1
|
Jindal U, Mamgain M, Nath UK, Sharma I, Pant B, Sharma A, Gupta A, Rahman K, Yadav S, Singh MP, Mishra S, Chaturvedi CP, Courty J, Singh N, Gupta S, Kumar S, Verma SP, Mallick S, Gogia A, Raghav S, Sarkar J, Srivastava KR, Datta D, Jain N. Targeting CERS6-AS1/FGFR1 axis as synthetic vulnerability to constrain stromal cells supported proliferation in Mantle cell lymphoma. Leukemia 2024; 38:2196-2209. [PMID: 39003397 DOI: 10.1038/s41375-024-02344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The interaction between stromal and tumor cells in tumor microenvironment is a crucial factor in Mantle cell lymphoma (MCL) progression and therapy resistance. We have identified a long non-coding RNA, CERS6-AS1, upregulated in MCL and associated with poor overall survival. CERS6-AS1 expression was elevated in primary MCL within stromal microenvironment and in a subset of MCL cells adhered to stromal layer. These stromal-adhered MCL-subsets exhibited cancer stem cell signatures than suspension counterparts. Mechanistically, we found that downregulating CERS6-AS1 in MCL reduced Fibroblast Growth Factor Receptor-1 (FGFR1), expression attributed to loss of its interaction with RNA-binding protein nucleolin. In addition, using in-silico approach, we have discovered a direct interaction between nucleolin and 5'UTR of FGFR1, thereby regulating FGFR1 transcript stability. We discovered a positive association of CERS6-AS1 with cancer stem cell signatures, and Wnt signaling. Building on these, we explored potential therapeutic strategies where combining nucleolin-targeting agent with FGFR1 inhibition significantly contributed to reversing cancer stem cell signatures and abrogated primary MCL cell growth on stromal layer. These findings provide mechanistic insights into regulatory network involving CERS6-AS1, nucleolin, and FGFR1 axis-associated crosstalk between tumor cells and stromal cell interaction and highlights therapeutic potential of targeting a non-coding RNA in MCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Cell Proliferation
- Tumor Microenvironment
- Stromal Cells/metabolism
- Stromal Cells/pathology
- RNA, Long Noncoding/genetics
- Gene Expression Regulation, Neoplastic
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Nucleolin
- Cell Line, Tumor
- Phosphoproteins/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/antagonists & inhibitors
- Mice
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Udita Jindal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Mamgain
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh, 249203, India
| | - Uttam Kumar Nath
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh, 249203, India
| | - Isha Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Bhaskar Pant
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Ankita Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Archita Gupta
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sunil Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Manish Pratap Singh
- Department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | | | - Chandra Praksah Chaturvedi
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Jose Courty
- INSERM, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, F-94010, Créteil, France
| | - Navin Singh
- Department of Radiotherapy, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Seema Gupta
- Department of Radiotherapy, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Sanjeev Kumar
- Department of General Surgery, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Shailendra Prasad Verma
- Department of Clinical Hematology, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Saumyaranjan Mallick
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sunil Raghav
- Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Jayanta Sarkar
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Kinshuk Raj Srivastava
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Kozaki R, Yasuhiro T, Kato H, Murai J, Hotta S, Ariza Y, Sakai S, Fujikawa R, Yoshida T. Investigation of the anti-tumor mechanism of tirabrutinib, a highly selective Bruton's tyrosine kinase inhibitor, by phosphoproteomics and transcriptomics. PLoS One 2023; 18:e0282166. [PMID: 36897912 PMCID: PMC10004634 DOI: 10.1371/journal.pone.0282166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Tirabrutinib is a highly selective Bruton's tyrosine kinase (BTK) inhibitor used to treat hematological malignancies. We analyzed the anti-tumor mechanism of tirabrutinib using phosphoproteomic and transcriptomic methods. It is important to check the drug's selectivity against off-target proteins to understand the anti-tumor mechanism based on the on-target drug effect. Tirabrutinib's selectivity was evaluated by biochemical kinase profiling assays, peripheral blood mononuclear cell stimulation assays, and the BioMAP system. Next, in vitro and in vivo analyses of the anti-tumor mechanisms were conducted in activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) cells followed by phosphoproteomic and transcriptomic analyses. In vitro kinase assays showed that, compared with ibrutinib, tirabrutinib and other second-generation BTK inhibitors demonstrated a highly selective kinase profile. Data from in vitro cellular systems showed that tirabrutinib selectively affected B-cells. Tirabrutinib inhibited the cell growth of both TMD8 and U-2932 cells in correlation with the inhibition of BTK autophosphorylation. Phosphoproteomic analysis revealed the downregulation of ERK and AKT pathways in TMD8. In the TMD8 subcutaneous xenograft model, tirabrutinib showed a dose-dependent anti-tumor effect. Transcriptomic analysis indicated that IRF4 gene expression signatures had decreased in the tirabrutinib groups. In conclusion, tirabrutinib exerted an anti-tumor effect by regulating multiple BTK downstream signaling proteins, such as NF-κB, AKT, and ERK, in ABC-DLBCL.
Collapse
Affiliation(s)
- Ryohei Kozaki
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
- * E-mail:
| | - Tomoko Yasuhiro
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hikaru Kato
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Jun Murai
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shingo Hotta
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yuko Ariza
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shunsuke Sakai
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Ryu Fujikawa
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Takao Yoshida
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| |
Collapse
|
3
|
Pherez-Farah A, López-Sánchez RDC, Villela-Martínez LM, Ortiz-López R, Beltrán BE, Hernández-Hernández JA. Sphingolipids and Lymphomas: A Double-Edged Sword. Cancers (Basel) 2022; 14:2051. [PMID: 35565181 PMCID: PMC9104519 DOI: 10.3390/cancers14092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphomas are a highly heterogeneous group of hematological neoplasms. Given their ethiopathogenic complexity, their classification and management can become difficult tasks; therefore, new approaches are continuously being sought. Metabolic reprogramming at the lipid level is a hot topic in cancer research, and sphingolipidomics has gained particular focus in this area due to the bioactive nature of molecules such as sphingoid bases, sphingosine-1-phosphate, ceramides, sphingomyelin, cerebrosides, globosides, and gangliosides. Sphingolipid metabolism has become especially exciting because they are involved in virtually every cellular process through an extremely intricate metabolic web; in fact, no two sphingolipids share the same fate. Unsurprisingly, a disruption at this level is a recurrent mechanism in lymphomagenesis, dissemination, and chemoresistance, which means potential biomarkers and therapeutical targets might be hiding within these pathways. Many comprehensive reviews describing their role in cancer exist, but because most research has been conducted in solid malignancies, evidence in lymphomagenesis is somewhat limited. In this review, we summarize key aspects of sphingolipid biochemistry and discuss their known impact in cancer biology, with a particular focus on lymphomas and possible therapeutical strategies against them.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | | | - Luis Mario Villela-Martínez
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico
- Hospital Fernando Ocaranza, ISSSTE, Hermosillo 83190, Sonora, Mexico
- Centro Médico Dr. Ignacio Chávez, ISSSTESON, Hermosillo 83000, Sonora, Mexico
| | - Rocío Ortiz-López
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | - Brady E Beltrán
- Hospital Edgardo Rebagliati Martins, Lima 15072, Peru
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima 1801, Peru
| | | |
Collapse
|
4
|
Differential Transcriptional Reprogramming by Wild Type and Lymphoma-Associated Mutant MYC Proteins as B-Cells Convert to a Lymphoma Phenotype. Cancers (Basel) 2021; 13:cancers13236093. [PMID: 34885204 PMCID: PMC8657136 DOI: 10.3390/cancers13236093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The MYC transcription factor regulates a vast number of genes and is implicated in many human malignancies. In some hematological malignancies, MYC is frequently subject to missense mutations that enhance its transformation activity. Here, we use a novel murine cell system to (i) characterize the transcriptional effects of progressively increasing MYC levels as normal primary B-cells transform to lymphoma cells and (ii) determine how this gene regulation program is modified by lymphoma-associated MYC mutations (T58A and T58I) that enhance its transformation activity. Unlike many previous studies, the cell system exploits primary B-cells that are transduced to allow regulated MYC expression under circumstances where apoptosis and senescence pathways are abrogated by the over-expression of the Bcl-xL and BMI1 proteins. In such cells, transition from a normal to a lymphoma phenotype is directly dependent on the MYC expression level, without a requirement for secondary events that are normally required during MYC-driven oncogenic transformation. A generalized linear model approach allowed an integrated analysis of RNA sequencing data to identify regulated genes in relation to both progressively increasing MYC level and wild type or mutant status. Using this design, a total of 7569 regulated genes were identified, of which the majority (n = 7263) were regulated in response to progressively increased levels of wild type MYC, while a smaller number of genes (n = 917) were differentially regulated, compared to wild type MYC, in T58A MYC- and/or T58I MYC-expressing cells. Unlike most genes that are similarly regulated by both wild type and mutant MYC genes, the set of 917 genes did not significantly overlap with known lipopolysaccharide regulated genes, which represent genes regulated by MYC in normal B cells. The genes that were differently regulated in cells expressing mutant MYC proteins were significantly enriched in DNA replication and G2 phase to mitosis transition genes. Thus, mutants affecting MYC proteins may augment quantitative oncogenic effects on the expression of normal MYC-target genes with qualitative oncogenic effects, by which sets of cell cycle genes are abnormally targeted by MYC as B cells transition into lymphoma cells. The T58A and T58I mutations augment MYC-driven transformation by distinct mechanisms.
Collapse
|
5
|
Xia C, Sadeghi L, Strååt K, Merrien M, Wright AP, Sander B, Xu D, Österborg A, Björkholm M, Claesson HE. Intrinsic 5-lipoxygenase activity regulates migration and adherence of mantle cell lymphoma cells. Prostaglandins Other Lipid Mediat 2021; 156:106575. [PMID: 34116165 DOI: 10.1016/j.prostaglandins.2021.106575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
Human B-lymphocytes express 5-lipoxygenase (5-LOX) and 5-LOX activating protein (FLAP) and can convert arachidonic acid to leukotriene B4. Mantle cell lymphoma (MCL) cells contain similar amounts of 5-LOX as human neutrophils but the function and mechanism of activation of 5-LOX in MCL cells, and in normal B-lymphocytes, are unclear. Here we show that the intrinsic 5-LOX pathway in the MCL cell line JeKo-1 has an essential role in migration and adherence of the cells, which are important pathophysiological characteristics of B-cell lymphoma. Incubation of JeKo-1 with the FLAP inhibitor GSK2190915 or the 5-LOX inhibitor zileuton, at a concentration below 1 μM, prior to stimulation with the chemotactic agent CXCL12, led to a significant reduction of migration. CRISPR/Cas9 mediated deletion of ALOX5 gene in JeKo-1 cells also led to a significantly decreased migration of the cells. Furthermore, 5-LOX and FLAP inhibitors markedly decreased the adherence of JeKo-1 cells to stromal cells. In comparison, these drugs had a similar effect on adherence of JeKo-1 cells as the Bruton tyrosine kinase inhibitor ibrutinib, which has a proven anti-tumour effect. These results indicate that inhibition of 5-LOX may be a novel treatment for MCL and certain other B-cell lymphomas.
Collapse
Affiliation(s)
- Chuanyou Xia
- Department of Medicine Solna, Division of Hematology, Karolinska University Hospital and Institutet, Stockholm, Sweden
| | - Laia Sadeghi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klas Strååt
- Department of Medicine Solna, Division of Hematology, Karolinska University Hospital and Institutet, Stockholm, Sweden
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anthony P Wright
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Dawei Xu
- Department of Medicine Solna, Division of Hematology, Karolinska University Hospital and Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Medicine Solna, Division of Hematology, Karolinska University Hospital and Institutet, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Björkholm
- Department of Medicine Solna, Division of Hematology, Karolinska University Hospital and Institutet, Stockholm, Sweden
| | - Hans-Erik Claesson
- Department of Medicine Solna, Division of Hematology, Karolinska University Hospital and Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Sadeghi L, Wright AP. Migration and Adhesion of B-Lymphocytes to Specific Microenvironments in Mantle Cell Lymphoma: Interplay between Signaling Pathways and the Epigenetic Landscape. Int J Mol Sci 2021; 22:6247. [PMID: 34200679 PMCID: PMC8228059 DOI: 10.3390/ijms22126247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Lymphocyte migration to and sequestration in specific microenvironments plays a crucial role in their differentiation and survival. Lymphocyte trafficking and homing are tightly regulated by signaling pathways and is mediated by cytokines, chemokines, cytokine/chemokine receptors and adhesion molecules. The production of cytokines and chemokines is largely controlled by transcription factors in the context of a specific epigenetic landscape. These regulatory factors are strongly interconnected, and they influence the gene expression pattern in lymphocytes, promoting processes such as cell survival. The epigenetic status of the genome plays a key role in regulating gene expression during many key biological processes, and it is becoming more evident that dysregulation of epigenetic mechanisms contributes to cancer initiation, progression and drug resistance. Here, we review the signaling pathways that regulate lymphoma cell migration and adhesion with a focus on Mantle cell lymphoma and highlight the fundamental role of epigenetic mechanisms in integrating signals at the level of gene expression throughout the genome.
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Laboratory Medicine, Division of Biomedical and Cellular Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden;
| | | |
Collapse
|
7
|
Estupiñán HY, Wang Q, Berglöf A, Schaafsma GCP, Shi Y, Zhou L, Mohammad DK, Yu L, Vihinen M, Zain R, Smith CIE. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia 2021; 35:1317-1329. [PMID: 33526860 PMCID: PMC8102192 DOI: 10.1038/s41375-021-01123-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Irreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the "gatekeeper" residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.
Collapse
Affiliation(s)
- H. Yesid Estupiñán
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
| | - Qing Wang
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | - Anna Berglöf
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| | - Gerard C. P. Schaafsma
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Yuye Shi
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Litao Zhou
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Dara K. Mohammad
- grid.4714.60000 0004 1937 0626Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden ,grid.444950.8College of Agricultural Engineering Sciences, Salahaddin University-Erbil, 44002 Erbil, Kurdistan Region Iraq
| | - Liang Yu
- Department of Hematology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, 223300 Jiangsu Republic of China
| | - Mauno Vihinen
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Rula Zain
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden ,grid.24381.3c0000 0000 9241 5705Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden
| |
Collapse
|