease, and no metastasis lesions were found. The patient then continued the administration of larotrectinib, and some lesion sizes were significantly reduced or even disappeared in the next few months. Currently, this patient is still alive. CONCLUSIONS Altogether, this report provided a new driver of lung adenocarcinoma expanded the mutational spectrum of NTRK1 fusion variants and suggested using larotrectinib as the targeted therapy is more effective than anti-PD-1 inhibitor in lung adenocarcinoma harboring with NTRK fusion, positive PD-L1 expression, and high TMB simultaneously.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, Liaoning, People's Republic of China
| | - Huanhuan Liu
- Acornmed Biotechnology Co., Ltd., 13 Kechuang Road, Beijing, 100176, People's Republic of China
| | - Ye Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, Liaoning, People's Republic of China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., 13 Kechuang Road, Beijing, 100176, People's Republic of China.
| | - Xueying Yang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Han Y, Huang L, Zhou F. A dynamic recursive feature elimination framework (dRFE) to further refine a set of OMIC biomarkers. Bioinformatics 2021; 37:2183-2189. [PMID: 33515240 DOI: 10.1093/bioinformatics/btab055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION A feature selection algorithm may select the subset of features with the best associations with the class labels. The recursive feature elimination (RFE) is a heuristic feature screening framework and has been widely used to select the biological OMIC biomarkers. This study proposed a dynamic recursive feature elimination (dRFE) framework with more flexible feature elimination operations. The proposed dRFE was comprehensively compared with 11 existing feature selection algorithms and five classifiers on the eight difficult transcriptome datasets from a previous study, the ten newly collected transcriptome datasets and the five methylome datasets. RESULTS The experimental data suggested that the regular RFE framework did not perform well, and dRFE outperformed the existing feature selection algorithms in most cases. The dRFE-detected features achieved Acc=1.0000 for the two methylome datasets GSE53045 and GSE66695. The best prediction accuracies of the dRFE-detected features were 0.9259, 0.9424, and 0.8601 for the other three methylome datasets GSE74845, GSE103186, and GSE80970, respectively. Four transcriptome datasets received Acc=1.0000 using the dRFE-detected features, and the prediction accuracies for the other six newly collected transcriptome datasets were between 0.6301 and 0.9917. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuanyuan Han
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| | - Lan Huang
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| | - Fengfeng Zhou
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| |
Collapse
|
8
|
Xue D, Zhou X, Qiu J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother 2020; 131:110676. [PMID: 32858502 DOI: 10.1016/j.biopha.2020.110676] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance is a central cause for the tumor management failure. Cancer cells disrupt the redox homeostasis through reactive oxygen species (ROS) regulatory mechanisms, leading to tumor progression and chemoresistance. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of neutralizing cellular ROS and restoring redox balance. Understanding the role of NRF2 in ROS-mediated chemoresistance can be helpful in the development of chemotherapy strategies with better efficiency. In this review, we sum up the roles of ROS in the development of chemoresistance to classical chemotherapy agents including cisplatin, 5-fluorouracil, gemcitabine, oxaliplatin, paclitaxel, and doxorubicin, and how to overcome ROS-mediated tumor chemoresistance by targeting NRF2. Finally, we propose that targeting NRF2 might be a promising strategy to resist ROS-driven chemoresistance and acquire better efficacy in cancer treatment.
Collapse
Affiliation(s)
- Danfeng Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiongming Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|