1
|
Ransdell-Green EC, Baranowska-Kortylewicz J, Wang D. Advances in Fluorescence Techniques for the Detection of Hydroxyl Radicals near DNA and Within Organelles and Membranes. Antioxidants (Basel) 2025; 14:79. [PMID: 39857413 PMCID: PMC11762621 DOI: 10.3390/antiox14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Hydroxyl radicals (•OH), the most potent oxidants among reactive oxygen species (ROS), are a major contributor to oxidative damage of biomacromolecules, including DNA, lipids, and proteins. The overproduction of •OH is implicated in the pathogenesis of numerous diseases such as cancer, neurodegenerative disorders, and some cardiovascular pathologies. Given the localized nature of •OH-induced damage, detecting •OH, specifically near DNA and within organelles, is crucial for understanding their pathological roles. The major challenge of •OH detection results from their short half-life, high reactivity, and low concentrations within biological systems. As a result, there is a growing need for the development of highly sensitive and selective probes that can detect •OH in specific cellular regions. This review focuses on the advances in fluorescence probes designed to detect •OH near DNA and within cellular organelles and membranes. The key designs of the probes are highlighted, with emphasis on their strengths, applications, and limitations. Recommendations for future research directions are given to further enhance probe development and characterization.
Collapse
Affiliation(s)
| | - Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
2
|
Chen P, Cao XW, Dong JW, Zhao J, Wang FJ. Saponin and Ribosome-Inactivating Protein Synergistically Trigger Lysosome-Dependent Apoptosis by Inhibiting Lysophagy: Potential to Become a New Antitumor Strategy. Mol Pharm 2024; 21:2993-3005. [PMID: 38722865 DOI: 10.1021/acs.molpharmaceut.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The susceptibility of lysosomal membranes in tumor cells to cationic amphiphilic drugs (CADs) enables CADs to induce lysosomal membrane permeabilization (LMP) and trigger lysosome-dependent cell death (LDCD), suggesting a potential antitumor therapeutic approach. However, the existence of intrinsic lysosomal damage response mechanisms limits the display of the pharmacological activity of CADs. In this study, we report that low concentrations of QS-21, a saponin with cationic amphiphilicity extracted from Quillaja Saponaria tree, can induce LMP but has nontoxicity to tumor cells. QS-21 and MAP30, a type I ribosome-inactivating protein, synergistically induce apoptosis in tumor cells at low concentrations of both. Mechanistically, QS-21-induced LMP helps MAP30 escape from endosomes or lysosomes and subsequently enter the endoplasmic reticulum, where MAP30 downregulates the expression of autophagy-associated LC3 proteins, thereby inhibiting lysophagy. The inhibition of lysophagy results in the impaired clearance of damaged lysosomes, leading to the leakage of massive lysosomal contents such as cathepsins into the cytoplasm, ultimately triggering LDCD. In summary, our study showed that coadministration of QS-21 and MAP30 amplified the lysosomal disruption and can be a new synergistic LDCD-based antitumor therapy.
Collapse
Affiliation(s)
- Piao Chen
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
| | - Jing-Wen Dong
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
3
|
Roy JW, Wajnberg G, Ouellette A, Boucher JE, Lacroix J, Chacko S, Ghosh A, Ouellette RJ, Lewis SM. Small RNA sequencing analysis of peptide-affinity isolated plasma extracellular vesicles distinguishes pancreatic cancer patients from non-affected individuals. Sci Rep 2023; 13:9251. [PMID: 37286718 DOI: 10.1038/s41598-023-36370-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high fatality rate, mainly due to its asymptomatic nature until late-stage disease and therefore delayed diagnosis that leads to a lack of timely treatment intervention. Consequently, there is a significant need for better methods to screen populations that are at high risk of developing PDAC. Such advances would result in earlier diagnosis, more treatment options, and ultimately better outcomes for patients. Several recent studies have applied the concept of liquid biopsy, which is the sampling of a biofluid (such as blood plasma) for the presence of disease biomarkers, to develop screening approaches for PDAC; several of these studies have focused on analysis of extracellular vesicles (EVs) and their cargoes. While these studies have identified many potential biomarkers for PDAC that are present within EVs, their application to clinical practice is hindered by the lack of a robust, reproducible method for EV isolation and analysis that is amenable to a clinical setting. Our previous research has shown that the Vn96 synthetic peptide is indeed a robust and reproducible method for EV isolation that has the potential to be used in a clinical setting. We have therefore chosen to investigate the utility of the Vn96 synthetic peptide for this isolation of EVs from human plasma and the subsequent detection of small RNA biomarkers of PDAC by Next-generation sequencing (NGS) analysis. We find that analysis of small RNA from Vn96-isolated EVs permits the discrimination of PDAC patients from non-affected individuals. Moreover, analyses of all small RNA species, miRNAs, and lncRNA fragments are most effective at segregating PDAC patients from non-affected individuals. Several of the identified small RNA biomarkers have been previously associated with and/or characterized in PDAC, indicating the validity of our findings, whereas other identified small RNA biomarkers may have novel roles in PDAC or cancer in general. Overall, our results provide a basis for a clinically-amendable detection and/or screening strategy for PDAC using a liquid biopsy approach that relies on Vn96-mediated isolation of EVs from plasma.
Collapse
Affiliation(s)
- Jeremy W Roy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | | | | | | | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, NB, Canada.
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
4
|
Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Though numerous external-stimuli-triggered tumor therapies, including phototherapy, radiotherapy, and sonodynamic therapy have made great progress in cancer therapy, the low penetration depth of the laser, safety concerns of radiation, the therapeutic resistance, and the spatio-temporal constraints of the specific equipment restrict their convenient clinical applications. What is more, the inherent physiological barriers of the tumor microenvironment (TME), including hypoxia, heterogeneity, and high expression of antioxidant molecules also restrict the efficiency of tumor therapy. As a result, the development of nanoplatforms responsive to endogenous stimuli (such as glucose, acidic pH, cellular redox events, and etc.) has attracted great attention for starvation therapy, ion therapy, prodrug-mediated chemotherapy, or enzyme-catalyzed therapy. In addition, nanomedicines can be modified by some targeted units for precisely locating in subcellular organelles and boosting the destroying of tumor tissue, decreasing the dosage of nanoagents, reducing side effects, and enhancing the therapeutic efficiency. Herein, the properties of the TME, the advantages of endogenous stimuli, and the principles of subcellular-organelle-targeted strategies will be emphasized. Some necessary considerations for the exploitation of precision medicine and clinical translation of multifunctional nanomedicines in the future are also pointed out.
Collapse
Affiliation(s)
- Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuqi Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxue Hu
- Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Yujie Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct Target Ther 2021; 6:379. [PMID: 34744168 PMCID: PMC8572923 DOI: 10.1038/s41392-021-00778-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/26/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.
Collapse
|
6
|
Brun S, Pascussi JM, Gifu EP, Bestion E, Macek-Jilkova Z, Wang G, Bassissi F, Mezouar S, Courcambeck J, Merle P, Decaens T, Pannequin J, Halfon P, Caron de Fromentel C. GNS561, a New Autophagy Inhibitor Active against Cancer Stem Cells in Hepatocellular Carcinoma and Hepatic Metastasis from Colorectal Cancer. J Cancer 2021; 12:5432-5438. [PMID: 34405006 PMCID: PMC8364651 DOI: 10.7150/jca.58533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with advanced hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC) have a very poor prognosis due to the lack of efficient treatments. As observed in several other tumors, the effectiveness of treatments is mainly hampered by the presence of a highly tumorigenic sub-population of cancer cells called cancer stem cells (CSCs). Indeed, CSCs are resistant to chemotherapy and radiotherapy and can regenerate the tumor bulk. Hence, innovative drugs that are efficient against both bulk tumor cells and CSCs would likely improve cancer treatment. In this study, we demonstrated that GNS561, a new autophagy inhibitor that induces lysosomal cell death, showed significant activity against not only the whole tumor population but also a sub-population displaying CSC features (high ALDH activity and tumorsphere formation ability) in HCC and in liver mCRC cell lines. These results were confirmed in vivo in HCC from a DEN-induced cirrhotic rat model in which GNS561 decreased tumor growth and reduced the frequency of CSCs (CD90+CD45-). Thus, GNS561 offers great promise for cancer therapy by exterminating both the tumor bulk and the CSC sub-population. Accordingly, a global phase 1b clinical trial in liver cancers was recently completed.
Collapse
Affiliation(s)
| | | | - Elena Patricia Gifu
- CRCL, INSERM U1052, CNRS 5286, Université Lyon 1 ‐ Centre Léon Bérard, Lyon, France
| | - Eloïne Bestion
- Genoscience Pharma, Marseille, France
- Aix-Marseille Univ, MEPHI, APHM, IRD, IHU Méditerranée Infection, Marseille, France
| | - Zuzana Macek-Jilkova
- Institute for Advanced Biosciences, Research Center UGA, Inserm U 1209, CNRS 5309, La Tronche, France
- University of Grenoble Alpes, Faculté de Médecine, France
- Clinique Universitaire d'Hépato‐gastroentérologie, Pôle Digidune, CHU Grenoble, France
| | - Guanxiong Wang
- CRCL, INSERM U1052, CNRS 5286, Université Lyon 1 ‐ Centre Léon Bérard, Lyon, France
| | | | | | | | - Philippe Merle
- CRCL, INSERM U1052, CNRS 5286, Université Lyon 1 ‐ Centre Léon Bérard, Lyon, France
- Hepatology and Gastroenterology Unit, Croix-Rousse Hospital, Hospices Civils de Lyon, France
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center UGA, Inserm U 1209, CNRS 5309, La Tronche, France
- University of Grenoble Alpes, Faculté de Médecine, France
- Clinique Universitaire d'Hépato‐gastroentérologie, Pôle Digidune, CHU Grenoble, France
| | - Julie Pannequin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
7
|
Induction of Lysosomal Membrane Permeabilization Is a Major Event of FTY720-Mediated Non-Apoptotic Cell Death in Human Glioma Cells. Cancers (Basel) 2020; 12:cancers12113388. [PMID: 33207629 PMCID: PMC7696845 DOI: 10.3390/cancers12113388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary FTY720, a sphingosine-1-phosphate (S1P) analog, is a potent immunosuppressant for the treatment of multiple sclerosis. In addition to being an immune modulator, FTY720 also features antitumor activity in several cancer models, but the molecular mechanisms are unclear. Here, we extended our research to analyze the signaling pathways mediating FTY720-induced cell death. FTY720 did not induce apoptotic cell death, autophagy, paraptosis, or necroptosis in glioma cells. Interestingly, FTY720 accumulated in lysosomes, resulting in the induction of lysosomal membrane permeabilization (LMP). Inhibition of LMP by overexpression of HSP70 and cathepsin inhibitors blocked FTY720-induced cell death. These data suggest that FTY720 induces cell death induced by LMP in glioma cells. Abstract FTY720, a sphingosine-1-phosphate (S1P) receptor modulator, is a synthetic compound produced by the modification of a metabolite from I. sinclairii. Here, we found that FTY720 induced non-apoptotic cell death in human glioma cells (U251MG, U87MG, and U118MG). FTY720 (10 µM) dramatically induced cytoplasmic vacuolation in glioma cells. However, FTY720-mediated vacuolation and cell death are not associated with autophagy. Genetic or pharmacological inhibition of autophagy did not inhibit FTY720-induced cell death. Herein, we detected that FTY720-induced cytoplasmic vacuoles were stained with lysotracker red, and FTY720 induced lysosomal membrane permeabilization (LMP). Interestingly, cathepsin inhibitors (E64D and pepstatin A) and ectopic expression of heat shock protein 70 (HSP70), which is an endogenous inhibitor of LMP, markedly inhibited FTY720-induced cell death. Our results demonstrated that FTY720 induced non-apoptotic cell death via the induction of LMP in human glioma cells.
Collapse
|
8
|
Targeting SRC Kinase Signaling in Pancreatic Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21207437. [PMID: 33050159 PMCID: PMC7588004 DOI: 10.3390/ijms21207437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The proto-oncogene nonreceptor tyrosine-protein kinase SRC is a member of the SRC family of tyrosine kinases (SFKs), and its activation and overexpression have been shown to play a protumorigenic role in multiple solid cancers, including pancreatic ductal adenocarcinoma (PDAC). PDAC is currently the seventh-leading cause of cancer-related death worldwide, and, by 2030, it is predicted to become the second-leading cause of cancer-related death in the United States. PDAC is characterized by its high lethality (5-year survival of rate of <10%), invasiveness, and chemoresistance, all of which have been shown to be due to the presence of pancreatic cancer stem cells (PaCSCs) within the tumor. Due to the demonstrated overexpression of SRC in PDAC, we set out to determine if SRC kinases are important for PaCSC biology using pharmacological inhibitors of SRC kinases (dasatinib or PP2). Treatment of primary PDAC cultures established from patient-derived xenografts with dasatinib or PP2 reduced the clonogenic, self-renewal, and tumor-initiating capacity of PaCSCs, which we attribute to the downregulation of key signaling factors such as p-FAK, p-ERK1-2, and p-AKT. Therefore, this study not only validates that SRC kinases are relevant and biologically important for PaCSCs but also suggests that inhibitors of SRC kinases may represent a possible future treatment option for PDAC patients, although further studies are still needed.
Collapse
|