1
|
Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y, Ma C, Liu J. R-loop and diseases: the cell cycle matters. Mol Cancer 2024; 23:84. [PMID: 38678239 PMCID: PMC11055327 DOI: 10.1186/s12943-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yue Jiao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunming Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
2
|
Viera T, Abfalterer Q, Neal A, Trujillo R, Patidar PL. Molecular Basis of XRN2-Deficient Cancer Cell Sensitivity to Poly(ADP-ribose) Polymerase Inhibition. Cancers (Basel) 2024; 16:595. [PMID: 38339346 PMCID: PMC10854503 DOI: 10.3390/cancers16030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
R-loops (RNA-DNA hybrids with displaced single-stranded DNA) have emerged as a potent source of DNA damage and genomic instability. The termination of defective RNA polymerase II (RNAPII) is one of the major sources of R-loop formation. 5'-3'-exoribonuclease 2 (XRN2) promotes genome-wide efficient RNAPII termination, and XRN2-deficient cells exhibit increased DNA damage emanating from elevated R-loops. Recently, we showed that DNA damage instigated by XRN2 depletion in human fibroblast cells resulted in enhanced poly(ADP-ribose) polymerase 1 (PARP1) activity. Additionally, we established a synthetic lethal relationship between XRN2 and PARP1. However, the underlying cellular stress response promoting this synthetic lethality remains elusive. Here, we delineate the molecular consequences leading to the synthetic lethality of XRN2-deficient cancer cells induced by PARP inhibition. We found that XRN2-deficient lung and breast cancer cells display sensitivity to two clinically relevant PARP inhibitors, Rucaparib and Olaparib. At a mechanistic level, PARP inhibition combined with XRN2 deficiency exacerbates R-loop and DNA double-strand break formation in cancer cells. Consistent with our previous findings using several different siRNAs, we also show that XRN2 deficiency in cancer cells hyperactivates PARP1. Furthermore, we observed enhanced replication stress in XRN2-deficient cancer cells treated with PARP inhibitors. Finally, the enhanced stress response instigated by compromised PARP1 catalytic function in XRN2-deficient cells activates caspase-3 to initiate cell death. Collectively, these findings provide mechanistic insights into the sensitivity of XRN2-deficient cancer cells to PARP inhibition and strengthen the underlying translational implications for targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | - Praveen L. Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| |
Collapse
|
3
|
RNA:DNA hybrids from Okazaki fragments contribute to establish the Ku-mediated barrier to replication-fork degradation. Mol Cell 2023; 83:1061-1074.e6. [PMID: 36868227 DOI: 10.1016/j.molcel.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/09/2022] [Accepted: 02/04/2023] [Indexed: 03/05/2023]
Abstract
Nonhomologous end-joining (NHEJ) factors act in replication-fork protection, restart, and repair. Here, we identified a mechanism related to RNA:DNA hybrids to establish the NHEJ factor Ku-mediated barrier to nascent strand degradation in fission yeast. RNase H activities promote nascent strand degradation and replication restart, with a prominent role of RNase H2 in processing RNA:DNA hybrids to overcome the Ku barrier to nascent strand degradation. RNase H2 cooperates with the MRN-Ctp1 axis to sustain cell resistance to replication stress in a Ku-dependent manner. Mechanistically, the need of RNaseH2 in nascent strand degradation requires the primase activity that allows establishing the Ku barrier to Exo1, whereas impairing Okazaki fragment maturation reinforces the Ku barrier. Finally, replication stress induces Ku foci in a primase-dependent manner and favors Ku binding to RNA:DNA hybrids. We propose a function for the RNA:DNA hybrid originating from Okazaki fragments in controlling the Ku barrier specifying nuclease requirement to engage fork resection.
Collapse
|
4
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Dang TT, Lerner M, Saunders D, Smith N, Gulej R, Zalles M, Towner RA, Morales JC. XRN2 Is Required for Cell Motility and Invasion in Glioblastomas. Cells 2022; 11:1481. [PMID: 35563787 PMCID: PMC9100175 DOI: 10.3390/cells11091481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
One of the major obstacles in treating brain cancers, particularly glioblastoma multiforme, is the occurrence of secondary tumor lesions that arise in areas of the brain and are inoperable while obtaining resistance to current therapeutic agents. Thus, gaining a better understanding of the cellular factors that regulate glioblastoma multiforme cellular movement is imperative. In our study, we demonstrate that the 5'-3' exoribonuclease XRN2 is important to the invasive nature of glioblastoma. A loss of XRN2 decreases cellular speed, displacement, and movement through a matrix of established glioblastoma multiforme cell lines. Additionally, a loss of XRN2 abolishes tumor formation in orthotopic mouse xenograft implanted with G55 glioblastoma multiforme cells. One reason for these observations is that loss of XRN2 disrupts the expression profile of several cellular factors that are important for tumor invasion in glioblastoma multiforme cells. Importantly, XRN2 mRNA and protein levels are elevated in glioblastoma multiforme patient samples. Elevation in XRN2 mRNA also correlates with poor overall patient survival. These data demonstrate that XRN2 is an important cellular factor regulating one of the major obstacles in treating glioblastomas and is a potential molecular target that can greatly enhance patient survival.
Collapse
Affiliation(s)
- Tuyen T. Dang
- Department of Neurosurgery, Sttephenson Cancer Center University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| | - Megan Lerner
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| | - Debra Saunders
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Nataliya Smith
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Rafal Gulej
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Michelle Zalles
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Rheal A. Towner
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Julio C. Morales
- Department of Neurosurgery, Sttephenson Cancer Center University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
6
|
Kemiha S, Poli J, Lin YL, Lengronne A, Pasero P. Toxic R-loops: Cause or consequence of replication stress? DNA Repair (Amst) 2021; 107:103199. [PMID: 34399314 DOI: 10.1016/j.dnarep.2021.103199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.
Collapse
Affiliation(s)
- Samira Kemiha
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
7
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|
8
|
Audoynaud C, Vagner S, Lambert S. Non-homologous end-joining at challenged replication forks: an RNA connection? Trends Genet 2021; 37:973-985. [PMID: 34238592 DOI: 10.1016/j.tig.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022]
Abstract
Defective DNA replication, known as 'replication stress', is a source of DNA damage, a hallmark of numerous human diseases, including cancer, developmental defect, neurological disorders, and premature aging. Recent work indicates that non-homologous end-joining (NHEJ) is unexpectedly active during DNA replication to repair replication-born DNA lesions and to safeguard replication fork integrity. However, erroneous NHEJ events are deleterious to genome stability. RNAs are novel regulators of NHEJ activity through their ability to modulate the assembly of repair complexes in trans. At DNA damage sites, RNAs and DNA-embedded ribonucleotides modulate repair efficiency and fidelity. We discuss here how RNAs and associated proteins, including RNA binding proteins, may regulate NHEJ to sustain genome stability during DNA replication.
Collapse
Affiliation(s)
- Charlotte Audoynaud
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France
| | - Stéphan Vagner
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France
| | - Sarah Lambert
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France.
| |
Collapse
|
9
|
Dang TT, Morales JC. Loss of CENP-I Impairs Homologous Recombination and Sensitizes Cells to PARP1 Inhibition. Cancers (Basel) 2021; 13:3202. [PMID: 34206916 PMCID: PMC8267748 DOI: 10.3390/cancers13133202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Centromere Protein I (CENP-I) is a member of the CENP-H/I/K complex. CENP-H/I/K is a major component of the inner kinetochore and aids in ensuring proper chromosomal segregation during mitosis. In addition to this chromosomal segregation function, CENP-I also plays a role in DNA double-strand break (DSB) repair. Loss of CENP-I leads to increased endogenous 53BP1 foci and R-loop formation, while reducing cellular survival after ionizing radiation and Niraparib, a PARP1 small molecule inhibitor, exposures. Cells lacking CENP-I display delayed 53BP1 foci regression, an indication that DSB repair is impaired. Additionally, loss of CENP-I impairs the homologous recombination DSB repair pathway, while having no effect on the non-homologous end-joining pathway. Interestingly, we find that RNaseH1 expression restores HR capacity in CENP-I deficient cells. Importantly, CENP-I expression is elevated in glioma tissue as compared to normal brain tissue. This elevated expression also correlates with poor overall patient survival. These data highlight the multi-functional role CENP-I plays in maintaining genetic, as well as chromosomal, stability and tumor survival.
Collapse
Affiliation(s)
| | - Julio C. Morales
- Stephenson Cancer Center, Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
10
|
Monie DD, Correia C, Zhang C, Ung CY, Vile RG, Li H. Modular network mechanism of CCN1-associated resistance to HSV-1-derived oncolytic immunovirotherapies for glioblastomas. Sci Rep 2021; 11:11198. [PMID: 34045642 PMCID: PMC8159930 DOI: 10.1038/s41598-021-90718-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBMs) are the most common and lethal primary brain malignancy in adults. Oncolytic virus (OV) immunotherapies selectively kill GBM cells in a manner that elicits antitumor immunity. Cellular communication network factor 1 (CCN1), a protein found in most GBM microenvironments, expression predicts resistance to OVs, particularly herpes simplex virus type 1 (HSV-1). This study aims to understand how extracellular CCN1 alters the GBM intracellular state to confer OV resistance. Protein-protein interaction network information flow analyses of LN229 human GBM transcriptomes identified 39 novel nodes and 12 binary edges dominating flow in CCN1high cells versus controls. Virus response programs, notably against HSV-1, and cytokine-mediated signaling pathways are highly enriched. Our results suggest that CCN1high states exploit IDH1 and TP53, and increase dependency on RPL6, HUWE1, and COPS5. To validate, we reproduce our findings in 65 other GBM cell line (CCLE) and 174 clinical GBM patient sample (TCGA) datasets. We conclude through our generalized network modeling and system level analysis that CCN1 signals via several innate immune pathways in GBM to inhibit HSV-1 OVs before transduction. Interventions disrupting this network may overcome immunovirotherapy resistance.
Collapse
Affiliation(s)
- Dileep D Monie
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard G Vile
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 2021; 23:305-313. [PMID: 33837288 DOI: 10.1038/s41556-021-00663-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
R-loops are non-B DNA structures with intriguing dual consequences for gene expression and genome stability. In addition to their recognized roles in triggering DNA double-strand breaks (DSBs), R-loops have recently been demonstrated to accumulate in cis to DSBs, especially those induced in transcriptionally active loci. In this Review, we discuss whether R-loops actively participate in DSB repair or are detrimental by-products that must be removed to avoid genome instability.
Collapse
|
13
|
Dutertre M, Sfaxi R, Vagner S. Reciprocal Links between Pre-messenger RNA 3'-End Processing and Genome Stability. Trends Biochem Sci 2021; 46:579-594. [PMID: 33653631 DOI: 10.1016/j.tibs.2021.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The 3'-end processing of most pre-messenger RNAs (pre-mRNAs) involves RNA cleavage and polyadenylation and is coupled to transcription termination. In both yeast and human cells, pre-mRNA 3'-end cleavage is globally inhibited by DNA damage. Recently, further links between pre-mRNA 3'-end processing and the control of genome stability have been uncovered, as reviewed here. Upon DNA damage, various genes related to the DNA damage response (DDR) escape 3'-end processing inhibition or are regulated through alternative polyadenylation (APA). Conversely, various pre-mRNA 3'-end processing factors prevent genome instability and are found at sites of DNA damage. Finally, the reciprocal link between pre-mRNA 3'-end processing and genome stability control seems important because it is conserved in evolution and involved in disease development.
Collapse
Affiliation(s)
- Martin Dutertre
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer.
| | - Rym Sfaxi
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Stéphan Vagner
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer.
| |
Collapse
|