1
|
Roy DC, Wang TF, Lun R, Zahrai A, Mallick R, Burger D, Zitikyte G, Hawken S, Wells P. Circulating Blood Biomarkers and Risk of Venous Thromboembolism in Cancer Patients: A Systematic Review and Meta-Analysis. Thromb Haemost 2024; 124:1117-1133. [PMID: 38768631 DOI: 10.1055/a-2330-1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Cancer patients have an increased risk of venous thromboembolism (VTE). Currently, the availability of highly discriminatory prediction models for VTE in cancer patients is limited. The implementation of biomarkers in prediction models might lead to refined VTE risk prediction. In this systematic review and meta-analysis, we aimed to evaluate candidate biomarkers and their association with cancer-associated VTE. METHODS We searched Medline, EMBASE, and Cochrane Central for studies that evaluated biomarkers in adult cancer patients from inception to September 2022. We included studies reporting on VTE after a cancer diagnosis with biomarker measurements performed at a defined time point. Median/mean differences (for continuous measures) and odds ratios (for dichotomous measures) with 95% confidence intervals were estimated and pooled using random-effects models. RESULTS We included 113 studies in the systematic review. Of these, 50 studies were included in the meta-analysis. We identified two biomarkers at cancer diagnosis (factor VIII and time to peak thrombin), three biomarkers pre-chemotherapy (D-dimer, fibrinogen, and mean platelet volume), and one biomarker preoperatively (platelet count) that had significant median or mean differences. Additionally, we found that hemoglobin <100 g/L and white blood count >11 × 109/L were significantly associated with future VTE risk only when measured at cancer diagnosis. Pre-chemotherapy neutrophil-to-lymphocyte ratio ≥3 and preoperative platelet count ≥400 × 109/L were also found to be associated with future VTE risk. CONCLUSION In conclusion, this study identified nine candidate blood biomarkers that may help in optimizing VTE prediction in cancer patients that should be further explored in future studies.
Collapse
Affiliation(s)
- Danielle Carole Roy
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Tzu-Fei Wang
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ronda Lun
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Vascular Neurology, Stanford Healthcare, Palo Alto, California, United States
| | - Amin Zahrai
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Dylan Burger
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Gabriele Zitikyte
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Steven Hawken
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Philip Wells
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Huang X, Chen H, Meng S, Pu L, Xu X, Xu P, He S, Hu X, Li Y, Wang G. External validation of the Khorana score for the prediction of venous thromboembolism in cancer patients: A systematic review and meta-analysis. Int J Nurs Stud 2024; 159:104867. [PMID: 39151210 DOI: 10.1016/j.ijnurstu.2024.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Venous thromboembolism is the leading cause of death in cancer patients, second only to tumor progression. The Khorana score is recommended by clinical guidelines for identifying ambulatory cancer patients at high risk of venous thromboembolism during chemotherapy. However, its predictive performance is debated among cancer patients. OBJECTIVES To map the applicability of the Khorana score in cancer patients and to assess its predictive performance across various cancer types, providing guidance for clinicians and nurses to use it more appropriately. DESIGN Systematic review and meta-analysis. METHODS A comprehensive literature search of the electronic database was first conducted on August 30, 2023, and updated on May 20, 2024. Studies examining the Khorana score's predictive performance (including but not limited to the areas under the curve, C-index, and calibration plot) in cancer patients were included. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was applied to evaluate the methodological quality of the included studies. Data synthesis was achieved via random-effects meta-analysis using the R studio software. The subgroup analysis was performed according to the study design, clinical setting, cancer type, anti-cancer treatment stage, and country. RESULTS The review incorporated 67 studies, including 58 observational studies and nine randomized controlled trials. All included studies assessed the Khorana score's discrimination, with the C-index ranging from 0.40 to 0.84. The pooled C-index for randomized controlled trials was 0.61 (95 % CI 0.51-0.70), while observational studies showed a pooled C-index of 0.59 (95 % CI 0.57-0.60). Subgroup analyses revealed the pooled C-index for lung cancer, lymphoma, gastrointestinal cancer, and mixed cancer patients as 0.60 (95 % CI 0.53-0.67), 0.56 (95 % CI 0.51-0.61), 0.59 (95 % CI 0.39-0.76), and 0.60 (95 % CI 0.58-0.61), respectively. Inpatient and outpatient settings had the pooled C-index of 0.60 (95 % CI 0.58-0.63) and 0.58 (95 % CI 0.55-0.61), respectively. Calibration was assessed in only four studies. All included studies were identified to have a high risk of bias according to PROBAST. CONCLUSION The Khorana score has been widely validated in various types of cancer patients; however, it exhibited poor capability (pooled C-index<0.7) in accurately discriminating VTE risk among most types of cancer patients either in inpatient or outpatient settings. The Khorana score should be used with caution, and high-quality studies are needed to further validate its predictive performance. REGISTRATION The protocol for this study is registered with PROSPERO (registration number: CRD42023470320).
Collapse
Affiliation(s)
- Xuan Huang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hongxiu Chen
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Lihui Pu
- Erasmus MC, University Medical Center Rotterdam, Department Internal Medicine, Section Nursing Science, Rotterdam, the Netherlands
| | - Xueqiong Xu
- The First People's Hospital of Longquanyi District, Chengdu, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, China
| | - Shengyuan He
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Oto J, Herranz R, Fuertes M, Plana E, Verger P, Baixauli F, Amaya JV, Medina P. Dysregulated neutrophil extracellular traps and haemostatic biomarkers as diagnostic tools and therapeutic targets in periprosthetic joint infection. Bone Joint J 2024; 106-B:1021-1030. [PMID: 39216868 DOI: 10.1302/0301-620x.106b9.bjj-2024-0187.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers. Methods We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI. Results Patients with confirmed PJI had significantly increased levels of NET markers (cfDNA (p < 0.001), calprotectin (p < 0.001), and neutrophil elastase (p = 0.022)) and inflammation markers (IL-6; p < 0.001) in plasma. Moreover, the plasma of patients with PJI induced significantly more neutrophil activation than the plasma of the controls (p < 0.001) independently of tumour necrosis factor alpha. Patients with PJI also had a reduced DNaseI activity in plasma (p < 0.001), leading to a significantly impaired degradation of NETs (p < 0.001). This could be therapeutically restored with recombinant human DNaseI to the level in the controls. We developed a model to improve the diagnosis of PJI with cfDNA, calprotectin, and the start tail of TGT as predictors, though cfDNA alone achieved a good prediction and is simpler to measure. Conclusion We confirmed that patients with PJI have an increased level of NETosis in plasma. Their plasma both induced NET release and had an impaired ability to degrade NETs mediated by a reduced DNaseI activity. This can be therapeutically restored in vitro with the approved Dornase alfa, Pulmozyme, which may allow novel methods of treatment. A combination of NETs and haemostatic biomarkers could improve the diagnosis of PJI, especially those patients in whom this diagnosis is uncertain.
Collapse
Affiliation(s)
- Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Manuel Fuertes
- Orthopaedics and Traumatology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Patricia Verger
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Francisco Baixauli
- Orthopaedics and Traumatology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - José V Amaya
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Orthopaedics and Traumatology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
4
|
Benavent N, Cañete A, Argilés B, Juan-Ribelles A, Bonanad S, Oto J, Medina P. Delving into the clinical impact of NETs in pediatric cancer. Pediatr Res 2024:10.1038/s41390-024-03437-4. [PMID: 39095576 DOI: 10.1038/s41390-024-03437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Pediatric cancer, a complex and heterogeneous group of diseases, continues to challenge medical research and treatment strategies. Despite advances in precision medicine and immunotherapy, certain aggressive subtypes of pediatric cancer are resistant to conventional therapies, requiring further exploration of potential therapeutic targets. Neutrophil extracellular traps (NETs), net-like structures released by neutrophils, have emerged as a potential player in the pediatric cancer landscape. However, our understanding of their role in pediatric oncology remains limited. This systematic review examines the current state of the NETs literature in pediatric cancer, focusing on the most frequent subtypes. The review reveals the scarcity of research in this area, highlighting the need for further investigation. The few studies available suggest that NETs may influence infection risk, treatment resistance and prognosis in certain pediatric malignancies. Although the field is still in its infancy, it holds great promise for advancing our understanding of pediatric cancer biology and potential therapeutic pathways. IMPACT: This review identifies a significant gap in research on neutrophil extracellular traps (NETs) in pediatric cancer. It provides a summary of existing studies and their promising findings and potential, as well as a comprehensive overview of current research on NETs in certain tumor types. It also emphasizes the lack of specific studies in pediatric cancer. The review encourages the prioritization of NET research in pediatric oncology, with the aim of improving prognosis and developing new treatments through increased understanding and targeted studies.
Collapse
Affiliation(s)
- Nuria Benavent
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Bienvenida Argilés
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Antonio Juan-Ribelles
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Santiago Bonanad
- Thrombosis and Haemostasis Unit, Hematology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
5
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Plasma microRNA Environment Linked to Tissue Factor Pathway and Cancer-Associated Thrombosis: Prognostic Significance in Ovarian Cancer. Biomolecules 2024; 14:928. [PMID: 39199316 PMCID: PMC11352941 DOI: 10.3390/biom14080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Ovarian cancer (OC) is a leading cause of death among gynaecological malignancies. The haemostatic system, which controls blood flow and prevents clotting disorders, paradoxically drives OC progression while increasing the risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) have emerged as crucial in understanding VTE pathogenesis. Exploring the connection between cancer and thrombosis through these RNAs could lead to novel biomarkers of cancer-associated thrombosis (CAT) and OC, as well as potential therapeutic targets for tumour management. Thus, this study examined the impact of eight plasma miRNAs targeting the tissue factor (TF) coagulation pathway-miR-18a-5p, -19a-3p, -20a-5p, -23a-3p, -27a-3p, -103a-3p, -126-5p and -616-3p-in 55 OC patients. Briefly, VTE occurrence post-OC diagnosis was linked to shorter disease progression time (log-rank test, p = 0.024) and poorer overall survival (OS) (log-rank test, p < 0.001). High pre-chemotherapy levels of miR-20a-5p (targeting coagulation factor 3 (F3) and tissue factor pathway inhibitor 2 (TFPI2)) and miR-616-3p (targeting TFPI2) predicted VTE after OC diagnosis (χ2, p < 0.05). Regarding patients' prognosis regardless of VTE, miR-20a-5p independently predicted OC progression (adjusted hazard ratio (aHR) = 6.13, p = 0.005), while miR-616-3p significantly impacted patients' survival (aHR = 3.72, p = 0.020). Further investigation is warranted for their translation into clinical practice.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
6
|
Erhart F, Widhalm G, Kiesel B, Hackl M, Diendorfer A, Preusser M, Rössler K, Thaler J, Pabinger I, Ay C, Riedl J. The plasma miRNome and venous thromboembolism in high-grade glioma: miRNA Sequencing of a nested case-control cohort. J Cell Mol Med 2024; 28:e18149. [PMID: 38613361 PMCID: PMC11015389 DOI: 10.1111/jcmm.18149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with high-grade gliomas are at high risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) are small non-coding RNAs with multiple roles in tumour biology, haemostasis and platelet function. Their association with VTE risk in high-grade glioma has not been comprehensively mapped so far. We thus conducted a nested case-control study within 152 patients with WHO grade IV glioma that had been part of a prospective cohort study on VTE risk factors. At inclusion a single blood draw was taken, and patients were thereafter followed for a maximum of 2 years. During that time, 24 patients (16%) developed VTE. Of the other 128 patients, we randomly selected 24 age- and sex-matched controls. After quality control, the final group size was 21 patients with VTE during follow-up and 23 without VTE. Small RNA next-generation sequencing of plasma was performed. We observed that hsa-miR-451a was globally the most abundant miRNA. Notably, 51% of all miRNAs showed a correlation with platelet count. The analysis of miRNAs differentially regulated in VTE patients-with and without platelet adjustment-identified potential VTE biomarker candidates such as has-miR-221-3p. Therewith, we here provide one of the largest and deepest peripheral blood miRNA datasets of high-grade glioma patients so far, in which we identified first VTE biomarker candidates that can serve as the starting point for future research.
Collapse
Affiliation(s)
- Friedrich Erhart
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Georg Widhalm
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Barbara Kiesel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | | | | | - Matthias Preusser
- Clinical Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Karl Rössler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Johannes Thaler
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Ingrid Pabinger
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Cihan Ay
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Julia Riedl
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| |
Collapse
|
7
|
Plana E, Oto J, Herranz R, Medina P, Cana F, Miralles M. Calprotectin as a new inflammatory marker of abdominal aortic aneurysm: A pilot study. Vasc Med 2024; 29:189-199. [PMID: 38457311 DOI: 10.1177/1358863x241231494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm (AAA) is a relevant clinical problem due to the risk of rupture of progressively dilated infrarenal aorta. It is characterized by degradation of elastic fibers, extracellular matrix, and inflammation of the arterial wall. Though neutrophil infiltration is a known feature of AAA, markers of neutrophil activation are scarcely analyzed; hence, the main objective of this study. METHODS Plasma levels of main neutrophil activation markers were quantified in patients with AAA and a double control group (CTL) formed by healthy volunteers (HV) and patients with severe atherosclerosis submitted for carotid endarterectomy (CE). Calprotectin, a cytoplasmic neutrophil protein, was quantified, by Western blot, in arterial tissue samples from patients with AAA and organ donors. Colocalization of calprotectin and neutrophil elastase was assessed by immunofluorescence. RESULTS Plasma calprotectin and IL-6 were both elevated in patients with AAA compared with CTL (p ⩽ 0.0001) and a strong correlation was found between both molecules (p < 0.001). This difference was maintained when comparing with HV and CE for calprotectin but only with HV for IL-6. Calprotectin was also elevated in arterial tissue samples from patients with AAA compared with organ donors (p < 0.0001), and colocalized with neutrophils in the arterial wall. CONCLUSIONS Circulating calprotectin could be a specific AAA marker and a potential therapeutical target. Calprotectin is related to inflammation and neutrophil activation in arterial wall and independent of other atherosclerotic events.
Collapse
Affiliation(s)
- Emma Plana
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Manuel Miralles
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Tavares V, Neto BV, Marques IS, Assis J, Pereira D, Medeiros R. Cancer-associated thrombosis: What about microRNAs targeting the tissue factor coagulation pathway? Biochim Biophys Acta Rev Cancer 2024; 1879:189053. [PMID: 38092078 DOI: 10.1016/j.bbcan.2023.189053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Cancer patients are often diagnosed with venous thromboembolism (VTE), a cardiovascular disease that substantially decreases their quality of life and survival rate. Haemostasis in these patients is deregulated, which is reflected in the common presentation of a blood hypercoagulation state. Despite the inconsistent results, existing evidence suggests that the expression of microRNAs (miRNAs) is deregulated in the context of venous thrombogenesis in the general population. However, few miRNAs are known to be linked to cancer-associated VTE due to the lack of studies with oncological patients. Parallelly, coagulation factor III, also known as tissue factor (TF), tissue factor pathway inhibitor 1 (TFPI1) and tissue factor pathway inhibitor 2 (TFPI2) have been proposed to have a central role in cancer-associated VTE and tumour progression. Yet, contrary to what was expected, the role of miRNAs targeting the TF coagulation pathway (or extrinsic coagulation pathway) is poorly explored in cancer-induced thrombogenesis. In this review, in addition to miRNAs implicated in VTE, TF and TFPI1/2-targeting miRNAs were revised. Future studies should clarify the implications of these non-coding RNAs in tumour coagulome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal; Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal; Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal; Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| |
Collapse
|
9
|
Herranz R, Oto J, Hueso M, Plana E, Cana F, Castaño M, Cordón L, Ramos-Soler D, Bonanad S, Vera-Donoso CD, Martínez-Sarmiento M, Medina P. Bladder cancer patients have increased NETosis and impaired DNaseI-mediated NET degradation that can be therapeutically restored in vitro. Front Immunol 2023; 14:1171065. [PMID: 37275882 PMCID: PMC10237292 DOI: 10.3389/fimmu.2023.1171065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Background Neutrophils, key players of the immune system, also promote tumor development through the formation of neutrophil extracellular traps (NETs) in a process called NETosis. NETs are extracellular networks of DNA, histones and cytoplasmic and granular proteins (calprotectin, myeloperoxidase, elastase, etc.) released by neutrophils upon activation. NETs regulate tumor growth while promoting angiogenesis and invasiveness, and tumor cells also stimulate NETosis. Although NETosis seems to be increased in cancer patients, an increase of NETs in plasma may also be mediated by an impaired degradation by plasma DNaseI, as evidenced in several immunological disorders like lupus nephritis. However, this has never been evidenced in bladder cancer (BC) patients. Herein, we aimed to evaluate the occurrence of increased NETosis in plasma and tumor tissue of BC patients, to ascertain whether it is mediated by a reduced DNaseI activity and degradation, and to in vitro explore novel therapeutic interventions. Methods We recruited 71 BC patients from whom we obtained a plasma sample before surgery and a formalin-fixed paraffin embedded tumor tissue sample, and 64 age- and sex-matched healthy controls from whom we obtained a plasma sample. We measured NETs markers (cell-free fDNA, calprotectin, nucleosomes and neutrophil elastase) and the DNaseI activity in plasma with specific assays. We also measured NETs markers in BC tissue by immunofluorescence. Finally, we evaluated the ability of BC and control plasma to degrade in vitro-generated NETs, and evaluated the performance of the approved recombinant human DNaseI (rhDNaseI, Dornase alfa, Pulmozyme®, Roche) to restore the NET-degradation ability of plasma. In vitro experiments were performed in triplicate. Statistical analysis was conducted with Graphpad (v.8.0.1). Results NETosis occurs in BC tissue, more profusely in the muscle-invasive subtype (P<0.01), that with the worst prognosis. Compared to controls, BC patients had increased NETosis and a reduced DNaseI activity in plasma (P<0.0001), which leads to an impairment to degrade NETs (P<0.0001). Remarkably, this can be therapeutically restored with rhDNaseI to the level of healthy controls. Conclusion To the best of our knowledge, this is the first report demonstrating that BC patients have an increased NETosis systemically and in the tumor microenvironment, in part caused by an impaired DNaseI-mediated NET degradation. Remarkably, this defect can be therapeutically restored in vitro with the approved Dornase alfa, thus Pulmozyme® could become a potential therapeutic tool to locally reduce BC progression.
Collapse
Affiliation(s)
- Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Marta Hueso
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - María Castaño
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Lourdes Cordón
- Hematology Research Group, Medical Research Institute Hospital La Fe, CIBERONC (CB16/12/00284), Valencia, Spain
| | - David Ramos-Soler
- Department of Pathology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Santiago Bonanad
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Thrombosis and Haemostasis Unit, Haematology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | | | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
10
|
Castaño M, González-Cantó E, Aghababyan C, Tomás-Pérez S, Oto J, Herranz R, Medina P, Götte M, Mc Cormack BA, Marí-Alexandre J, Gilabert-Estellés J. New Roles for Old Friends: Involvement of the Innate Immune System in Tumor Progression. Int J Mol Sci 2023; 24:ijms24087604. [PMID: 37108767 PMCID: PMC10144334 DOI: 10.3390/ijms24087604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The association between the immune system and tumor progression has attracted much interest in the research community in recent years [...].
Collapse
Affiliation(s)
- María Castaño
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Muenster, Germany
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Muenster, Germany
| | - Bárbara Andrea Mc Cormack
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynecology, University of Valencia, 46014 Valencia, Spain
| |
Collapse
|
11
|
Castaño M, Tomás-Pérez S, González-Cantó E, Aghababyan C, Mascarós-Martínez A, Santonja N, Herreros-Pomares A, Oto J, Medina P, Götte M, Mc Cormack BA, Marí-Alexandre J, Gilabert-Estellés J. Neutrophil Extracellular Traps and Cancer: Trapping Our Attention with Their Involvement in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24065995. [PMID: 36983067 PMCID: PMC10056926 DOI: 10.3390/ijms24065995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, play a well-known role in defense against pathogens through phagocytosis and degranulation. However, a new mechanism involving the release of neutrophil extracellular traps (NETs) composed of DNA, histones, calprotectin, myeloperoxidase, and elastase, among others, has been described. The so-called NETosis process can occur through three different mechanisms: suicidal, vital, and mitochondrial NETosis. Apart from their role in immune defense, neutrophils and NETs have been involved in physiopathological conditions, highlighting immunothrombosis and cancer. Notably, neutrophils can either promote or inhibit tumor growth in the tumor microenvironment depending on cytokine signaling and epigenetic modifications. Several neutrophils' pro-tumor strategies involving NETs have been documented, including pre-metastatic niche formation, increased survival, inhibition of the immune response, and resistance to oncologic therapies. In this review, we focus on ovarian cancer (OC), which remains the second most incidental but the most lethal gynecologic malignancy, partly due to the presence of metastasis, often omental, at diagnosis and the resistance to treatment. We deepen the state-of-the-art on the participation of NETs in OC metastasis establishment and progression and their involvement in resistance to chemo-, immuno-, and radiotherapies. Finally, we review the current literature on NETs in OC as diagnostic and/or prognostic markers, and their contribution to disease progression at early and advanced stages. The panoramic view provided in this article might pave the way for enhanced diagnostic and therapeutic strategies to improve the prognosis of cancer patients and, specifically, OC patients.
Collapse
Affiliation(s)
- María Castaño
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Andrea Mascarós-Martínez
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Nuria Santonja
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | | | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Bárbara Andrea Mc Cormack
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynaecology, University of Valencia, 46014 Valencia, Spain
| |
Collapse
|
12
|
Tomás-Pérez S, Oto J, Aghababyan C, Herranz R, Cuadros-Lozano A, González-Cantó E, Mc Cormack B, Arrés J, Castaño M, Cana F, Martínez-Fernández L, Santonja N, Ramírez R, Herreros-Pomares A, Cañete-Mota S, Llueca A, Marí-Alexandre J, Medina P, Gilabert-Estellés J. Increased levels of NETosis biomarkers in high-grade serous ovarian cancer patients' biofluids: Potential role in disease diagnosis and management. Front Immunol 2023; 14:1111344. [PMID: 36817483 PMCID: PMC9936152 DOI: 10.3389/fimmu.2023.1111344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction High-grade serous ovarian cancer (HGSOC) is the second most frequent gynecological malignancy but the most lethal, partially due to the spread of the disease through the peritoneal cavity. Recent evidence has shown that, apart from their role in immune defense through phagocytosis and degranulation, neutrophils are able to participate in cancer progression through the release of neutrophil extracellular traps (NETs) in a process called NETosis. NETs are composed of DNA, histones, calprotectin, myeloperoxidase (MPO) and elastase and the NETosis process has been proposed as a pre-requisite for the establishment of omental metastases in early stages of HGSOC. Nevertheless, its role in advanced stages remains to be elucidated. Therefore, our principal aim is to characterize a NETosis biomarker profile in biofluids from patients with advanced HGSOC and control women. Methods Specifically, five biomarkers of NETosis (cell-free DNA (cfDNA), nucleosomes, citrullinated histone 3 (citH3), calprotectin and MPO) were quantified in plasma and peritoneal fluid (PF) samples from patients (n=45) and control women (n=40). Results Our results showed that HGSOC patients presented a higher concentration of cfDNA, citH3 and calprotectin in plasma and of all five NETosis biomarkers in PF than control women. Moreover, these biomarkers showed a strong ability to differentiate the two clinical groups. Interestingly, neoadjuvant treatment (NT) seemed to reduce NETosis biomarkers mainly systemically (plasma) compared to the tumor environment (PF). Discussion In conclusion, NETosis biomarkers are present in the tumor environment of patients with advanced HGSOC, which might contribute to the progression of the disease. Besides, plasma cfDNA and calprotectin could represent minimally invasive surrogate biomarkers for HGSOC. Finally, NT modifies NETosis biomarkers levels mainly at the systemic level.
Collapse
Affiliation(s)
- Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain
| | - Julia Oto
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Raquel Herranz
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Aitor Cuadros-Lozano
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain
| | - Bárbara Mc Cormack
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain
| | - Judith Arrés
- Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - María Castaño
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Fernando Cana
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Laura Martínez-Fernández
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Núria Santonja
- Department of Pathology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Rocío Ramírez
- Department of Medical Oncology, General University Hospital of Valencia Consortium, Valencia, Spain
| | - Alejandro Herreros-Pomares
- Department of Biotechnology, Polytechnic University of Valencia, Valencia, Spain,Cancer Biomedical Research Network Center, CIBERONC, Madrid, Spain
| | - Sarai Cañete-Mota
- Department of Obstetrics and Gynecology, General University Hospital of Castellon, Castellón, Spain
| | - Antoni Llueca
- Department of Obstetrics and Gynecology, General University Hospital of Castellon, Castellón, Spain,Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery (MUAPOS), General University Hospital of Castellon, Castellón, Spain,Department of Medicine, University Jaume I, Castellón, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Pathology, General University Hospital of Valencia Consortium, Valencia, Spain,*Correspondence: Josep Marí-Alexandre, ; Pilar Medina,
| | - Pilar Medina
- Hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain,*Correspondence: Josep Marí-Alexandre, ; Pilar Medina,
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, Valencia, Spain,Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, Valencia, Spain,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| |
Collapse
|
13
|
Anijs RJS, Nguyen YN, Cannegieter SC, Versteeg HH, Buijs JT. MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism. J Thromb Haemost 2023; 21:7-17. [PMID: 36695398 DOI: 10.1016/j.jtha.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with gene regulatory functions and are commonly dysregulated in disease states. As miRNAs are relatively stable, easily measured, and accessible from plasma or other body fluids, they are promising biomarkers for the diagnosis and prediction of cancer and cardiovascular diseases. Venous thromboembolism (VTE) is the third most common cardiovascular disease worldwide with high morbidity and mortality. The suggested roles of miRNAs in regulating the pathophysiology of VTE and as VTE biomarkers are nowadays more evidenced. Patients with cancer are at increased risk of developing VTE compared to the general population. However, current risk prediction models for cancer-associated thrombosis (CAT) perform suboptimally, and novel biomarkers are therefore urgently needed to identify which patients may benefit the most from thromboprophylaxis. This review will first discuss how miRNAs mechanistically contribute to the pathophysiology of VTE. Next, the potential use of miRNAs as predictive biomarkers for VTE in subjects without cancer is reviewed, followed by an in-depth focus on CAT. Several of the identified miRNAs in CAT were found to be differentially regulated in VTE as well, giving clues on the pathophysiology of CAT. We propose that subsequent studies should be adequately sized to determine which panel of miRNAs best predicts VTE and CAT. Thereafter, validation studies using comparable patient populations are required to ultimately unveil whether miRNAs-as standalone or incorporated into existing risk models-are promising valuable VTE and CAT biomarkers.
Collapse
Affiliation(s)
- Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yen Nhi Nguyen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Wang L, Yuan J, Cheng Y, Xu Z, Ding M, Li J, Si Y, Zong M, Fan L. Signal inhibitory receptor on leukocytes-1 regulates the formation of the neutrophil extracellular trap in rheumatoid arthritis. Mol Immunol 2022; 151:242-251. [PMID: 36182788 DOI: 10.1016/j.molimm.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Neutrophil extracellular trap (NET) has been demonstrated to play important roles in the pathogenesis and progression of rheumatoid arthritis (RA). Emerging evidence indicates that ligation of signal inhibitory receptor on leukocytes-1 (SIRL-1) can dampen Fc receptor-induced reactive oxygen species (ROS) production in primary human neutrophils by reducing extracellular signal-regulated kinase (ERK) activation. The current study aimed to determine the regulatory effects of SIRL-1 on the NET formation and ROS production by comparing RA patients and healthy controls (HC). METHODS Multiple assays were employed to detect the expression level of SIRL-1, including immunohistochemical staining, quantitative reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. Peripheral blood neutrophils from both HC and RA patients were freshly isolated. The NET formation was assessed spontaneously before and after exposure to serum samples from HC and RA patients, respectively. The quantification of NET formation was determined by fluorescence microscopy and Spectra Max M5 fluorescent plate reader. The ROS production was examined by flow cytometry. RESULTS The expression level of SIRL-1 in peripheral blood neutrophils was decreased in RA, comparing to HC. The RA-originated neutrophils showed higher levels of ROS production and NET formation. Ligation of SIRL-1 to neutrophils suppressed ROS production and NET formation. Stimulation of neutrophils with severe anti-cyclic citrullinated peptides (CCP) induced NET formation, which could be inhibited by application of SIRL-1 ligation. CONCLUSION The current study identified SIRL-1 differentially expressed in neutrophils between RA and HC. Ligation of SIRL-1 inhibited ROS production and NET formation. Downregulation of SIRL-1 showed correlation with upregulation of NET formation in RA. These findings showed the regulation of SIRL-1 on NET formation and provided a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Lan Wang
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Jiayi Yuan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Yu Cheng
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Zhen Xu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Menglei Ding
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Jing Li
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Yuying Si
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| |
Collapse
|
15
|
Anijs RJS, Laghmani EH, Ünlü B, Kiełbasa SM, Mei H, Cannegieter SC, Klok FA, Kuppen PJK, Versteeg HH, Buijs J. Tumor-expressed microRNAs associated with venous thromboembolism in colorectal cancer. Res Pract Thromb Haemost 2022; 6:e12749. [PMID: 35794963 PMCID: PMC9248312 DOI: 10.1002/rth2.12749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background Colorectal cancer patients have an increased risk of developing venous thromboembolism (VTE), resulting in increased morbidity and mortality. Because the exact mechanism is yet unknown, risk prediction is still challenging; therefore, new biomarkers are needed. MicroRNAs (miRNAs) are small, relatively stable RNAs, that regulate a variety of cellular processes, and are easily measured in body fluids. Objective The aim of this study was to identify novel tumor-expressed miRNAs associated with VTE. Methods In a cohort of 418 colorectal cancer patients diagnosed between 2001 and 2015 at the Leiden University Medical Center, 23 patients (5.5%) developed VTE 1 year before or after cancer diagnosis. Based on availability of frozen tumor material, tumor cells of 17 patients with VTE and 18 patients without VTE were isolated using laser capture microdissection and subsequently analyzed on the Illumina sequencing platform NovaSeq600 using 150-bp paired-end sequencing. Cases and controls were matched on age, sex, tumor stage, and grade. Differential miRNA expression was analyzed using edgeR. Results A total of 547 miRNAs were detected. Applying a 1.5-fold difference and false discovery rate of <0.1, 19 tumor-miRNAs were differentially regulated in VTE cases versus controls, with hsa-miR-3652, hsa-miR-92b-5p, and hsa-miR-10,394-5p as most significantly downregulated. Seven of the 19 identified miRNAs were predicted to regulate the gonadotropin-releasing hormone receptor pathway. Conclusion We identified 19 differentially regulated tumor-expressed miRNAs in colorectal cancer-associated VTE, which may provide insights into the biological mechanism and in the future might have potential to serve as novel, predictive biomarkers.
Collapse
Affiliation(s)
- Rayna J. S. Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Betül Ünlü
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Szymon M. Kiełbasa
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Hailiang Mei
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Frederikus A. Klok
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Peter J. K. Kuppen
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jeroen T. Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
16
|
Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Front Oncol 2021; 11:665235. [PMID: 34150629 PMCID: PMC8211985 DOI: 10.3389/fonc.2021.665235] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gliomas are the most common and aggressive tumors of the central nervous system. A robust and widely used blood-based biomarker for glioma has not yet been identified. In recent years, a plethora of new research on blood-based biomarkers for glial tumors has been published. In this review, we question which molecules, including proteins, nucleic acids, circulating cells, and metabolomics, are most promising blood-based biomarkers for glioma diagnosis, prognosis, monitoring and other purposes, and align them to the seminal processes of cancer. METHODS The Pubmed and Embase databases were systematically searched. Biomarkers were categorized in the identified biomolecules and biosources. Biomarker characteristics were assessed using the area under the curve (AUC), accuracy, sensitivity and/or specificity values and the degree of statistical significance among the assessed clinical groups was reported. RESULTS 7,919 references were identified: 3,596 in PubMed and 4,323 in Embase. Following screening of titles, abstracts and availability of full-text, 262 articles were included in the final systematic review. Panels of multiple biomarkers together consistently reached AUCs >0.8 and accuracies >80% for various purposes but especially for diagnostics. The accuracy of single biomarkers, consisting of only one measurement, was far more variable, but single microRNAs and proteins are generally more promising as compared to other biomarker types. CONCLUSION Panels of microRNAs and proteins are most promising biomarkers, while single biomarkers such as GFAP, IL-10 and individual miRNAs also hold promise. It is possible that panels are more accurate once these are involved in different, complementary cancer-related molecular pathways, because not all pathways may be dysregulated in cancer patients. As biomarkers seem to be increasingly dysregulated in patients with short survival, higher tumor grades and more pathological tumor types, it can be hypothesized that more pathways are dysregulated as the degree of malignancy of the glial tumor increases. Despite, none of the biomarkers found in the literature search seem to be currently ready for clinical implementation, and most of the studies report only preliminary application of the identified biomarkers. Hence, large-scale validation of currently identified and potential novel biomarkers to show clinical utility is warranted.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Romée Harting
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, Netherlands
| | - Meedie Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Myron G. Best
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
17
|
Kotsiou OS, Papagiannis D, Papadopoulou R, Gourgoulianis KI. Calprotectin in Lung Diseases. Int J Mol Sci 2021; 22:ijms22041706. [PMID: 33567747 PMCID: PMC7915440 DOI: 10.3390/ijms22041706] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Calprotectin (CLP) is a heterodimer formed by two S-100 calcium-binding cytosolic proteins, S100A8 and S100A9. It is a multifunctional protein expressed mainly by neutrophils and released extracellularly by activated or damaged cells mediating a broad range of physiological and pathological responses. It has been more than 20 years since the implication of S100A8/A9 in the inflammatory process was shown; however, the evaluation of its role in the pathogenesis of respiratory diseases or its usefulness as a biomarker for the appropriate diagnosis and prognosis of lung diseases have only gained attention in recent years. This review aimed to provide current knowledge regarding the potential role of CLP in the pathophysiology of lung diseases and describe how this knowledge is, up until now, translated into daily clinical practice. CLP is involved in numerous cellular processes in lung health and disease. In addition to its anti-microbial functions, CLP also serves as a molecule with pro- and anti-tumor properties related to cell survival and growth, angiogenesis, DNA damage response, and the remodeling of the extracellular matrix. The findings of this review potentially introduce CLP in daily clinical practice within the spectrum of respiratory diseases.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
- Correspondence:
| | - Dimitrios Papagiannis
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, UK;
| | | |
Collapse
|
18
|
Management of Cancer-Associated Thrombosis: An Evolving Area. Cancers (Basel) 2020; 12:cancers12102999. [PMID: 33081109 PMCID: PMC7602857 DOI: 10.3390/cancers12102999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
The management of cancer-associated thrombosis (CAT) is an evolving area. With the use of direct oral anticoagulants as a new option in the management of CAT, clinicians now face several choices for the individual cancer patient with venous thromboembolism. A personalized approach, matching the right drug to the right patient, based on drug properties, efficacy and safety, side effect profile of each drug, and patient values and preference, will probably supplant the one size fits all approach of use of only low-molecular-weight heparin in the near future. We herein present eight translational, clinical research, and review articles on recent advances in the management of CAT published in the Special Issue “Treatment for Cancer-Associated Thrombosis” of Cancers. For now, a multidisciplinary patient-centered approach involving a close cooperation between oncologists and other specialists is warranted to guide clinical decision making and optimize the treatment of VTE in cancer patient.
Collapse
|
19
|
Increase of Neutrophil Activation Markers in Venous Thrombosis-Contribution of Circulating Activated Protein C. Int J Mol Sci 2020; 21:ijms21165651. [PMID: 32781781 PMCID: PMC7460596 DOI: 10.3390/ijms21165651] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Upon activation, neutrophils release their content through different mechanisms like degranulation and NETosis, thus prompting thrombosis. The natural anticoagulant activated protein C (APC) inhibits neutrophil NETosis and, consequently, this may lower the levels of neutrophil activation markers in plasma, further diminishing the thrombotic risk exerted by this anticoagulant. We aimed to describe the status of markers of neutrophil activation in plasma of patients with venous thrombosis, their association with the thrombotic risk and the potential contribution of APC. We quantified three markers of neutrophil activation (cell-free DNA, calprotectin, and myeloperoxidase) in 253 patients with venous thromboembolism (VTE) in a stable phase (192 lower extremity VTE and 61 splanchnic vein thrombosis) and in 249 healthy controls. In them, we also quantified plasma APC, soluble endothelial protein C receptor (EPCR), and soluble thrombomodulin (TM), and we genotyped two genetic regulators of APC: the EPCR gene (PROCR) haplotypes (H) and the TM gene (THBD) c.1418C>T polymorphism. We found a significant increase in plasma cell-free DNA (p < 0.0001), calprotectin (p = 0.0001) and myeloperoxidase (p = 0.005) in VTE patients compared to controls. Furthermore, all three neutrophil activation markers were associated with an increase in the thrombotic risk. Cell-free DNA and calprotectin plasma levels were significantly correlated (Spearman r = 0.28; p < 0.0001). As expected, the natural anticoagulant APC was significantly decreased in VTE patients (p < 0.0001) compared to controls, what was mediated by its genetic regulators PROCR-H1, PROCR-H3, and THBD-c.1418T, and inversely correlated with cell-free DNA levels. This is the largest case-control study that demonstrates the increase in markers of neutrophil activation in vivo in VTE patients and their association with an increased thrombotic risk. This increase could be mediated by low APC levels and its genetic regulators, which could also increase NETosis, further enhancing thrombosis and inflammation.
Collapse
|