1
|
Sheng CL, Jiang BD, Zhang CQ, Huang JH, Wang Z, Xu C. USP26 suppresses type I interferon signaling by targeting TRAF3 for deubiquitination. PLoS One 2024; 19:e0307776. [PMID: 39058724 PMCID: PMC11280224 DOI: 10.1371/journal.pone.0307776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) play a pivotal role in regulating the antiviral immune response by targeting members of the RLR signaling pathway. As a pivotal member of the RLR pathway, TRAF3 is essential for activating the MAVS/TBK-1/IRF3 signaling pathway in response to viral infection. Despite its importance, the function of DUBs in the TRAF3-mediated antiviral response is poorly understood. Ubiquitin-specific protease 26 (USP26) regulates the RLR signaling pathway to modulate the antiviral immune response. The results demonstrate that EV71 infection upregulates the expression of USP26. Knockdown of USP26 significantly enhances EV71-induced expression of IFN-β and downstream interferon-stimulated genes (ISGs). Deficiency of USP26 not only inhibits EV71 replication but also weakens the host's resistance to EV71 infection. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. USP26 physically interacts with TRAF3 and reduces the K63-linked polyubiquitination of TRAF3, thereby promoting pIRF3-mediated antiviral signaling. Conversely, knockdown of USP26 leads to an increase in the K63-linked polyubiquitination of TRAF3. These findings unequivocally establish the essential role of USP26 in RLR signaling and significantly contribute to the understanding of deubiquitination-mediated regulation of innate antiviral responses.
Collapse
Affiliation(s)
- Cheng-Lan Sheng
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Bang-Dong Jiang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chun-Qiu Zhang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jin-Hua Huang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Zi Wang
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chao Xu
- Department of Clinical Laboratory, Chongming Brach Shanghai Tenth Peoples Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
2
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|
3
|
Aspenström P. The Role of Fast-Cycling Atypical RHO GTPases in Cancer. Cancers (Basel) 2022; 14:cancers14081961. [PMID: 35454871 PMCID: PMC9029563 DOI: 10.3390/cancers14081961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary For many years, cancer-associated mutations in RHO GTPases were not identified and observations suggesting roles for RHO GTPases in cancer were sparse. Instead, RHO GTPases were considered primarily to regulate cell morphology and cell migration, processes that rely on the dynamic behavior of the cytoskeleton. This notion is in contrast to the RAS proteins, which are famous oncogenes and found to be mutated at high incidence in human cancers. Recent advancements in the tools for large-scale genome analysis have resulted in a paradigm shift and RHO GTPases are today found altered in many cancer types. This review article deals with the recent views on the roles of RHO GTPases in cancer, with a focus on the so-called fast-cycling RHO GTPases. Abstract The RHO GTPases comprise a subfamily within the RAS superfamily of small GTP-hydrolyzing enzymes and have primarily been ascribed roles in regulation of cytoskeletal dynamics in eukaryotic cells. An oncogenic role for the RHO GTPases has been disregarded, as no activating point mutations were found for genes encoding RHO GTPases. Instead, dysregulated expression of RHO GTPases and their regulators have been identified in cancer, often in the context of increased tumor cell migration and invasion. In the new landscape of cancer genomics, activating point mutations in members of the RHO GTPases have been identified, in particular in RAC1, RHOA, and CDC42, which has suggested that RHO GTPases can indeed serve as oncogenes in certain cancer types. This review describes the current knowledge of these cancer-associated mutant RHO GTPases, with a focus on how their altered kinetics can contribute to cancer progression.
Collapse
Affiliation(s)
- Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
4
|
Gudiño V, Cammareri P, Billard CV, Myant KB. Negative regulation of TGFβ-induced apoptosis by RAC1B enhances intestinal tumourigenesis. Cell Death Dis 2021; 12:873. [PMID: 34564693 PMCID: PMC8464603 DOI: 10.1038/s41419-021-04177-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
RAC1B is a tumour-related alternative splice isoform of the small GTPase RAC1, found overexpressed in a large number of tumour types. Building evidence suggests it promotes tumour progression but compelling in vivo evidence, demonstrating a role in driving tumour invasion, is currently lacking. In the present study, we have overexpressed RAC1B in a colorectal cancer mouse model with potential invasive properties. Interestingly, RAC1B overexpression did not trigger tumour invasion, rather it led to an acceleration of tumour initiation and reduced mouse survival. By modelling early stages of adenoma initiation we observed a reduced apoptotic rate in RAC1B overexpressing tumours, suggesting protection from apoptosis as a mediator of this phenotype. RAC1B overexpressing tumours displayed attenuated TGFβ signalling and functional analysis in ex vivo organoid cultures demonstrated that RAC1B negatively modulates TGFβ signalling and confers resistance to TGFβ-driven cell death. This work defines a novel mechanism by which early adenoma cells can overcome the cytostatic and cytotoxic effects of TGFβ signalling and characterises a new oncogenic function of RAC1B in vivo.
Collapse
Affiliation(s)
- Victoria Gudiño
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - CIBEREHD, Barcelona, Spain
| | - Patrizia Cammareri
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Caroline V Billard
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Kevin B Myant
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
5
|
Dharmawardhane S. Rho Family GTPases in Cancer. Cancers (Basel) 2021; 13:cancers13061271. [PMID: 33809395 PMCID: PMC7998900 DOI: 10.3390/cancers13061271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
This Special Issue containing seminal contributions from international experts highlights the current understanding of Rho GTPases in cancer, with an emphasis on recognizing their central importance as critical targets for cancer therapy and for chemosensitization of current therapeutic strategies [...].
Collapse
Affiliation(s)
- Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
6
|
RAC1B Regulation of TGFB1 Reveals an Unexpected Role of Autocrine TGFβ1 in the Suppression of Cell Motility. Cancers (Basel) 2020; 12:cancers12123570. [PMID: 33260366 PMCID: PMC7760153 DOI: 10.3390/cancers12123570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Autocrine transforming growth factor (TGF)β has been implicated in epithelial-mesenchymal transition (EMT) and invasion of several cancers including pancreatic ductal adenocarcinoma (PDAC) as well as triple-negative breast cancer (TNBC). However, the precise mechanism and the upstream inducers or downstream effectors of endogenous TGFB1 remain poorly characterized. In both cancer types, the small GTPase RAC1B inhibits cell motility induced by recombinant human TGFβ1 via downregulation of the TGFβ type I receptor, ALK5, but whether RAC1B also impacts autocrine TGFβ signaling has not yet been studied. Intriguingly, RNA interference-mediated knockdown (RNAi-KD) or CRISPR/Cas-mediated knockout of RAC1B in TGFβ1-secreting PDAC-derived Panc1 cells resulted in a dramatic decrease in secreted bioactive TGFβ1 in the culture supernatants and TGFB1 mRNA expression, while the reverse was true for TNBC-derived MDA-MB-231 cells ectopically expressing RAC1B. Surprisingly, the antibody-mediated neutralization of secreted bioactive TGFβ or RNAi-KD of the endogenous TGFB1 gene, was associated with increased rather than decreased migratory activities of Panc1 and MDA-MB-231 cells, upregulation of the promigratory genes SNAI1, SNAI2 and RAC1, and downregulation of the invasion suppressor genes CDH1 (encoding E-cadherin) and SMAD3. Intriguingly, ectopic re-expression of SMAD3 was able to rescue Panc1 and MDA-MB-231 cells from the TGFB1 KD-induced rise in migratory activity. Together, these data suggest that RAC1B favors synthesis and secretion of autocrine TGFβ1 which in a SMAD3-dependent manner blocks EMT-associated gene expression and cell motility.
Collapse
|
7
|
Ungefroren H, Wellner UF, Keck T, Lehnert H, Marquardt JU. The Small GTPase RAC1B: A Potent Negative Regulator of-and Useful Tool to Study-TGFβ Signaling. Cancers (Basel) 2020; 12:E3475. [PMID: 33266416 PMCID: PMC7700615 DOI: 10.3390/cancers12113475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
RAC1 and its alternatively spliced isoform, RAC1B, are members of the Rho family of GTPases. Both isoforms are involved in the regulation of actin cytoskeleton remodeling, cell motility, cell proliferation, and epithelial-mesenchymal transition (EMT). Compared to RAC1, RAC1B exhibits a number of distinctive features with respect to tissue distribution, downstream signaling and a role in disease conditions like inflammation and cancer. The subcellular locations and interaction partners of RAC1 and RAC1B vary depending on their activation state, which makes RAC1 and RAC1B ideal candidates to establish cross-talk with cancer-associated signaling pathways-for instance, interactions with signaling by transforming growth factor β (TGFβ), a known tumor promoter. Although RAC1 has been found to promote TGFβ-driven tumor progression, recent observations in pancreatic carcinoma cells surprisingly revealed that RAC1B confers anti-oncogenic properties, i.e., through inhibiting TGFβ-induced EMT. Since then, an unexpected array of mechanisms through which RAC1B cross-talks with TGFβ signaling has been demonstrated. However, rather than being uniformly inhibitory, RAC1B interacts with TGFβ signaling in a way that results in the selective blockade of tumor-promoting pathways, while concomitantly allowing tumor-suppressive pathways to proceed. In this review article, we are going to discuss the specific interactions between RAC1B and TGFβ signaling, which occur at multiple levels and include various components such as ligands, receptors, cytosolic mediators, transcription factors, and extracellular inhibitors of TGFβ ligands.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany;
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, Campus Kiel, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Ulrich F. Wellner
- Clinic for Surgery, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany; (U.F.W.); (T.K.)
| | - Tobias Keck
- Clinic for Surgery, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany; (U.F.W.); (T.K.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany;
| |
Collapse
|