1
|
Fu S, Zhang H, Li X, Zhang Q, Guo C, Qiu K, Feng J, Liu X, Liu D. Exosomes Derived from Human Amniotic Mesenchymal Stem Cells Facilitate Diabetic Wound Healing by Angiogenesis and Enrich Multiple lncRNAs. Tissue Eng Regen Med 2023; 20:295-308. [PMID: 36696086 PMCID: PMC10070558 DOI: 10.1007/s13770-022-00513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Diabetic wound healing remains a major challenge due to the impaired functionality of angiogenesis by persistent hyperglycemia. Mesenchymal stem cell exosomes are appropriate candidates for regulating the formation of angiogenesis in tissue repair and regeneration. Here, we explored the effects of exosomes derived from human amniotic mesenchymal stem cell (hAMSC-Exos) on the biological activities of human umbilical vein endothelial cells (HUVECs) treated with high glucose and on diabetic wound healing and investigate lncRNAs related to angiogenesis in hAMSC-Exos. METHODS hAMSCs and hAMSC-Exos were isolated and identified by flow cytometry or western blot. A series of functional assays such as cell counting kit-8, scratching, transwell and tube formation assays were performed to evaluate the potential effect of hAMSC-Exos on high glucose-treated HUVECs. The effect of hAMSC-Exos on diabetic wound healing were tested by measuring wound closure rates and immunohistochemical staining of CD31. Subsequently, the lncRNAs profiles in hAMSC-Exos and hAMSCs were examined to screen the lncRNAs related to angiogenesis. RESULTS The isolated hAMSC-Exos had a size range of 30-150 nm and were positive for CD9, CD63 and CD81. The hAMSC-Exos facilitate the functional properties of high glucose-treated HUVECs including the proliferation, migration and the angiogenic activities as well as wound closure and angiogenesis in diabetic wound. hAMSC-Exos were enriched lncRNAs that related to angiogenesis, including PANTR1, H19, OIP5-AS1 and NR2F1-AS1. CONCLUSION Our findings demonstrated hAMSC-Exos facilitate diabetic wound healing by angiogenesis and contain several exosomal lncRNAs related to angiogenesis, which may represent a promising strategy for diabetic wound healing.
Collapse
Affiliation(s)
- Shangfeng Fu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiancai Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qiling Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chunyan Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Keqing Qiu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Junyun Feng
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiaoxiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
2
|
LncRNA PANTR1 is Associated with Poor Prognostic and Suppresses Apoptosis in Glioma. JOURNAL OF ONCOLOGY 2023; 2023:8537036. [PMID: 36861062 PMCID: PMC9970703 DOI: 10.1155/2023/8537036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/27/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
Glioma is the most common tumor in the central nervous system. High-grade gliomas confer a poor prognosis, being a serious health and economic burden. Current literature suggests the important role of long noncoding RNA (lncRNA) in mammals, especially in tumorigenesis of various tumors. The functions of lncRNA POU3F3 adjacent noncoding transcript 1 (PANTR1) have been investigated in hepatocellular carcinoma but remain yet unclear in gliomas. We evaluated the role of PANTR1 in glioma cells using published data from The Cancer Genome Atlas (TCGA), then validated it by ex vivo experiments. To investigate the potential cellular mechanism of different levels of PANTR1 expression in glioma cells, we used siRNA-mediated knockdown in low-grade (grade II) cell lines and GBM (grade IV) cell lines (SW1088 and SHG44, respectively). On the molecular level, low expression of PANTR1 caused significantly reduced glioma cell viability and enhanced cell death. Moreover, we identified the importance of PANTR1 expression for cell migration in both cell lines, a critical foundation for invasiveness in recurrent gliomas. In conclusion, this study provides the first evidence that PANTR1 has a relevant role in human glioma by influencing cell viability and cell death.
Collapse
|
3
|
Najafi S, Khatami SH, Khorsand M, Jamali Z, Shabaninejad Z, Moazamfard M, Majidpoor J, Aghaei Zarch SM, Movahedpour A. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 2022; 418:113294. [PMID: 35870535 DOI: 10.1016/j.yexcr.2022.113294] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
New research has indicated that long non-coding RNAs (lncRNAs) play critical roles in a broad range of biological processes, including the pathogenesis of many complex human diseases, including cancer. The detailed regulation mechanisms of many lncRNAs in cancer initiation and progression have yet to be discovered, even though a few of lncRNAs' functions in cancer have been characterized. In the present study, we summarize recent advances in the mechanisms and functions of lncRNAs in cancer. We focused on the roles of newly-identified lncRNAs as oncogenes and tumor suppressors, as well as the potential pathways these molecules could play. The paper also discusses their potential uses as biomarkers for the diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Downregulation of long non-coding RNAs in patients with bipolar disorder. Sci Rep 2022; 12:7479. [PMID: 35523833 PMCID: PMC9076844 DOI: 10.1038/s41598-022-11674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
The abnormal function of signaling cascades is currently a candidate in the pathophysiology of bipolar disorder (BD). One of the factors involved in activating these signals is oxidative stress. Some long non-coding RNAs (lncRNA) are involved in the oxidative stress. In this study, we compared expression levels of lincRNA-p21, lincRNA-ROR, and lincRNA-PINT in the peripheral blood mononuclear cells (PBMC) from BD patients (n = 50) and healthy individuals (n = 50). Expression levels of lincRNA-p21, lincRNA-ROR, and lincRNA-PINT were significantly reduced in patients with BD compared to controls. In sex-based analyses, down-regulation of these lncRNAs was revealed only in male BD patients compared to male healthy subjects. Also, in BD patients, all three lncRNAs showed a significant pairwise positive correlation in expression level. The area under curve values for lincRNA-p21, lincRNA-ROR, and lincRNA-PINT was 0.66, 0.75, and 0.66, respectively. Thus, the ROC curve analysis showed that lncRNA-ROR might serve as a diagnostic biomarker for distinguishing between BD patients and controls. Altogether, the current study proposes a role for lincRNA-p21, lincRNA-ROR, and lincRNA-PINT in the pathogenesis of bipolar disorder. Moreover, the peripheral expression of these lncRNAs might be useful as potential biomarkers for BD.
Collapse
|
5
|
Li X, Zhang C, Peng X, Li Y, Chen G, Gou X, Zhou X, Ma C. A novel risk score model based on five angiogenesis-related long non-coding RNAs for bladder urothelial carcinoma. Cancer Cell Int 2022; 22:157. [PMID: 35440045 PMCID: PMC9019982 DOI: 10.1186/s12935-022-02575-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/06/2022] [Indexed: 01/09/2023] Open
Abstract
Background Tumour angiogenesis is an independent risk factor for bladder urothelial carcinoma (BUC) progression, but viable and promising antiangiogenic targets are understudied. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play prominent role in the tumour microenvironment and tumour angiogenesis. Methods The clinical data of BUC patients were obtained from TCGA database and clinical specimens of 138 BUC patients. Univariate and multivariate COX regression analyses were used to identify survival-related ARLNRs (sARLNRs) from The Molecular Signatures Database v4.0. Fisher’s exact probability method was used to detect the correlations between sARLNRs levels and clinicopathological characteristics. A chain of experiments including FACS, qPCR, immunohistochemistry, tube formation, migration and invasion assays, combining with co-culture models, were utilized to validate the clinical significance and angiogenetic correlation of sARLNRs. Results Five sARLNRs were employed to establish an angiogenesis-related risk score model, by which patients in the low-risk group obtained better overall survival than those in the high-risk group. The expression of AC005625.1 and AC008760.1 was significantly related to ECs percentage, tumour size and muscle invasion status. Besides, AC005625.1 and AC008760.1 expressed lower in BUC cell lines and tumour tissues than that in normal urothelial cells and adjacent normal tissues, with much lower levels in more advanced T stages. A prominently higher proportion of ECs was detected in tumour tissues with lower expression of AC005625.1 and AC008760.1. In the co-culture models, we found that knockdown of AC005625.1 and AC008760.1 in BUC cells increased the tube formation, migration and invasion abilities of HUVEC. The expression levels of CD31, VEGF-A, VIMENTIN and N-CADHERIN were also enhanced in HUVEC cells co-cultured with siR-AC005625.1 and siR-AC008760.1-treated T24 cells. Conclusion In the study, we identify five sARLNRs and validate their clinical significance, angiogenesis correlation and prognosis-predictive values in BUC. These findings may provide a new perspective and some promising antiangiogenic targets for clinical diagnosis and treatment strategies of BUC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02575-1.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,CAS Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China. .,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China.
| | - Chao Ma
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China. .,The Fifth People's Hospital of Chongqing, Chongqing, China.
| |
Collapse
|
6
|
Vrba L, Futscher BW, Oshiro M, Watts GS, Menashi E, Hu C, Hammad H, Pennington DR, Golconda U, Gavini H, Roe DJ, Shroff RT, Nelson MA. Liquid biopsy, using a novel DNA methylation signature, distinguishes pancreatic adenocarcinoma from benign pancreatic disease. Clin Epigenetics 2022; 14:28. [PMID: 35193708 PMCID: PMC8864826 DOI: 10.1186/s13148-022-01246-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
We tested the ability of a novel DNA methylation biomarker set to distinguish metastatic pancreatic cancer cases from benign pancreatic cyst patients and to monitor tumor dynamics using quantitative DNA methylation analysis of cell-free DNA (cfDNA) from blood samples. The biomarkers were able to distinguish malignant cases from benign disease with high sensitivity and specificity (AUC = 0.999). Furthermore, the biomarkers detected a consistent decline in tumor-derived cfDNA in samples from patients undergoing chemotherapy. The study indicates that our liquid biopsy assay could be useful for management of pancreatic cancer patients.
Collapse
Affiliation(s)
- Lukas Vrba
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Bernard W Futscher
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.,Precision Epigenomics Inc, Tucson, AZ, USA
| | - Marc Oshiro
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - George S Watts
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Charles Hu
- Dignity Health Chandler Regional Medical Center, Chandler, AZ, USA
| | - Hytham Hammad
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Division of Hematology/Oncology, Department of Medicine, University of Arizona Caner Center, Tucson, AZ, USA
| | - Daniel R Pennington
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Division of Hematology/Oncology, Department of Medicine, University of Arizona Caner Center, Tucson, AZ, USA
| | | | - Hemanth Gavini
- Division of Hematology/Oncology, Department of Medicine, University of Arizona Caner Center, Tucson, AZ, USA
| | - Denise J Roe
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Rachna T Shroff
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Division of Hematology/Oncology, Department of Medicine, University of Arizona Caner Center, Tucson, AZ, USA
| | - Mark A Nelson
- The University of Arizona Cancer Center, Tucson, AZ, USA. .,Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, USA. .,Precision Epigenomics Inc, Tucson, AZ, USA.
| |
Collapse
|
7
|
Li H, Chen L, Ke ZB, Chen SH, Xue XY, Zheng QS, Wei Y, Zeng K, Xu N. Angiogenesis-Related Molecular Subtypes and a Novel Prognostic Signature in Clear Cell Renal Cell Carcinoma Patients. Int J Gen Med 2021; 14:6325-6342. [PMID: 34629897 PMCID: PMC8497487 DOI: 10.2147/ijgm.s332732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Background This study aimed to develop and validate a novel angiogenesis-related gene (ARG) signature and molecular subtypes by bioinformatics analysis. Materials and Methods The transcriptome data and clinical data were obtained from TCGA and ICGC database. We performed consensus clustering analysis to identify angiogenesis molecular subtypes for ccRCC. Univariate and multivariate Cox regression analyses were used to develop a novel ARG-related signature as a prognostic biomarker for ccRCC. Internal and external validation were then performed in TCGA and ICGC cohort, respectively. Results We identified a total of two angiogenesis molecular subtypes of ccRCC. The overall survival (OS) of subtype 1 ccRCC was significantly decreased compared with that of subtype 2 ccRCC (P=0.001). These two molecular subtypes have significantly different tumor microenvironment and immune checkpoint inhibitor sensitivities (P<0.05). Besides, we developed a novel signature based on three ARGs (including MSX1, TIMP1 and JAG2) for subtype 1 ccRCC. The difference in OS between high- and low-risk group was statistically significant in training cohort (P=0.009), test cohort (P=0.024), the whole type 1 cohort (P<0.001), and validation cohort (P=0.041). The AUC for one-year OS prediction was 0.732, 0.710, 0.725, and 0.645 in training cohort, test cohort, the whole type 1 cohort, and validation cohort, respectively. Independent prognostic analysis showed that this signature was an independent predictor for OS of subtype 1 ccRCC (P=0.028914). The power of this prognostic signature was superior to other signatures reported in previous studies. Conclusion We developed and successfully validated a novel ARG signature for predicting prognosis of subtype 1 ccRCC, which was superior to several previous signatures.
Collapse
Affiliation(s)
- Hao Li
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.,Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Lu Chen
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.,Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Kai Zeng
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.,Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China
| |
Collapse
|
8
|
Zhao H, Zhang J, Fu X, Mao D, Qi X, Liang S, Meng G, Song Z, Yang R, Guo Z, Tong B, Sun M, Zuo B, Li G. Integrated bioinformatics analysis of the NEDD4 family reveals a prognostic value of NEDD4L in clear-cell renal cell cancer. PeerJ 2021; 9:e11880. [PMID: 34458018 PMCID: PMC8378337 DOI: 10.7717/peerj.11880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
The members of the Nedd4-like E3 family participate in various biological processes. However, their role in clear cell renal cell carcinoma (ccRCC) is not clear. This study systematically analyzed the Nedd4-like E3 family members in ccRCC data sets from multiple publicly available databases. NEDD4L was identified as the only NEDD4 family member differentially expressed in ccRCC compared with normal samples. Bioinformatics tools were used to characterize the function of NEDD4L in ccRCC. It indicated that NEDD4L might regulate cellular energy metabolism by co-expression analysis, and subsequent gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A prognostic model developed by the LASSO Cox regression method showed a relatively good predictive value in training and testing data sets. The result revealed that NEDD4L was associated with biosynthesis and metabolism of ccRCC. Since NEDD4L is downregulated and dysregulation of metabolism is involved in tumor progression, NEDD4L might be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China.,Department of Urology, China Rehabilitation Research Centre, Rehabilitation School of Capital Medical University, Beijing, China
| | - Junjun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoliang Fu
- Department of Urology, The Second Affiliated Hospital of Air Force Medical University, Xian, China
| | - Dongdong Mao
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuesen Qi
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shuai Liang
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Gang Meng
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ru Yang
- Henan Key Laboratory of Neurorestoratology, The First Affliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhenni Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Binghua Tong
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Meiqing Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Baile Zuo
- Tumor Molecular Immunology and Immunotherapy Laboratory, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
lncRNA PANTR1 Upregulates BCL2A1 Expression to Promote Tumorigenesis and Warburg Effect of Hepatocellular Carcinoma through Restraining miR-587. J Immunol Res 2021; 2021:1736819. [PMID: 34423048 PMCID: PMC8378964 DOI: 10.1155/2021/1736819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common subtypes of malignant liver tumors, characterized by high morbidity and mortality. Due to its poor diagnosis strategy and inefficient clinical intervention, HCC has brought terrible life experiences for patients worldwide. Finding novel curative agents for HCC is urgently needed. In the current study, we hypothesized that lncRNA PANTR1 participates in HCC initiation or progression. Our study found that lncRNA PANTR1 was upregulated in HCC tumor tissues and abundantly expressed in HCC cell lines. PANTR1 knockdown inhibited cell growth and migration, promoted cell apoptosis in vitro, and suppressed tumor cell growth in vivo. Moreover, our results suggest that downregulated PANTR1 inhibited the Warburg effect in HCC cells. Underlying mechanisms of PANTR1 in HCC progression were investigated. PANTR1 acted as a competent sponge for miR-587 and downregulated miR-587 expression in HCC cells. Further, MiR-587 directly targets BCL2A1. lncRNA PANTR1 promotes HCC progression via mediating the miR-587-BCL2A1 axis. Our study identified a novel lncRNA PANTR1/miR-587/BCL2A1 axis in HCC progression. We might provide a new target for HCC basic research and clinical management.
Collapse
|
10
|
LncRNA ITGB2-AS1 promotes the progression of clear cell renal cell carcinoma by modulating miR-328-5p/HMGA1 axis. Hum Cell 2021; 34:1545-1557. [PMID: 34170494 DOI: 10.1007/s13577-021-00563-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/01/2021] [Indexed: 01/17/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histologic subtype of renal cell carcinoma and long non-coding RNAs (lncRNAs) play important roles in the progression of ccRCC. In this study, we aim to explore the potential function of ITGB2-AS1 in ccRCC progression and its underlying molecular mechanism. We first explored the association between ITGB2-AS1 expression level and ccRCC prognosis. We found that the expression level of ITGB2-AS1 was significantly higher in ccRCC tumor and cell lines, and highly expressed ITGB2-AS1 was also associated with a poorer prognosis. Consistently, silencing ITGB2-AS1 inhibited proliferation, promoted apoptosis in ccRCC cell lines, and curbed the tumorigenesis in the Xenograft model, reduced tumorigenesis in a xenograft tumor growth model. We further identified and confirmed the miRNA miR-328-5p as a target of ITGB2-AS1, and miR-328-5p negatively regulated the expression of HMGA1 protein. The anti-tumor effect of silencing ITGB2-AS1 could be partially rescued by inhibiting miR-328-5p activity or overexpressing HMGA1, indicating that ITGB2-AS1 promotes the survival and progression of ccRCC by modulating miR-328-5p/HMGA1 axis. Collectively, our data demonstrated that ITGB2-AS1 expression level is positively correlated with the survival and tumorigenesis of ccRCC. As a target of ITGB2-AS1, miR-328-5p seems to function as a tumor-suppressor, and the oncogenic effect of ITGB2-AS1 is partially mediated via the miR-328-5p/HMGA1 axis.
Collapse
|
11
|
Teppan J, Barth DA, Prinz F, Jonas K, Pichler M, Klec C. Involvement of Long Non-Coding RNAs (lncRNAs) in Tumor Angiogenesis. Noncoding RNA 2020; 6:E42. [PMID: 32992718 PMCID: PMC7711482 DOI: 10.3390/ncrna6040042] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts with a minimal length of 200 nucleotides. They are involved in various biological processes such as cell differentiation, apoptosis, as well as in pathophysiological processes. Numerous studies considered that frequently deregulated lncRNAs contribute to all hallmarks of cancer including metastasis, drug resistance, and angiogenesis. Angiogenesis, the formation of new blood vessels, is crucial for a tumor to receive sufficient amounts of nutrients and oxygen and therefore, to grow and exceed in its size over the diameter of 2 mm. In this review, the regulatory mechanisms of lncRNAs are described, which influence tumor angiogenesis by directly or indirectly regulating oncogenic pathways, interacting with other transcripts such as microRNAs (miRNAs) or modulating the tumor microenvironment. Further, angiogenic lncRNAs occurring in several cancer types such as liver, gastrointestinal cancer, or brain tumors are summarized. Growing evidence on the influence of lncRNAs on tumor angiogenesis verified these transcripts as potential predictive or diagnostic biomarkers or therapeutic targets of anti-angiogenesis treatment. However, there are many unsolved questions left which are pointed out in this review, hence driving comprehensive research in this area is necessary to enable an effective use of lncRNAs as either therapeutic molecules or diagnostic targets in cancer.
Collapse
Affiliation(s)
- Julia Teppan
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Felix Prinz
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Katharina Jonas
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| |
Collapse
|
12
|
Barth DA, Juracek J, Slaby O, Pichler M, Calin GA. lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers (Basel) 2020; 12:cancers12082148. [PMID: 32756406 PMCID: PMC7463785 DOI: 10.3390/cancers12082148] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Available systemic treatment options for cancers of the genitourinary system have experienced great progress in the last decade. However, a large proportion of patients eventually develop resistance to treatment, resulting in disease progression and shorter overall survival. Biomarkers indicating the increasing resistance to cancer therapies are yet to enter clinical routine. Long non-coding RNAs (lncRNA) are non-protein coding RNA transcripts longer than 200 nucleotides that exert multiple types of regulatory functions of all known cellular processes. Increasing evidence supports the role of lncRNAs in cancer development and progression. Additionally, their involvement in the development of drug resistance across various cancer entities, including genitourinary malignancies, are starting to be discovered. Consequently, lncRNAs have been suggested as factors in novel therapeutic strategies to overcome drug resistance in cancer. In this review, the existing evidences on lncRNAs and their involvement in mechanisms of drug resistance in cancers of the genitourinary system, including renal cell carcinoma, bladder cancer, prostate cancer, and testicular cancer, will be highlighted and discussed to facilitate and encourage further research in this field. We summarize a significant number of lncRNAs with proposed pathways in drug resistance and available reported studies.
Collapse
Affiliation(s)
- Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (D.A.B.); (M.P.)
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaroslav Juracek
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (D.A.B.); (M.P.)
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|