1
|
Maddaloni M, Farra R, Dapas B, Felluga F, Benedetti F, Berti F, Drioli S, Vidali M, Cemazar M, Kamensek U, Brancolini C, Murano E, Maremonti F, Grassi M, Biasin A, Rizzolio F, Cavarzerani E, Scaggiante B, Bulla R, Balduit A, Ricci G, Zito G, Romano F, Bonin S, Azzalini E, Baj G, Tierno D, Grassi G. In Vitro and In Vivo Evaluation of the Effects of Drug 2c and Derivatives on Ovarian Cancer Cells. Pharmaceutics 2024; 16:664. [PMID: 38794326 PMCID: PMC11125437 DOI: 10.3390/pharmaceutics16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome-dependent degradation of proteins. METHODS 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. RESULTS 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme-inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. CONCLUSION Our data strongly support the potential therapeutic value of 2c/derivatives in OC.
Collapse
Affiliation(s)
- Marianna Maddaloni
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Fabio Benedetti
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Mattia Vidali
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.)
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy;
| | | | - Francesca Maremonti
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127 Trieste, Italy; (M.G.); (A.B.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127 Trieste, Italy; (M.G.); (A.B.)
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy;
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.B.); (G.B.)
| | - Andrea Balduit
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (A.B.); (G.R.); (G.Z.); (F.R.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (A.B.); (G.R.); (G.Z.); (F.R.)
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (S.B.); (E.A.)
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (A.B.); (G.R.); (G.Z.); (F.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (A.B.); (G.R.); (G.Z.); (F.R.)
| | - Serena Bonin
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (S.B.); (E.A.)
| | - Eros Azzalini
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (S.B.); (E.A.)
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.B.); (G.B.)
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (S.B.); (E.A.)
| |
Collapse
|
2
|
Żak K, Satora M, Skrabalak I, Tarkowski R, Ostrowska-Leśko M, Bobiński M. The Potential Influence of Residual or Recurrent Disease on Bevacizumab Treatment Efficacy in Ovarian Cancer: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:1063. [PMID: 38473419 DOI: 10.3390/cancers16051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
There were high hopes for the new antiangiogenic medicament, bevacizumab, which could inhibit the creation of new blood vessels through binding to isoform A of vascular endothelial growth factor (VEGF). However, it is not only blood vessels that are responsible for tumor cell spread. During the process of tumor growth, lymphangiogenesis is mediated by other members of the VEGF family, specifically VEGF-C and VEGF-D, which act independent to bevacizumab. Therefore, based on the mechanism of bevacizumab action and the processes of angio- and lymphangiogenesis, we formed three hypotheses: (1) if the lymph nodes in primary ovarian cancers are metastatic, the outcome of bevacizumab treatment is worsened; (2) concerning the second-line treatment, bevacizumab will act in a weakened manner if recurrence occurs in lymph nodes as opposed to a local recurrence; (3) patients treated by bevacizumab are more likely to have recurrences in lymph nodes. These hypotheses raise the issue of the existing knowledge gap, which concerns the effect of bevacizumab on metastatic lymph nodes.
Collapse
Affiliation(s)
- Klaudia Żak
- Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
| | - Małgorzata Satora
- I Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ilona Skrabalak
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Rafał Tarkowski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Marta Ostrowska-Leśko
- Chair and Department of Toxicology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Marcin Bobiński
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
3
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
4
|
Role of Hyaluronic Acid in Selected Malignant Neoplasms in Women. Biomedicines 2023; 11:biomedicines11020304. [PMID: 36830841 PMCID: PMC9953106 DOI: 10.3390/biomedicines11020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid (HA) is a significant glycosaminoglycan component of the extracellular matrix, playing an essential role in cell localization and proliferation. However, high levels of HA may also correlate with multidrug resistance of tumor cells, an increased tendency to metastasize, or cancer progression, and thus represent a very unfavorable prognosis for cancer patients. The purpose of this review article is to summarize the results of studies describing the relationship between HA, the main ligand of the CD44 receptor, or other components of the HA signaling pathway. In addition, we review the course of selected female malignancies, i.e., breast, cervical, endometrial, and ovarian cancer, with the main focus on the mechanisms oriented to CD44. We also analyze reports on the beneficial use of HA-containing preparations in adjuvant therapy among patients with these types of cancer. Data from the literature suggest that HA and its family members may be critical prognostic biomarkers of selected malignancies among women. Nevertheless, the results of the available studies are inconclusive, and the actual clinical significance of HA expression analysis is still quite enigmatic. In our opinion, the HA-CD44 signaling pathway should be an attractive target for future research related to targeted therapy in gynecological cancers.
Collapse
|
5
|
Patient-Derived In Vitro Models of Ovarian Cancer: Powerful Tools to Explore the Biology of the Disease and Develop Personalized Treatments. Cancers (Basel) 2023; 15:cancers15020368. [PMID: 36672318 PMCID: PMC9856518 DOI: 10.3390/cancers15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy worldwide due to a late diagnosis caused by the lack of specific symptoms and rapid dissemination into the peritoneal cavity. The standard of care for OC treatment is surgical cytoreduction followed by platinum-based chemotherapy. While a response to this frontline treatment is common, most patients undergo relapse within 2 years and frequently develop a chemoresistant disease that has become unresponsive to standard treatments. Moreover, also due to the lack of actionable mutations, very few alternative therapeutic strategies have been designed as yet for the treatment of recurrent OC. This dismal clinical perspective raises the need for pre-clinical models that faithfully recapitulate the original disease and therefore offer suitable tools to design novel therapeutic approaches. In this regard, patient-derived models are endowed with high translational relevance, as they can better capture specific aspects of OC such as (i) the high inter- and intra-tumor heterogeneity, (ii) the role of cancer stem cells (a small subset of tumor cells endowed with tumor-initiating ability, which can sustain tumor spreading, recurrence and chemoresistance), and (iii) the involvement of the tumor microenvironment, which interacts with tumor cells and modulates their behavior. This review describes the different in vitro patient-derived models that have been developed in recent years in the field of OC research, focusing on their ability to recapitulate specific features of this disease. We also discuss the possibilities of leveraging such models as personalized platforms to design new therapeutic approaches and guide clinical decisions.
Collapse
|
6
|
Bortot B, Apollonio M, Rampazzo E, Valle F, Brucale M, Ridolfi A, Ura B, Addobbati R, Di Lorenzo G, Romano F, Buonomo F, Ripepi C, Ricci G, Biffi S. Small extracellular vesicles from malignant ascites of patients with advanced ovarian cancer provide insights into the dynamics of the extracellular matrix. Mol Oncol 2021; 15:3596-3614. [PMID: 34614287 PMCID: PMC8637559 DOI: 10.1002/1878-0261.13110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
The exact role of malignant ascites in the development of intraperitoneal metastases remains unclear, and the mechanisms by which extracellular vesicles (EVs) promote tumor progression in the pre-metastatic niche have not been fully discovered. In this study, we characterized ascites from high-grade epithelial ovarian cancer patients. Small-EVs (30-150 nm) were isolated from two sources-the bulk ascites and the ascitic fluid-derived tumor cell cultures-and assessed with a combination of imaging, proteomic profiling, and protein expression analyses. In addition, Gene Ontology and pathway analysis were performed using different databases and bioinformatic tools. The results proved that the small-EVs derived from the two sources exhibited significantly different stiffness and size distributions. The bulk ascitic fluid-derived small-EVs were predominantly involved in the complement and coagulation cascade. Small-EVs derived from ascites cell cultures contained a robust proteomic profile of extracellular matrix remodeling regulators, and we observed an increase in transforming growth factor-β-I (TGFβI), plasminogen activator inhibitor 1 (PAI-1), and fibronectin expression after neoadjuvant chemotherapy. When measured in the two sources, we demonstrated that fibronectin exhibited opposite expression patterns in small-EVs in response to chemotherapy. These findings highlight the importance of an ascites cell isolation workflow in investigating the treatment-induced cancer adaption processes.
Collapse
Affiliation(s)
- Barbara Bortot
- Department of Medical Genetics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Maura Apollonio
- Pediatric Department, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Italy
| | - Francesco Valle
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, Italy.,Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNRISMN), Bologna, Italy
| | - Marco Brucale
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, Italy.,Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNRISMN), Bologna, Italy
| | - Andrea Ridolfi
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, Italy.,Department of Chemistry, University of Firenze, Italy
| | - Blendi Ura
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Riccardo Addobbati
- Department of Clinical Toxicology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Federico Romano
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesca Buonomo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Chiara Ripepi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.,Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
7
|
Horst EN, Bregenzer ME, Mehta P, Snyder CS, Repetto T, Yang-Hartwich Y, Mehta G. Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomater 2021; 132:401-420. [PMID: 33940195 PMCID: PMC8969826 DOI: 10.1016/j.actbio.2021.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.
Collapse
Affiliation(s)
- Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael E Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine S Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Taylor Repetto
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States; Precision Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
8
|
Nowacka M, Sterzynska K, Andrzejewska M, Nowicki M, Januchowski R. Drug resistance evaluation in novel 3D in vitro model. Biomed Pharmacother 2021; 138:111536. [PMID: 34311534 DOI: 10.1016/j.biopha.2021.111536] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer rates the highest mortality among all gynecological malignancies. The main reason for high mortality is the development of drug resistance. It can be related to changes in the expression of many drug resistance genes as well as expression of extracellular matrix proteins and cell density in the tumor. We developed a simple two-dimensional and three-dimensional model of drug sensitive A2780 and resistant to cisplatin and paclitaxel variants of ovarian cancer cell line. Using MTT assay, we compared drug resistance in two-dimensional and three-dimensional cell culture conditions. Real-time polymerase chain reaction analysis was used to compare the expression of drug resistance genes. The expression of proteins in spheroids was determined by immunohistochemistry. We observed a moderate increase in cisplatin resistance and a significant increase in paclitaxel resistance between two-dimensional and three-dimensional cell culture conditions. Our findings show that changes in the expression of drug resistance genes may play a crucial role in the drug resistance of cancer cells in traditional cell culture. On the other hand, the drug resistance in spheroids may result from different mechanisms such as cell density in the spheroid, extracellular matrix proteins expression and drug capacity to diffuse into the spheroid.
Collapse
Affiliation(s)
- Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, PL-61-781 Poznan, Poland.
| | - Karolina Sterzynska
- Department of Histology and Embryology, Poznan University of Medical Sciences, PL-61-781 Poznan, Poland.
| | - Malgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, PL-61-781 Poznan, Poland.
| | - Michal Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, PL-61-781 Poznan, Poland.
| | - Radoslaw Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Zyty 28 St, 65-046 Zielona Gora, Poland.
| |
Collapse
|
9
|
Torralba M, Farra R, Maddaloni M, Grassi M, Dapas B, Grassi G. Drugs Repurposing in High-Grade Serous Ovarian Cancer. Curr Med Chem 2021; 27:7222-7233. [PMID: 32660396 DOI: 10.2174/0929867327666200713190520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ovary Carcinoma (OC) is the most lethal gynecological neoplasm due to the late diagnoses and to the common development of resistance to platinum-based chemotherapy. Thus, novel therapeutic approaches are urgently required. In this regard, the strategy of drug repurposing is becoming attractive. By this approach, the effectiveness of a drug originally developed for another indication is tested in a different pathology. The advantage is that data about pharmacokinetic properties and toxicity are already available. Thus, in principle, it is possible to reduce research costs and to speed up drug usage/marketing. RESULTS Here, some noticeable examples of repurposed drugs for OC, such as amiodarone, ruxolitinib, statins, disulfiram, ormeloxifenem, and Quinacrine, are reported. Amiodarone, an antiarrhythmic agent, has shown promising anti-OC activity, although the systemic toxicity should not be neglected. The JAK inhibitor, Ruxolitinib, may be employed particularly in coadministration with standard OC therapy as it synergistically interacts with platinum-based drugs. Particularly interesting is the use of statin which represent one of the most commonly administered drugs in aged population to treat hypercholesterolemia. Disulfiram, employed in the treatment of chronic alcoholism, has shown anti-OC properties. Ormeloxifene, commonly used for contraception, seems to be promising, especially due to the negligible side effects. Finally, Quinacrine used as an antimicrobial and anti-inflammatory drug, is able to downregulate OC cell growth and promote cell death. CONCLUSION Whereas further testing in patients are necessary to better clarify the therapeutic potential of repurposed drugs for OC, it is believed that their use, better if combined with OC targeted delivery systems, can significantly contribute to the development of novel and effective anti-OC treatments.
Collapse
Affiliation(s)
- Manuel Torralba
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447,
34149 Trieste, Italy
| | - Marianna Maddaloni
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio
6/A, I-34127 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy,Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447,
34149 Trieste, Italy
| |
Collapse
|
10
|
Cortez AJ, Kujawa KA, Wilk AM, Sojka DR, Syrkis JP, Olbryt M, Lisowska KM. Evaluation of the Role of ITGBL1 in Ovarian Cancer. Cancers (Basel) 2020; 12:E2676. [PMID: 32961775 PMCID: PMC7563769 DOI: 10.3390/cancers12092676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
In our previous microarray study we identified two subgroups of high-grade serous ovarian cancers with distinct gene expression and survival. Among differentially expressed genes was an Integrin beta-like 1 (ITGBL1), coding for a poorly characterized protein comprised of ten EGF-like repeats. Here, we have analyzed the influence of ITGBL1 on the phenotype of ovarian cancer (OC) cells. We analyzed expression of four putative ITGBL1 mRNA isoforms in five OC cell lines. OAW42 and SKOV3, having the lowest level of any ITGBL1 mRNA, were chosen to produce ITGBL1-overexpressing variants. In these cells, abundant ITGBL1 mRNA expression could be detected by RT-PCR. Immunodetection was successful only in the culture media, suggesting that ITGBL1 is efficiently secreted. We found that ITGBL1 overexpression affected cellular adhesion, migration and invasiveness, while it had no effect on proliferation rate and the cell cycle. ITGBL1-overexpressing cells were significantly more resistant to cisplatin and paclitaxel, major drugs used in OC treatment. Global gene expression analysis revealed that signaling pathways affected by ITGBL1 overexpression were mostly those related to extracellular matrix organization and function, integrin signaling, focal adhesion, cellular communication and motility; these results were consistent with the findings of our functional studies. Overall, our results indicate that higher expression of ITGBL1 in OC is associated with features that may worsen clinical course of the disease.
Collapse
Affiliation(s)
- Alexander Jorge Cortez
- Department of Biostatistics and Bioinformatics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Agata Małgorzata Wilk
- Department of Biostatistics and Bioinformatics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Joanna Patrycja Syrkis
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| |
Collapse
|