1
|
Kędzierska M, Bańkosz M. Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy-A Narrative Review. J Clin Med 2024; 13:7131. [PMID: 39685591 DOI: 10.3390/jcm13237131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Modern oncology increasingly relies on the role of proteins as key components in cancer diagnosis, prognosis, and targeted therapy. This review examines advancements in protein biomarkers across several cancer types, including breast cancer, lung cancer, ovarian cancer, and hepatocellular carcinoma. These biomarkers have proven critical for early detection, treatment response monitoring, and tailoring personalized therapeutic strategies. The article highlights the utility of targeted therapies, such as tyrosine kinase inhibitors and monoclonal antibodies, in improving treatment efficacy while minimizing systemic toxicity. Despite these advancements, challenges like tumor resistance, variability in protein expression, and diagnostic heterogeneity persist, complicating universal application. The review underscores future directions, including the integration of artificial intelligence, advanced protein analysis technologies, and the development of combination therapies to overcome these barriers and refine personalized cancer treatment.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 90-549 Lodz, Poland
| | - Magdalena Bańkosz
- CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Material Engineering, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland
| |
Collapse
|
2
|
Fowler H, Clifford RE, Bowden D, Sutton PA, Govindarajah N, Fok M, Glenn M, Wall M, Rubbi C, Buczacki SJA, Mandal A, Francies H, Hughes J, Parsons JL, Vimalachandran D. Myoferlin: A Potential Marker of Response to Radiation Therapy and Survival in Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys 2024; 120:1111-1123. [PMID: 38866213 DOI: 10.1016/j.ijrobp.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Patients with locally advanced rectal cancer often require neoadjuvant chemoradiation therapy to downstage the disease, but the response is variable with no predictive biomarkers. We have previously revealed through proteomic profiling that myoferlin is associated with response to radiation therapy. The aims of this study were to further validate this finding and explore the potential for myoferlin to act as a prognostic and/or therapeutic target. METHODS AND MATERIALS Immunohistochemical analysis of a tissue microarray (TMA) for 111 patients was used to validate the initial proteomic findings. Manipulation of myoferlin was achieved using small interfering RNA, a small molecular inhibitor (wj460), and a CRISPR-Cas9 knockout cell line. Radiosensitization after treatment was assessed using 2-dimensional clonogenic assays, 3-dimensional spheroid models, and patient-derived organoids. Underlying mechanisms were investigated using electrophoresis, immunofluorescence, and immunoblotting. RESULTS Analysis of both the diagnostic biopsy and tumor resection samples confirmed that low myoferlin expression correlated with a good response to neoadjuvant long-course chemoradiation therapy. High myoferlin expression was associated with spread to local lymph nodes and worse 5-year survival (P = .01; hazard ratio, 3.5; 95% CI, 1.27-10.04). This was externally validated using the Stratification in Colorectal Cancer database. Quantification of myoferlin using immunoblotting in immortalized colorectal cancer cell lines and organoids demonstrated that high myoferlin expression was associated with increased radioresistance. Biological and pharmacologic manipulation of myoferlin resulted in significantly increased radiosensitivity across all cell lines in 2-dimensional and 3-dimensional models. After irradiation, myoferlin knockdown cells had a significantly impaired ability to repair DNA double-strand breaks. This appeared to be mediated via nonhomologous end-joining. CONCLUSIONS We have confirmed that high expression of myoferlin in rectal cancer is associated with poor response to neoadjuvant therapy and worse long-term survival. Furthermore, the manipulation of myoferlin led to increased radiosensitivity in vitro. This suggests that myoferlin could be targeted to enhance the sensitivity of patients with rectal cancer to radiation therapy, and further work is required.
Collapse
Affiliation(s)
- Hayley Fowler
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom.
| | - Rachael E Clifford
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - David Bowden
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom
| | - Paul A Sutton
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Naren Govindarajah
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Matthew Fok
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Michael Wall
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom
| | - Carlos Rubbi
- Faculty of Health, Social Care & Medicine, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4QP
| | - Simon J A Buczacki
- Nuffield Department of Surgical Sciences (NDS), University of Oxford, Oxford, United Kingdom
| | - Amit Mandal
- Nuffield Department of Surgical Sciences (NDS), University of Oxford, Oxford, United Kingdom
| | - Hayley Francies
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Hughes
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jason L Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dale Vimalachandran
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| |
Collapse
|
3
|
Chen H, Fang Y, Dai S, Jiang K, Shen L, Zhao J, Huang K, Zhou X, Ding K. Characterization and proteomic analysis of plasma-derived small extracellular vesicles in locally advanced rectal cancer patients. Cell Oncol (Dordr) 2024; 47:1995-2009. [PMID: 39162991 DOI: 10.1007/s13402-024-00983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (nCRT) stands as a pivotal therapeutic approach for locally advanced rectal cancer (LARC), yet the absence of a reliable biomarker to forecast its efficacy remains a challenge. Thus, this study aimed to assess whether the proteomic compositions of small extracellular vesicles (sEVs) might offer predictive insights into nCRT response among patients with LARC, while also delving into the proteomic alterations within sEVs post nCRT. METHODS Plasma samples were obtained from LARC patients both pre- and post-nCRT. Plasma-derived sEVs were isolated utilizing the TIO2-based method, followed by LC-MS/MS-based proteomic analysis. Subsequently, pathway enrichment analysis was performed to the Differentially Expressed Proteins (DEPs). Additionally, ROC curves were generated to evaluate the predictive potential of sEV proteins in determining nCRT response. Public databases were interrogated to identify sEV protein-associated genes that are correlated with the response to nCRT in LARC. RESULTS A total of 16 patients were enrolled. Among them, 8 patients achieved a pathological complete response (good responders, GR), while the remaining 8 did not achieve a complete response (poor responders, PR). Our analysis of pretreatment plasma-derived sEVs revealed 67 significantly up-regulated DEPs and 9 significantly down-regulated DEPs. Notably, PROC (AUC: 0.922), F7 (AUC: 0.953) and AZU1 (AUC: 0.906) demonstrated high AUC values and significant differences (P value < 0.05) in discriminating between GR and PR patients. Furthermore, a signature consisting of 5 sEV protein-associated genes (S100A6, ENO1, MIF, PRDX6 and MYL6) was capable of predicting the response to nCRT, yielding an AUC of 0.621(95% CI: 0.454-0.788). Besides, this 5-sEV protein-associated gene signature enabled stratification of patients into low- and high-risk group, with the low-risk group demonstrating a longer overall survival in the testing set (P = 0.048). Moreover, our investigation identified 11 significantly up-regulated DEPs and 31 significantly down-regulated DEPs when comparing pre- and post-nCRT proteomic profiles. GO analysis unveiled enrichment in the regulation of phospholipase A2 activity. CONCLUSIONS Differential expression of sEV proteins distinguishes between GR and PR patients and holds promise as predictive markers for nCRT response and prognosis in patients with LARC. Furthermore, our findings highlight substantial alterations in sEV protein composition following nCRT.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
- Anhui Hospital of the Second Affiliated Hospital, Zhejiang University School of Medicine, Bengbu, 233000, China.
| | - Yimin Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siqi Dai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Shen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Zhao
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Hospital of the Second Affiliated Hospital, Zhejiang University School of Medicine, Bengbu, 233000, China
| | - Kanghua Huang
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhou
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
6
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
7
|
Garcia-Flores LA, Dawid De Vera MT, Pilo J, Rego A, Gomez-Casado G, Arranz-Salas I, Hierro Martín I, Alcaide J, Torres E, Ortega-Gomez A, Boughanem H, Macias-Gonzalez M. Increased neutrophil counts are associated with poor overall survival in patients with colorectal cancer: a five-year retrospective analysis. Front Immunol 2024; 15:1415804. [PMID: 39376564 PMCID: PMC11456424 DOI: 10.3389/fimmu.2024.1415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Background Colorectal cancer (CRC) continues to be a major health concern in today's world. Despite conflictive findings, evidence supports systemic inflammation's impact on CRC patients' survival rates. Therefore, this study aims to assess the prognostic role of the innate immune system in patients with CRC. Method A total of 449 patients were included, with a 5-year follow-up period, and absolute neutrophil counts and their related ratios were measured. Results The non-survival group had increased levels of white blood cells, neutrophils (both p<0.001), and monocytes (p=0.038), compared to the survival group, along with other neutrophil-related ratios. We observed increased mortality risk in patients in the highest tertile of white blood cells [HR=1.85 (1.09-3.13), p<0.05], neutrophils [HR=1.78 (95% CI: 1.07-2.96), p<0.05], and monocytes [HR=2.11 (95% CI: 1.22-3.63)], compared to the lowest tertile, after adjusting for all clinicopathological variables. Random forest analysis identified neutrophils as the most crucial variable in predicting survival rates, having an AUC of 0.712, considering all clinicopathological variables. A positive relationship between neutrophil counts and metastasis was observed when neutrophil counts are considered continuous (β=0.92 (0.41), p<0.05) and tumor size (width) when neutrophils were considered as logistic variable (T1 vs T3) [OR=1.42, (95% CI: 1.05-1.98), p<0.05]. Conclusion This study offers comprehensive insights into the immune factors that impact the prognosis of CRC, emphasizing the need for personalized prognostic tools.
Collapse
Affiliation(s)
- Libia Alejandra Garcia-Flores
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, Málaga, Spain
| | - María Teresa Dawid De Vera
- Unidad de Gestión Clínica Intercentros (UGCI) de Anatomía Patológica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Jesus Pilo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, Málaga, Spain
| | - Alejandro Rego
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, Málaga, Spain
| | - Gema Gomez-Casado
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, Málaga, Spain
| | - Isabel Arranz-Salas
- Unidad de Gestión Clínica Intercentros (UGCI) de Anatomía Patológica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Isabel Hierro Martín
- Unidad de Gestión Clínica Intercentros (UGCI) de Anatomía Patológica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Julia Alcaide
- Medical Oncology Service, Hospital Regional Universitario de Málaga, Biomedical Research Institute of Malaga (IBIMA), Málaga, Spain
| | - Esperanza Torres
- Unidad de Gestión Clínica Intercentros (UGCI) de Oncología Médica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Almudena Ortega-Gomez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofia, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA)-Bionand Platform, University of Malaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Ardizzone A, Bulzomì M, De Luca F, Silvestris N, Esposito E, Capra AP. Dihydropyrimidine Dehydrogenase Polymorphism c.2194G>A Screening Is a Useful Tool for Decreasing Gastrointestinal and Hematological Adverse Drug Reaction Risk in Fluoropyrimidine-Treated Patients. Curr Issues Mol Biol 2024; 46:9831-9843. [PMID: 39329936 PMCID: PMC11430620 DOI: 10.3390/cimb46090584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Although the risk of fluoropyrimidine toxicity may be decreased by identifying poor metabolizers with a preemptive dihydropyrimidine dehydrogenase (DPYD) test, following international standards, many patients with wild-type (WT) genotypes for classic variations may still exhibit adverse drug reactions (ADRs). Therefore, the safety of fluoropyrimidine therapy could be improved by identifying new DPYD polymorphisms associated with ADRs. This study was carried out to assess whether testing for the underestimated c.2194G>A (DPYD*6 polymorphism, rs1801160) is useful, in addition to other well-known variants, in reducing the risk of ADRs in patients undergoing chemotherapy treatment. This retrospective study included 132 patients treated with fluoropyrimidine-containing regimens who experienced ADRs such as gastrointestinal, dermatological, hematological, and neurological. All subjects were screened for DPYD variants DPYD2A (IVS14+1G>A, c.1905+1G>A, rs3918290), DPYD13 (c.1679T>G, rs55886062), c.2846A>T (rs67376798), c.1236G>A (rs56038477), and c.2194G>A by real-time polymerase chain reaction (RT-PCR). In this cohort, the heterozygous c.2194G>A variant was present in 26 patients, while 106 individuals were WT; both subgroups were compared for the incidence of ADRs. This assessment revealed a high incidence of gastrointestinal and hematological ADRs in DPYD6 carriers compared to WT. Moreover, we have shown a higher prevalence of ADRs in females compared to males when stratifying c.2194G>A carrier individuals. Considering that c.2194G>A was linked to clinically relevant ADRs, we suggest that this variant should also be assessed preventively to reduce the risk of fluoropyrimidine-related ADRs.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Maria Bulzomì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
- Genetics and Pharmacogenetics Unit, “Gaetano Martino” University Hospital, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.A.); (M.B.); (F.D.L.); (A.P.C.)
| |
Collapse
|
9
|
Mirlohi MS, Pishbin E, Dezhkam R, Kiani MJ, Shamloo A, Salami S. Innovative PNA-LB mediated allele-specific LAMP for KRAS mutation profiling on a compact lab-on-a-disc device. Talanta 2024; 276:126224. [PMID: 38772176 DOI: 10.1016/j.talanta.2024.126224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Tailored healthcare, an approach focused on individual patients, requires integrating emerging interdisciplinary technologies to develop accurate and user-friendly diagnostic tools. KRAS mutations, prevalent in various common cancers, are crucial determinants in selecting patients for novel KRAS inhibitor therapies. This study presents a novel state-of-the-art Lab-on-a-Disc system utilizing peptide nucleic acids-loop backward (PNA-LB) mediated allele-specific loop-mediated isothermal amplification (LAMP) for detecting the frequent G12D KRAS mutation, signifying its superiority over alternative mutation detection approaches. The designed Lab-on-a-Disc system demonstrated exceptional preclinical and technical precision, accuracy, and versatility. By applying varying cutoff values to PNA- LB LAMP reactions, the assay's sensitivity and specificity were increased by 80 % and 90 %, respectively. The device's key advantages include a robust microfluidic Lab-on-a-Disc design, precise rotary control, and a cutting-edge induction heating module. These features enable multiplexing of LAMP reactions with high reproducibility and repeatability, with CV% values less than 3.5 % and 5.5 %, respectively. The device offers several methods for accurate endpoint result detection, including naked-eye observation, RGB image analysis using Python code, and time of fluorescence (Tf) values. Preclinical specificity and sensitivity, assessed using different cutoffs for Eva-Green fluorescence Tf values and pH-sensitive dyes, demonstrated comparable performance to the best standard methods. Overall, this study represents a significant step towards tailoring treatment strategies for cancer patients through precise and efficient mutation detection technologies.
Collapse
Affiliation(s)
- Maryam Sadat Mirlohi
- Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| | - Rasool Dezhkam
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mohammad Javad Kiani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Siamak Salami
- Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ilie-Petrov AC, Cristian DA, Grama FA, Chitul A, Blajin A, Popa A, Mandi DM, Welt L, Bara MA, Vrîncianu R, Ardeleanu CM. Evaluation of the Immunohistochemical Scoring System of CDX2 Expression as a Prognostic Biomarker in Colon Cancer. Diagnostics (Basel) 2024; 14:1023. [PMID: 38786321 PMCID: PMC11119288 DOI: 10.3390/diagnostics14101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Encoded by the CDX2 homeobox gene, the CDX2 protein assumes the role of a pivotal transcription factor localized within the nucleus of intestinal epithelial cells, orchestrating the delicate equilibrium of intestinal physiology while intricately guiding the precise development and differentiation of epithelial tissue. Emerging research has unveiled that positive immunohistochemical expression of this protein shows that the CDX2 gene exerts a potent suppressive impact on tumor advancement in colorectal cancer, impeding the proliferation and distant dissemination of tumor cells, while the inhibition or suppression of CDX2 frequently correlates with aggressive behavior in colorectal cancer. In this study, we conducted an immunohistochemical assessment of CDX2 expression on a cohort of 43 intraoperatively obtained tumor specimens from patients diagnosed with colon cancer at Colțea Clinical Hospital in Bucharest, between April 2019 and December 2023. Additionally, we shed light on the morphological diversity within colon tumors, uncovering varying differentiation grades within the same tumor, reflecting the variations in CDX2 expression as well as the genetic complexity underlying these tumors. Based on the findings, we developed an innovative immunohistochemical scoring system that addresses the heterogeneous nature of colon tumors. Comprehensive statistical analysis of CDX2 immunohistochemical expression unveiled significant correlations with known histopathological parameters such as tumor differentiation grades (p-value = 0.011) and tumor budding score (p-value = 0.002), providing intriguing insights into the complex involvement of the CDX2 gene in orchestrating tumor progression through modulation of differentiation processes, and highlighting its role in metastatic predisposition. The compelling correlation identified between CDX2 expression and conventional histopathological parameters emphasizes the prognostic significance of the CDX2 biomarker in colon cancer. Moreover, our novel immunohistochemical scoring system reveals a distinct subset of colon tumors exhibiting reserved prognostic outcomes, distinguished by their "mosaic" CDX2 expression pattern.
Collapse
Affiliation(s)
- Andreea-Corina Ilie-Petrov
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Daniel-Alin Cristian
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Florin Andrei Grama
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Andrei Chitul
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Angela Blajin
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Andrei Popa
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Draga-Maria Mandi
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Luminița Welt
- Pathology Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (L.W.); (M.A.B.)
| | - Marina Alina Bara
- Pathology Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (L.W.); (M.A.B.)
| | - Rareș Vrîncianu
- Medical Oncology Department, Colțea Clinical Hospital, 030171 Bucharest, Romania;
| | - Carmen Maria Ardeleanu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Pathology Department, OncoTeam Diagnostic Laboratory, 010719 Bucharest, Romania
| |
Collapse
|
11
|
Kasprzak A. Prognostic Biomarkers of Cell Proliferation in Colorectal Cancer (CRC): From Immunohistochemistry to Molecular Biology Techniques. Cancers (Basel) 2023; 15:4570. [PMID: 37760539 PMCID: PMC10526446 DOI: 10.3390/cancers15184570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide. Recent advances in diagnostic methods allow for more accurate identification and detection of several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Furthermore, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers, the prognostic value regarding the patients' overall survival (OS) or disease-free survival (DFS) has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited to replenish the rapidly proliferating population in response to cell-damaging factors. Considering the above, the aim of this article is to review the most common proliferative markers assessed using various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive markers in CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
12
|
Kortüm B, Radhakrishnan H, Zincke F, Sachse C, Burock S, Keilholz U, Dahlmann M, Walther W, Dittmar G, Kobelt D, Stein U. Combinatorial treatment with statins and niclosamide prevents CRC dissemination by unhinging the MACC1-β-catenin-S100A4 axis of metastasis. Oncogene 2022; 41:4446-4458. [PMID: 36008464 PMCID: PMC9507965 DOI: 10.1038/s41388-022-02407-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Colorectal cancer (CRC) is the second-most common malignant disease worldwide, and metastasis is the main culprit of CRC-related death. Metachronous metastases remain to be an unpredictable, unpreventable, and fatal complication, and tracing the molecular chain of events that lead to metastasis would provide mechanistically linked biomarkers for the maintenance of remission in CRC patients after curative treatment. We hypothesized, that Metastasis-associated in colorectal cancer-1 (MACC1) induces a secretory phenotype to enforce metastasis in a paracrine manner, and found, that the cell-free culture medium of MACC1-expressing CRC cells induces migration. Stable isotope labeling by amino acids in cell culture mass spectrometry (SILAC-MS) of the medium revealed, that S100A4 is significantly enriched in the MACC1-specific secretome. Remarkably, both biomarkers correlate in expression data of independent cohorts as well as within CRC tumor sections. Furthermore, combined elevated transcript levels of the metastasis genes MACC1 and S100A4 in primary tumors and in blood plasma robustly identifies CRC patients at high risk for poor metastasis-free (MFS) and overall survival (OS). Mechanistically, MACC1 strengthens the interaction of β-catenin with TCF4, thus inducing S100A4 synthesis transcriptionally, resulting in elevated secretion to enforce cell motility and metastasis. In cell motility assays, S100A4 was indispensable for MACC1-induced migration, as shown via knock-out and pharmacological inhibition of S100A4. The direct transcriptional and functional relationship of MACC1 and S100A4 was probed by combined targeting with repositioned drugs. In fact, the MACC1-β-catenin-S100A4 axis by statins (MACC1) and niclosamide (S100A4) synergized in inhibiting cancer cell motility in vitro and metastasis in vivo. The MACC1-β-catenin-S100A4 signaling axis is causal for CRC metastasis. Selectively repositioned drugs synergize in restricting MACC1/S100A4-driven metastasis with cross-entity potential.
Collapse
Affiliation(s)
- Benedikt Kortüm
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Harikrishnan Radhakrishnan
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Fabian Zincke
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Susen Burock
- Charité University Hospital Berlin Centre 10 Charite Comprehensive Cancer Center, Berlin, Germany
| | - Ulrich Keilholz
- Charité University Hospital Berlin Centre 10 Charite Comprehensive Cancer Center, Berlin, Germany
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
13
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Chen H, Wu Z, Gong Z, Xia Y, Li J, Du L, Zhang Y, Gao X, Fan Z, Hu H, Qian Q, Ding Z, Guo S. Acoustic Bioprinting of Patient-Derived Organoids for Predicting Cancer Therapy Responses. Adv Healthc Mater 2022; 11:e2102784. [PMID: 35358375 DOI: 10.1002/adhm.202102784] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/12/2022] [Indexed: 12/29/2022]
Abstract
Cancer models, which are biologically representative of patient tumors, can predict the treatment responses and help determine the most appropriate cancer treatment for individual patients. Here, a point-of-care testing system called acoustically bioprinted patient-derived microtissues (PDMs) that can model cancer invasion and predict treatment response in individual patients with colorectal cancer (CRC), is reported. The PDMs are composed of patient-derived colorectal tumors and healthy organoids which can be precisely arranged by acoustic bioprinting approach for recapulating primary tissue's architecture. Particularly, these tumor organoids can be efficiently generated and can apprehend histological, genomic, and phenotypical characteristics of primary tumors. Consequently, these PDMs allow physiologically relevant in vitro drug (5-fluorouracil) screens, thus predicting the paired patient's responses to chemotherapy. A correlation between organoid invasion speed and normalized spreading speed of the paired patients is further established. It provides a quantitative indicator to help doctors make better decisions on ultimate anus-preserving operation for extremely low CRC patients. Thus, by combing acoustic bioprinting and organoid cultures, this method may open an avenue to establish complex 3D tissue models for precision and personalized medicine.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhuhao Wu
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhiyi Gong
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yu Xia
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Juan Li
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Liang Du
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yuanzheng Zhang
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Xiangyang Gao
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhou Fan
- Department of Colorectal and Anal Surgery Hubei Key Laboratory of Intestinal and Colorectal Diseases Zhongnan Hospital of Wuhan University Wuhan 430072 China
| | - Hang Hu
- Department of Colorectal and Anal Surgery Hubei Key Laboratory of Intestinal and Colorectal Diseases Zhongnan Hospital of Wuhan University Wuhan 430072 China
| | - Qun Qian
- Department of Colorectal and Anal Surgery Hubei Key Laboratory of Intestinal and Colorectal Diseases Zhongnan Hospital of Wuhan University Wuhan 430072 China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery Hubei Key Laboratory of Intestinal and Colorectal Diseases Zhongnan Hospital of Wuhan University Wuhan 430072 China
| | - Shishang Guo
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
- Hubei Yangtze Memory Laboratories Wuhan 430205 China
| |
Collapse
|
15
|
Almaimani RA, Aslam A, Ahmad J, El-Readi MZ, El-Boshy ME, Abdelghany AH, Idris S, Alhadrami M, Althubiti M, Almasmoum HA, Ghaith MM, Elzubeir ME, Eid SY, Refaat B. In Vivo and In Vitro Enhanced Tumoricidal Effects of Metformin, Active Vitamin D 3, and 5-Fluorouracil Triple Therapy against Colon Cancer by Modulating the PI3K/Akt/PTEN/mTOR Network. Cancers (Basel) 2022; 14:1538. [PMID: 35326689 PMCID: PMC8946120 DOI: 10.3390/cancers14061538] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance to 5-fluorouracil (5-FU) is common during colorectal cancer (CRC) treatment. This study measured the chemotherapeutic effects of 5-FU, active vitamin D3 (VD3), and/or metformin single/dual/triple regimens as complementary/alternative therapies. Ninety male mice were divided into: negative and positive (PC) controls, and 5-FU, VD3, Met, 5-FU/VD3, 5-FU/Met, VD3/Met, and 5-FU/VD3/Met groups. Treatments lasted four weeks following CRC induction by azoxymethane. Similar regimens were also applied in the SW480 and SW620 CRC cell lines. The PC mice had abundant tumours, markedly elevated proliferation markers (survivin/CCND1) and PI3K/Akt/mTOR, and reduced p21/PTEN/cytochrome C/caspase-3 and apoptosis. All therapies reduced tumour numbers, with 5-FU/VD3/Met being the most efficacious regimen. All protocols decreased cell proliferation markers, inhibited PI3K/Akt/mTOR molecules, and increased proapoptotic molecules with an apoptosis index, and 5-FU/VD3/Met revealed the strongest effects. In vitro, all therapies equally induced G1 phase arrest in SW480 cells, whereas metformin-alone showed maximal SW620 cell numbers in the G0/G1 phase. 5-FU/Met co-therapy also showed the highest apoptotic SW480 cell numbers (13%), whilst 5-FU/VD3/Met disclosed the lowest viable SW620 cell percentages (81%). Moreover, 5-FU/VD3/Met revealed maximal inhibitions of cell cycle inducers (CCND1/CCND3), cell survival (BCL2), and the PI3K/Akt/mTOR molecules alongside the highest expression of cell cycle inhibitors (p21/p27), proapoptotic markers (BAX/cytochrome C/caspase-3), and PTEN in both cell lines. In conclusion, metformin monotherapy was superior to VD3, whereas the 5-FU/Met protocol showed better anticancer effects relative to the other dual therapies. However, the 5-FU/VD3/Met approach displayed the best in vivo and in vitro tumoricidal effects related to cell cycle arrest and apoptosis, justifiably by enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Riyad Adnan Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Mohamed E. El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelghany H. Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
- Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia;
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Hussain A. Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mazen M. Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mohamed E. Elzubeir
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| |
Collapse
|
16
|
Idris S, Refaat B, Almaimani RA, Ahmed HG, Ahmad J, Alhadrami M, El-Readi MZ, Elzubier ME, Alaufi HAA, Al-Amin B, Alghamdi AA, Bahwerth F, Minshawi F, Kabrah SM, Aslam A. Enhanced in vitro tumoricidal effects of 5-Fluorouracil, thymoquinone, and active vitamin D 3 triple therapy against colon cancer cells by attenuating the PI3K/AKT/mTOR pathway. Life Sci 2022; 296:120442. [PMID: 35245520 DOI: 10.1016/j.lfs.2022.120442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022]
Abstract
AIMS This study measured the effects of 5-Fluorouracil (5-FU), calcitriol (VD3), and/or thymoquinone (TQ) single/dual/triple therapies on cell cycle progression, apoptosis, inhibition of the PI3K/AKT/mTOR pathway, and oxidative stress against colorectal cancer (CRC). MAIN METHODS The HT29, SW480 and SW620 cell lines were treated with 5-FU (50 μM), VD3 (25 μM), and TQ (75 μM), alone or combined for 12 h, prior to cell cycle/apoptosis analyses. KEY FINDINGS TQ monotherapy had greater anticancer effects to active VD3 or 5-FU, revealing higher expression of p21/p27/PTEN/BAX/Cyto-C/Casp-3 and increased levels of total glutathione, with inhibitions in CCND1/CCND3/BCL-2 and PI3K/AKT/mTOR molecules, alongside higher rates of apoptosis in HT29, SW480 and SW620 cells (P < 0.005 for all markers). Additionally, all combination protocols revealed enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway, higher expression of p21/p27/PTEN/BAX/Cyto-C/Casp-3, and better anti-oxidant effects, than the monotherapies. Although TQ/5-FU and TQ/VD3 co-therapies were better relative to the VD3/5-FU regimen, the best tumoricidal effects were observed with triple therapy in the HT29 and SW480 cell lines, possibly by boosted attenuations of the PI3K/AKT/mTOR oncogenic pathway. In contrast, TQ single treatment was more effective than the triple therapy regimen in metastatic SW620 cells, suggesting that this protocol would be more useful therapeutically in late-stage CRC. SIGNIFICANCE In conclusion, this study is the first to demonstrated enhanced anti-tumorigenic effects for VD3, TQ, and 5-FU triple therapy against CRC cells and could represent the best strategy for treating early stages of malignancy, whereas TQ monotherapy could be a better approach for treating metastatic forms of the disease.
Collapse
Affiliation(s)
- Shakir Idris
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan; Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Hussain G Ahmed
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia; Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit, Egypt
| | - Mohamed E Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Haneen A A Alaufi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Pathology and Laboratory Medicine, Department of Anatomic Medicine, Prince Mohammed Bin Abdul Aziz Hospital, Madinah, Saudi Arabia
| | - Badriah Al-Amin
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ahmad A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Fayez Bahwerth
- Laboratory and Blood Bank Department, King Faisal Hospital, Makkah, Saudi Arabia
| | - Faisal Minshawi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Saeed M Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| |
Collapse
|
17
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
18
|
Huang X, Xu H, Zeng Y, Lan Q, Liu L, Lai W, Chu Z. Identification of a 3-gene signature for predicting the prognosis of stage II colon cancer based on microsatellite status. J Gastrointest Oncol 2022; 12:2749-2762. [PMID: 35070404 DOI: 10.21037/jgo-21-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/24/2021] [Indexed: 11/06/2022] Open
Abstract
Background Though colon cancer (CC) is one of the most malignant tumors across the world, CC patients with microsatellite instability-high (MSI-H) in stage II seem to have a better prognosis. However, the molecular mechanisms underlying the phenomena haven't been elucidated yet. Methods This study enrolled 322 CCs with known microsatellite status from GSE143985, GSE39582 and GSE92921 in the Gene Expression Omnibus (GEO) database. Robust rank aggregation (RRA) analysis, univariate Cox regression analysis and multivariate Cox stepwise regression analysis were performed to identify genes and construct risk score signature. Kaplan-Meier and receiver operating characteristic (ROC) curves analyses were used to evaluate the prognostic value of the signature. The potential mechanisms underlying this signature were assessed in the Metascape database, gene set enrichment analysis (GSEA) and immune infiltration analysis. Results RRA analysis identified 40 differently expressed genes (DEGs). A 3-gene risk score signature (MKQ signature) associated with disease-free survival (DFS) was generated. DFS was significantly longer in CC patients with lower than higher scores (P=0.0046). The areas under curves (AUCs) of the time-dependent ROC curves of MKQ signature at 1-, 3- and 5-year DFS were 1, 0.963 and 0.961 respectively. Recurrence-free survival (RFS) was significantly longer in patients in GSE39582 with lower than higher risk scores (P=0.032). The AUCs for 1-, 3- and 5-year RFS in GSE39582 were 0.63, 0.618 and 0.583, respectively, validating the value of the MKQ signature. Functional annotation and GSEA revealed that the MKQ signature was associated with multiple immune-related pathways. Immune cell infiltration was found to differ in patients differing in the MKQ signature. Conclusions Gene expression and microsatellite status identified a 3-gene signature (MKQ signature) that could facilitate risk-stratified management in patients with stage II CC. Dysregulation of MSMB, KRT23, and QPRT can serve as prognostic markers in stage II CC.
Collapse
Affiliation(s)
- Xiangxiong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Heyang Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiusheng Lan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhonghua Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Mahbub AA, Aslam A, Elzubier ME, El-Boshy M, Abdelghany AH, Ahmad J, Idris S, Almaimani R, Alsaegh A, El-Readi MZ, Baghdadi MA, Refaat B. Enhanced anti-cancer effects of oestrogen and progesterone co-therapy against colorectal cancer in males. Front Endocrinol (Lausanne) 2022; 13:941834. [PMID: 36263327 PMCID: PMC9574067 DOI: 10.3389/fendo.2022.941834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Although ovarian sex steroids could have protective roles against colorectal cancer (CRC) in women, little is currently known about their potential anti-tumorigenic effects in men. Hence, this study measured the therapeutic effects of 17β-oestradiol (E2) and/or progesterone (P4) against azoxymethane-induced CRC in male mice that were divided into (n = 10 mice/group): negative (NC) and positive (PC) controls, E2 (580 µg/Kg/day; five times/week) and P4 (2.9 mg/Kg/day; five times/week) monotherapies, and concurrent (EP) and sequential (E/P) co-therapy groups. Both hormones were injected intraperitoneally to the designated groups for four consecutive weeks. Similar treatment protocols with E2 (10 nM) and/or P4 (20 nM) were also used in the SW480 and SW620 human male CRC cell lines. The PC group showed abundant colonic tumours alongside increased colonic tissue testosterone levels and androgen (AR) and oestrogen (ERα) receptors, whereas E2 and P4 levels with ERβ and progesterone receptor (PGR) decreased significantly compared with the NC group. E2 and P4 monotherapies equally increased ERβ/PGR with p21/Cytochrome-C/Caspase-3, reduced testosterone levels, inhibited ERα/AR and CCND1/survivin and promoted apoptosis relative to the PC group. Both co-therapy protocols also revealed better anti-cancer effects with enhanced modulation of colonic sex steroid hormones and their receptors, with E/P the most prominent protocol. In vitro, E/P regimen showed the highest increases in the numbers of SW480 (2.1-fold) and SW620 (3.5-fold) cells in Sub-G1 phase of cell cycle. The E/P co-therapy also disclosed the lowest percentages of viable SW480 cells (2.8-fold), whilst both co-therapy protocols equally showed the greatest SW620 apoptotic cell numbers (5.2-fold) relative to untreated cells. Moreover, both co-therapy regimens revealed maximal inhibitions of cell cycle inducers, cell survival markers, and AR/ERα alongside the highest expression of cell cycle suppressors, pro-apoptotic molecules, and ERβ/PGR in both cell lines. In conclusion, CRC was associated with abnormal levels of colonic sex steroid hormones alongside aberrant protein expression of their receptors. While the anti-cancer effects of E2 and P4 monotherapies were equal, their combination protocols showed boosted tumoricidal actions against CRC in males, possibly by promoting ERβ and PGR-mediated androgen deprivation together with inhibition of ERα-regulated oncogenic pathways.
Collapse
Affiliation(s)
- Amani A. Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed E. Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Biochemistry Department, Faculty of Medicine and Surgery, National University, Khartoum, Sudan
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelghany H. Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aiman Alsaegh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit, Egypt
| | - Mohammed A. Baghdadi
- Research Centre, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- *Correspondence: Bassem Refaat, ;
| |
Collapse
|
20
|
Zhu G, Wang Y, Wang W, Shang F, Pei B, Zhao Y, Kong D, Fan Z. Untargeted GC-MS-Based Metabolomics for Early Detection of Colorectal Cancer. Front Oncol 2021; 11:729512. [PMID: 34804922 PMCID: PMC8599589 DOI: 10.3389/fonc.2021.729512] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers in the world with a 5-year survival rate of approximately 68%. Although researchers accumulated many scientific studies, its pathogenesis remains unclear yet. Detecting and removing these malignant polyps promptly is the most effective method in CRC prevention. Therefore, the analysis and disposal of malignant polyps is conducive to preventing CRC. METHODS In the study, metabolic profiling as well as diagnostic biomarkers for CRC was investigated using untargeted GC-MS-based metabolomics methods to explore the intervention approaches. In order to better characterize the variations of tissue and serum metabolic profiles, orthogonal partial least-square discriminant analysis was carried out to further identify significant features. The key differences in tR-m/z pairs were screened by the S-plot and VIP value from OPLS-DA. Identified potential biomarkers were leading in the KEGG in finding interactions, which show the relationships among these signal pathways. RESULTS Finally, 17 tissue and 13 serum candidate ions were selected based on their corresponding retention time, p-value, m/z, and VIP value. Simultaneously, the most influential pathways contributing to CRC were inositol phosphate metabolism, primary bile acid biosynthesis, phosphatidylinositol signaling system, and linoleic acid metabolism. CONCLUSIONS The preliminary results suggest that the GC-MS-based method coupled with the pattern recognition method and understanding these cancer-specific alterations could make it possible to detect CRC early and aid in the development of additional treatments for the disease, leading to improvements in CRC patients' quality of life.
Collapse
Affiliation(s)
- Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Wang
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wang Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Shang
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Pei
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhimin Fan
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Chowdhury S, Hofree M, Lin K, Maru D, Kopetz S, Shen JP. Implications of Intratumor Heterogeneity on Consensus Molecular Subtype (CMS) in Colorectal Cancer. Cancers (Basel) 2021; 13:4923. [PMID: 34638407 PMCID: PMC8507736 DOI: 10.3390/cancers13194923] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
The implications of intratumor heterogeneity on the four consensus molecular subtypes (CMS) of colorectal cancer (CRC) are not well known. Here, we use single-cell RNA sequencing (scRNASeq) to build an algorithm to assign CMS classification to individual cells, which we use to explore the distributions of CMSs in tumor and non-tumor cells. A dataset of colorectal tumors with bulk RNAseq (n = 3232) was used to identify CMS specific-marker gene sets. These gene sets were then applied to a discovery dataset of scRNASeq profiles (n = 10) to develop an algorithm for single-cell CMS (scCMS) assignment, which recapitulated the intrinsic biology of all four CMSs. The single-cell CMS assignment algorithm was used to explore the scRNASeq profiles of two prospective CRC tumors with mixed CMS via bulk sequencing. We find that every CRC tumor contains individual cells of each scCMS, as well as many individual cells that have enrichment for features of more than one scCMS (called mixed cells). scCMS4 and scCMS1 cells dominate stroma and immune cell clusters, respectively, but account for less than 3% epithelial cells. These data imply that CMS1 and CMS4 are driven by the transcriptomic contribution of immune and stromal cells, respectively, not tumor cells.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| |
Collapse
|
22
|
Shi C, Zhang S, Guo C, Tie J. Yap-Hippo Signaling Activates Mitochondrial Protection and Sustains Breast Cancer Viability under Hypoxic Stress. JOURNAL OF ONCOLOGY 2021; 2021:5212721. [PMID: 34567116 PMCID: PMC8463197 DOI: 10.1155/2021/5212721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Yes-associated protein (Yap) is a transcriptional regulator that upregulates oncogenes and downregulates tumor repressor genes. In this study, we analyzed protein expression, RNA transcription, and signaling pathways to determine the function and mechanism of Yap in breast cancer survival during hypoxic stress. Yap transcription was drastically upregulated by hypoxia in a time-dependent manner. siRNA-mediated Yap knockdown attenuated breast cancer viability and impaired cell proliferation under hypoxic conditions. Yap knockdown induced mitochondrial stress, including mitochondrial membrane potential reduction, mitochondrial oxidative stress, and ATP exhaustion after exposure to hypoxia. It also repressed mitochondrial protective systems, including mitophagy and mitochondrial fusion upon exposure to hypoxia. Finally, our data showed that Yap knockdown suppresses MCF-7 cell migration by inhibiting F-actin transcription and promoting lamellipodium degradation under hypoxic stress. Taken together, Yap maintenance of mitochondrial function and activation of F-actin/lamellipodium signaling is required for breast cancer survival, migration, and proliferation under hypoxic stress.
Collapse
Affiliation(s)
- Chen Shi
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Siyuan Zhang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Changkuo Guo
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jian Tie
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
23
|
Guo X, Liang X, Wang Y, Cheng A, Qin C, Zhang H, Wang Z. Construction and Comprehensive Prognostic Analysis of a lncRNA-miRNA-mRNA Regulatory Network and Tumor Immune Cell Infiltration in Colorectal Cancer. Front Genet 2021; 12:652601. [PMID: 34276767 PMCID: PMC8281064 DOI: 10.3389/fgene.2021.652601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with high morbidity and mortality worldwide. Recent studies have shown that long noncoding RNAs (lncRNAs) play an important role in almost all human tumors, including CRC. Competitive endogenous RNA (ceRNA) regulatory networks have become hot topics in cancer research. Tumor-infiltrating immune cells (TICs) have also been reported to be closely related to the survival and prognosis of CRC patients. In this study, we used the lncRNA–miRNA–mRNA regulatory network combined with tumor immune cell infiltration to predict the survival and prognosis of 598 CRC patients. First, we downloaded the lncRNA, mRNA, and miRNA transcriptome data of CRC patients from The Cancer Genome Atlas (TCGA) database and identified differentially expressed genes through “limma” package of R software. The ceRNA regulatory network was established by using the “GDCRNATools” R package. Then, univariate Cox analysis and least absolute shrinkage and selection operator analysis were performed to identify the optimal prognostic network nodes, including SRPX, UST, H19, SNHG7, hsa-miR-29b-3p, and TTYH3. Next, we analyzed the differences in 22 types of TICs between 58 normal subjects and 206 CRC patients and included memory CD4 T cells, dendritic cells and neutrophils in the construction of a prognostic model. Finally, we identified the relationship between the ceRNA prognostic model and the infiltrating immune cell prognostic model. In conclusion, we constructed two prognostic models that provide insights on the prognosis and treatment strategy of CRC.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujun Wang
- Department of Pathology, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Anqi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Han Zhang
- Department of Digestive Oncology, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
25
|
Ye P, Cai P, Xie J, Wei Y. The diagnostic accuracy of digital PCR, ARMS and NGS for detecting KRAS mutation in cell-free DNA of patients with colorectal cancer: A systematic review and meta-analysis. PLoS One 2021; 16:e0248775. [PMID: 33770081 PMCID: PMC7997033 DOI: 10.1371/journal.pone.0248775] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Before anti-EGFR therapy is given to patients with colorectal cancer, it is required to determine KRAS mutation status in tumor. When tumor tissue is not available, cell-free DNA (liquid biopsy) is commonly used as an alternative. Due to the low abundance of tumor-derived DNA in cell-free DNA samples, methods with high sensitivity were preferred, including digital polymerase chain reaction, amplification refractory mutation system and next-generation sequencing. The aim of this systemic review and meta-analysis was to investigate the accuracy of those methods in detecting KRAS mutation in cell-free DNA sample from patients with colorectal cancer. Methods Literature search was performed in Pubmed, Embase, and Cochrane Library. After removing duplicates from the 170 publications found by literature search, eligible studies were identified using pre-defined criteria. Quality of the publications and relevant data were assessed and extracted thereafter. Meta-DiSc and STATA softwares were used to pool the accuracy parameters from the extracted data. Results A total of 33 eligible studies were identified for this systemic review and meta-analysis. After pooling, the overall sensitivity, specificity, and diagnostic odds ratio were 0.77 (95%CI: 0.74–0.79), 0.87 (95%CI: 0.85–0.89), and 23.96 (95%CI: 13.72–41.84), respectively. The overall positive and negative likelihood ratios were 5.55 (95%CI: 3.76–8.19) and 0.29 (95%CI: 0.21–0.38), respectively. Area under curve of the summarized ROC curve was 0.8992. Conclusion Digital polymerase chain reaction, amplification refractory mutation system, and next-generation sequencing had overall high accuracy in detecting KRAS mutation in cell-free DNA sample. Large prospective randomized clinical trials are needed to further convince the accuracy and usefulness of KRAS mutation detection using cfDNA/liquid biopsy samples in clinical practice. Trial registration PROSPERO CRD42020176682; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=176682.
Collapse
Affiliation(s)
- Peng Ye
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (PY); (YW)
| | - Peiling Cai
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jing Xie
- Department of Pathology and Clinical Laboratory, Sichuan Provincial Fourth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Yuanyuan Wei
- Department of Physiology, School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (PY); (YW)
| |
Collapse
|
26
|
Ferlizza E, Solmi R, Sgarzi M, Ricciardiello L, Lauriola M. The Roadmap of Colorectal Cancer Screening. Cancers (Basel) 2021; 13:1101. [PMID: 33806465 PMCID: PMC7961708 DOI: 10.3390/cancers13051101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common form of cancer in terms of incidence and the second in terms of mortality worldwide. CRC develops over several years, thus highlighting the importance of early diagnosis. National screening programs based on fecal occult blood tests and subsequent colonoscopy have reduced the incidence and mortality, however improvements are needed since the participation rate remains low and the tests present a high number of false positive results. This review provides an overview of the CRC screening globally and the state of the art in approaches aimed at improving accuracy and participation in CRC screening, also considering the need for gender and age differentiation. New fecal tests and biomarkers such as DNA methylation, mutation or integrity, proteins and microRNAs are explored, including recent investigations into fecal microbiota. Liquid biopsy approaches, involving novel biomarkers and panels, such as circulating mRNA, micro- and long-non-coding RNA, DNA, proteins and extracellular vesicles are discussed. The approaches reported are based on quantitative PCR methods that could be easily applied to routine screening, or arrays and sequencing assays that should be better exploited to describe and identify candidate biomarkers in blood samples.
Collapse
Affiliation(s)
- Enea Ferlizza
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (R.S.); (M.S); (M.L.)
| | - Rossella Solmi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (R.S.); (M.S); (M.L.)
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (R.S.); (M.S); (M.L.)
| | - Luigi Ricciardiello
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (R.S.); (M.S); (M.L.)
| |
Collapse
|
27
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
28
|
Personalized Medicine: Recent Progress in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13020242. [PMID: 33440729 PMCID: PMC7826530 DOI: 10.3390/cancers13020242] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
|
29
|
Aslam A, Ahmad J, Baghdadi MA, Idris S, Almaimani R, Alsaegh A, Alhadrami M, Refaat B. Chemopreventive effects of vitamin D 3 and its analogue, paricalcitol, in combination with 5-fluorouracil against colorectal cancer: The role of calcium signalling molecules. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166040. [PMID: 33338596 DOI: 10.1016/j.bbadis.2020.166040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/07/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although vitamin D (VD) is chemoprotective and enhances 5-fluorouracil (5-FU) cytotoxicity against colorectal cancer (CRC), little is known about its potential calcium (Ca2+)-mediated anti-tumorigenic actions. Therefore, this study compared between VD and its non-calcaemic analogue, Paricalcitol (Pcal), ± 5-FU in relation to chemoprevention and Ca2+-mediated apoptosis in vivo and in vitro. METHODS Seventy male mice were distributed to: negative controls, positive controls (PC), VD, Pcal, 5-FU, VD + 5-FU and Pcal+5-FU groups. All groups, except negative, received two consecutive azoxymethane (AOM)-injections (10 mg/Kg/week) for CRC induction. VD3 (1000 IU/kg; three times/week) and Pcal (1.25 μg/kg; three times/week) injections started week-16 post-AOM and for 10 weeks. Three successive 5-FU cycles began at week-21 (50 mg/Kg/week). Similar protocols with VD3, Pcal and/or 5-FU were applied in the HT29 colon cancer cells. RESULTS The PC group had abundant malignant tumours, markedly elevated proliferation markers (survivin/CCND1) and declines in cyclin-dependent kinase-inhibitor-1A, pro-apoptotic molecules (p53/BAX/cytochrome_C/caspase-3), tissue Ca2+ concentrations and Ca2+-dependent proteins (CaSR/CAM/CAMKIIA). All monotherapies equally reduced tumour numbers and proliferation markers whilst promoting the anti-tumorigenic molecules. VD and/or 5-FU, but not Pcal monotherapy, enhanced Ca2+ levels and Ca2+-related molecules (CaSR/CAM/CAMKIIA/BAX/cytochrome_C) in vivo and in vitro. However, VD + 5-FU co-therapy showed the lowest tumour numbers, the highest cell numbers in sub-G1 phase of cell cycle, alongside the most effective modulations of oncogenes, tumour suppressors and Ca2+-related molecules at the gene and protein levels in vivo and in vitro. CONCLUSIONS VD3 was superior than Paricalcitol in potentiating 5-FU cytotoxicity, possibly by upregulating several Ca2+-related molecules involved in tumour suppression.
Collapse
Affiliation(s)
- Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | | | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Riyad Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Aiman Alsaegh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| |
Collapse
|
30
|
Wang X, Wang J, Wu J. Emerging roles for HMGA2 in colorectal cancer. Transl Oncol 2020; 14:100894. [PMID: 33069103 PMCID: PMC7563012 DOI: 10.1016/j.tranon.2020.100894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
HMGA2 (High Mobility Group AT-hook 2) has been reported to promote colorectal cancer (CRC) development by regulating the transcription of target genes. It participates in nearly all aspects of cellular processes, including cell transformation, proliferation, apoptosis, senescence, metastasis, epithelial-to-mesenchymal transition (EMT), DNA repair and stem cell self-renewal. In the past decades, a group of downstream targets and binding partners have been identified in a wide range of cancers. Our findings of HMGA2 as a key factor in the MDM2/p53, IL11/STAT3 and Wnt/β-catenin signaling pathways prompt us to summarize current advances in the functional and molecular basis of HMGA2 in CRC. In this review, we address the roles of HMGA2 in the oncogenic networks of CRC based on recent advances. We review its aberrant expression, explore underlying mechanisms, discuss its pro-tumorigenic effects, and highlight promising small-molecule inhibitors based on targeting HMGA2 here. However, the understanding of HMGA2 in CRC progression is still elusive, thus we also discuss the future perspectives in this review. Collectively, this review provides novel insights into the oncogenic properties of HMGA2, which has potential implications in the diagnosis and treatment of CRC. HMGA2 promotes colorectal cancer (CRC) development by regulating the transcriptions of target genes. Circulating cell-free HMGA2 mRNA has been identified as a potential screening marker in CRC. HMGA2 appears to be a key factor in the networks of MDM2/p53, IL11/STAT3 and Wnt/β-catenin signaling pathways in CRC. Many agents and siRNAs serve as potential therapeutic approaches by targeting HMGA2 for the treatment of CRC. Deciphering HMGA2-mediated machinery helps to conceive effective therapy strategies and develop novel inhibitors in CRC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathology & Pathophysiology, Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jingjing Wu
- Department of Pathology & Pathophysiology, Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int J Mol Sci 2020; 21:E5311. [PMID: 32726923 PMCID: PMC7432436 DOI: 10.3390/ijms21155311] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide, despite progress made in detection and management through surgery, chemotherapy, radiotherapy, and immunotherapy. Novel therapeutic agents have improved survival in both the adjuvant and advanced disease settings, albeit with an increased risk of toxicity and cost. However, metastatic disease continues to have a poor long-term prognosis and significant challenges remain due to late stage diagnosis and treatment failure. Biomarkers are a key tool in early detection, prognostication, survival, and predicting treatment response. The past three decades have seen advances in genomics and molecular pathology of cancer biomarkers, allowing for greater individualization of therapy with a positive impact on survival outcomes. Clinically useful predictive biomarkers aid clinical decision making, such as the presence of KRAS gene mutations predicting benefit from epidermal growth factor receptor (EGFR) inhibiting antibodies. However, few biomarkers have been translated into clinical practice highlighting the need for further investigation. We review a range of protein, DNA and RNA-based biomarkers under investigation for diagnostic, predictive, and prognostic properties for CRC. In particular, long non-coding RNAs (lncRNA), have been investigated as biomarkers in a range of cancers including colorectal cancer. Specifically, we evaluate the potential role of lncRNA plasmacytoma variant translocation 1 (PVT1), an oncogene, as a diagnostic, prognostic, and therapeutic biomarker in colorectal cancer.
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Fahad Mahmood
- The Dudley Group Hospitals, Russells Hall Hospital, The Dudley Group NHS Foundation Trust, Dudley, West Midlands DY1 2HQ, UK;
| | - Akinfemi Akingboye
- The Dudley Group Hospitals, Russells Hall Hospital, The Dudley Group NHS Foundation Trust, Dudley, West Midlands DY1 2HQ, UK;
| |
Collapse
|
32
|
Ye P, Cai P, Xie J, Wei Y. The diagnostic accuracy of digital PCR, ARMS and NGS for detecting KRAS mutation in cell-free DNA of patients with colorectal cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20708. [PMID: 32590745 PMCID: PMC7328928 DOI: 10.1097/md.0000000000020708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Cetuximab and panitumumab have been used clinically to treat metastatic colorectal cancer for more than 15 years. Before the treatment is given, it is required to determine the KRAS mutation status since it would lead to drug resistance. Tumor tissue sample is traditionally used for cancer genotyping. In recent years, liquid biopsy sample has been intensively investigated as a surrogate for tumor tissue sample due to its non-invasiveness and better presentation of tumor heterogeneity. The aim of this study is to systematically summarize the accuracy of KRAS mutation measurement in colorectal cancer using cell-free DNA in liquid biopsy samples, with tumor tissue sample as reference (gold standard). METHODS AND ANALYSIS We will search literatures in the following databases: Pubmed, Embase, and Cochrane Library. Systemic review and meta-analysis will be performed to summarize the accuracy of KRAS mutation measurement in colorectal cancer using liquid biopsy sample, and subgroup analysis will be performed on different testing platforms, and on metastatic and non-metastatic colorectal cancer. TIMELINE This study will start on June 1, 2020, and is expected to be finished by November 1, 2020. ETHICS AND DISSEMINATION Ethical approval will not be required since the data obtained and analyzed in this study will not be on individual patients. Study results will be disseminated as an official publication in a peer-reviewed journal.Registration: PROSPERO CRD42020176682.
Collapse
Affiliation(s)
- Peng Ye
- Department of Anatomy and Histology, College of Medicine, Chengdu University
| | - Peiling Cai
- Department of Anatomy and Histology, College of Medicine, Chengdu University
| | - Jing Xie
- Department of Pathology and Clinical Laboratory, Sichuan Provincial Fourth People's Hospital
| | - Yuanyuan Wei
- Department of Physiology, College of Medicine, Chengdu University, Chengdu, China
| |
Collapse
|