1
|
Li L, Chao Z, Peng H, Hu Z, Wang Z, Zeng X. Tumor ABCC4-mediated release of PGE2 induces CD8 + T cell dysfunction and impairs PD-1 blockade in prostate cancer. Int J Biol Sci 2024; 20:4424-4437. [PMID: 39247809 PMCID: PMC11380449 DOI: 10.7150/ijbs.99716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer presents as an immunologically "cold" malignancy, characterized by a lack of response to immunotherapy in the majority of patients. The dysfunction of prostate tumor metabolism is recognized as a critical factor in immune evasion, resulting in reduced effectiveness of immunotherapeutic interventions. Despite this awareness, the precise molecular mechanisms underpinning metabolic dysregulation in prostate cancer and its intricate relationship with immune evasion remain incompletely elucidated. In this study, we introduce the multi-drug resistance protein ABCC4/MRP4 as a key player prominently expressed in prostate cancer, exerting a pivotal role in suppressing the activity of intratumoral CD8+ T cells. Depletion of ABCC4 in prostate cancer cells halts the release of prostaglandin E2 (PGE2), a molecule that diminishes the population of CD8+ T cells and curtails their cytotoxic capabilities. Conversely, constraining the activation of PGE2 signaling in CD8+ T cells effectively improved the efficacy of prostate cancer treatment with PD-1 blockade. During this process, downregulation of the JAK1-STAT3 pathway and depolarization of mitochondria emerge as crucial factors contributing to T cell anergy. Collectively, our research identifies the ABCC4-PGE2 axis as a promising target for reversing dysfunction within tumor-infiltrating lymphocytes (TILs) and augmenting the suboptimal responsiveness to immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
3
|
Wang T, Rao D, Fu C, Luo Y, Lu J, Liang H, Xia L, Huang W. Pan-cancer analysis of ABCC1 as a potential prognostic and immunological biomarker. Transl Oncol 2024; 41:101882. [PMID: 38290247 PMCID: PMC10844751 DOI: 10.1016/j.tranon.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
ABCC1 belongs to the ATP-binding cassette (ABC) superfamily, which encompasses a total of 48 constituent members. ABCC1 has been shown to be associated with the growth, progression, and drug resistance of various types of cancer. However, the impact of ABCC1 on cancer immune infiltration and pan-cancer prognosis has been rarely studied. Our comprehensive pan-cancer analysis unveiled elevated ABCC1 expression across various cancers. ABCC1 overexpression consistently predicted unfavorable outcomes based on TCGA data. Moreover, ABCC1 expression exhibited intricate associations with diverse immune-related genes and demonstrated a close correlation with immune scores across multiple tumor types. Analysis of scRNA-seq data from the GEO database revealed that the expression of ABCC1 in hepatocellular carcinoma (HCC) cells is significant positively correlated with macrophage infiltration. Furthermore, various in vitro and in vivo experiments substantiated the role of ABCC1 in promoting the progression of HCC, along with increased macrophage recruitment. Based on the results, we propose ABCC1 as a potentially valuable prognostic indicator and a prospective target for immune-based cancer therapies.
Collapse
Affiliation(s)
- Tiantian Wang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, China; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Dean Rao
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, China; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Chenan Fu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, China; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Yiming Luo
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, China; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Junli Lu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, China; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Huifang Liang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, China; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, China; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Cunha A, Silva PMA, Sarmento B, Queirós O. Targeting Glucose Metabolism in Cancer Cells as an Approach to Overcoming Drug Resistance. Pharmaceutics 2023; 15:2610. [PMID: 38004589 PMCID: PMC10675572 DOI: 10.3390/pharmaceutics15112610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The "Warburg effect" consists of a metabolic shift in energy production from oxidative phosphorylation to glycolysis. The continuous activation of glycolysis in cancer cells causes rapid energy production and an increase in lactate, leading to the acidification of the tumour microenvironment, chemo- and radioresistance, as well as poor patient survival. Nevertheless, the mitochondrial metabolism can be also involved in aggressive cancer characteristics. The metabolic differences between cancer and normal tissues can be considered the Achilles heel of cancer, offering a strategy for new therapies. One of the main causes of treatment resistance consists of the increased expression of efflux pumps, and multidrug resistance (MDR) proteins, which are able to export chemotherapeutics out of the cell. Cells expressing MDR proteins require ATP to mediate the efflux of their drug substrates. Thus, inhibition of the main energy-producing pathways in cancer cells, not only induces cancer cell death per se, but also overcomes multidrug resistance. Given that most anticancer drugs do not have the ability to distinguish normal cells from cancer cells, a number of drug delivery systems have been developed. These nanodrug delivery systems provide flexible and effective methods to overcome MDR by facilitating cellular uptake, increasing drug accumulation, reducing drug efflux, improving targeted drug delivery, co-administering synergistic agents, and increasing the half-life of drugs in circulation.
Collapse
Affiliation(s)
- Andrea Cunha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- 1H—TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 3810-193 Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| |
Collapse
|
5
|
Abdelmaksoud NM, Abulsoud AI, Doghish AS, Abdelghany TM. From resistance to resilience: Uncovering chemotherapeutic resistance mechanisms; insights from established models. Biochim Biophys Acta Rev Cancer 2023; 1878:188993. [PMID: 37813202 DOI: 10.1016/j.bbcan.2023.188993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Despite the tremendous advances in cancer treatment, resistance to chemotherapeutic agents impedes higher success rates and accounts for major relapses in cancer therapy. Moreover, the resistance of cancer cells to chemotherapy is linked to low efficacy and high recurrence of cancer. To stand up against chemotherapy resistance, different models of chemotherapy resistance have been established to study various molecular mechanisms of chemotherapy resistance. Consequently, this review is going to discuss different models of induction of chemotherapy resistance, highlighting the most common mechanisms of cancer resistance against different chemotherapeutic agents, including overexpression of efflux pumps, drug inactivation, epigenetic modulation, and epithelial-mesenchymal transition. This review aims to open a new avenue for researchers to lower the resistance to the existing chemotherapeutic agents, develop new therapeutic agents with low resistance potential, and establish possible prognostic markers for chemotherapy resistance.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| |
Collapse
|
6
|
Marjamaa A, Gibbs B, Kotrba C, Masamha CP. The role and impact of alternative polyadenylation and miRNA regulation on the expression of the multidrug resistance-associated protein 1 (MRP-1/ABCC1) in epithelial ovarian cancer. Sci Rep 2023; 13:17476. [PMID: 37838788 PMCID: PMC10576765 DOI: 10.1038/s41598-023-44548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
The ATP-binding cassette transporter (ABCC1) is associated with poor survival and chemotherapy drug resistance in high grade serous ovarian cancer (HGSOC). The mechanisms driving ABCC1 expression are poorly understood. Alternative polyadenylation (APA) can give rise to ABCC1 mRNAs which differ only in the length of their 3'untranslated regions (3'UTRs) in a process known as 3'UTR-APA. Like other ABC transporters, shortening of the 3'UTR of ABCC1 through 3'UTR-APA would eliminate microRNA binding sites found within the longer 3'UTRs, hence eliminating miRNA regulation and altering gene expression. We found that the HGSOC cell lines Caov-3 and Ovcar-3 express higher levels of ABCC1 protein than normal cells. APA of ABCC1 occurs in all three cell lines resulting in mRNAs with both short and long 3'UTRs. In Ovcar-3, mRNAs with shorter 3'UTRs dominate resulting in a six-fold increase in protein expression. We were able to show that miR-185-5p and miR-326 both target the ABCC1 3'UTR. Hence, 3'UTR-APA should be considered as an important regulator of ABCC1 expression in HGSOC. Both HGSOC cell lines are cisplatin resistant, and we used erastin to induce ferroptosis, an alternative form of cell death. We showed that we could induce ferroptosis and sensitize the cisplatin resistant cells to cisplatin by using erastin. Knocking down ABCC1 resulted in decreased cell viability, but did not contribute to erastin induced ferroptosis.
Collapse
Affiliation(s)
- Audrey Marjamaa
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN, 46208, USA
| | - Bettine Gibbs
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chloe Kotrba
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
| | | |
Collapse
|
7
|
Tsukahara T, Sasaki M, Haniu H, Matsuda Y. Lysophospholipids transport across blood-brain barrier in an in vitro reconstruction model. Biochem Biophys Res Commun 2023; 676:91-96. [PMID: 37499369 DOI: 10.1016/j.bbrc.2023.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
This study builds on our previous study, which highlighted the need for further research on the potential use of lysophospholipid (LPL) supplementation to prevent chronic and age-related diseases. We aimed to evaluate the transmembrane transport of LPL across rat and monkey blood-brain barrier (BBB) models. An in vitro monkey BBB model is required to elucidate the differences between rat and primate BBB-related data and to measure the permeability of LPLs being researched in relation to the human BBB. Based on our previous experiment, porcine liver decomposition product-derived phospholipids (PEL) strongly inhibit α-synuclein (α-Syn) aggregation. We have identified several candidates potentially relevant for the inhibition of α-Syn aggregation, such as LPC18:1, LPE18:1, and LPI18:0; however, the BBB permeability of these LPLs remains unclear. In the present study, we assessed the ability of these LPLs to pass through the in vitro rat and monkey BBB models. LPC18:1 showed high BBB permeability, LPI18:0 showed medium permeability, and the BBB permeation of LPE18:1 was negligible. Our results suggest that LPC18:1 and LPI18:0 are functional food factors that can cross the BBB.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Masanori Sasaki
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan
| | - Yoshikazu Matsuda
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Ina, 362-0806, Japan
| |
Collapse
|
8
|
Huang CY, Wei PL, Prince GMSH, Batzorig U, Lee CC, Chang YJ, Hung CS. The Role of Thrombomodulin in Estrogen-Receptor-Positive Breast Cancer Progression, Metastasis, and Curcumin Sensitivity. Biomedicines 2023; 11:biomedicines11051384. [PMID: 37239055 DOI: 10.3390/biomedicines11051384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Estrogen and estrogen receptors (ER) play a key role in breast cancer progression, which can be treated with endocrine therapy. Nevertheless, resistance to endocrine therapies is developed over time. The tumor expression of thrombomodulin (TM) is correlated with favorable prognosis in several types of cancer. However, this correlation has not yet been confirmed in ER-positive (ER+) breast cancer. This study aims to evaluate the role of TM in ER+ breast cancer. Firstly, we found that lower TM expression correlates to poor overall survival (OS) and relapse-free survival (RFS) rates in ER+ breast cancer patients through Kaplan-Meier survival analysis (p < 0.05). Silencing TM in MCF7 cells (TM-KD) increased cell proliferation, migration, and invasion ability. Additionally, TM-KD MCF7 cells showed higher sensitivity (IC50 15 μM) to the anti-cancer agent curcumin than the scrambled control cells. Conversely, overexpression of TM (TM-over) in T47D cells leads to decreased cell proliferation, migration, and invasion ability. Furthermore, TM-over T47D cells showed more resistance (IC50 > 40 μM) to the curcumin treatment. The PI staining, DAPI, and tunnel assay also confirmed that the curcumin-induced apoptosis in TM-KD MCF7 cells was higher (90.34%) than in the scrambled control cells (48.54%). Finally, the expressions of drug-resistant genes (ABCC1, LRP1, MRP5, and MDR1) were determined by qPCR. We found that the relative mRNA expression levels of ABCC1, LRP1, and MDR1 genes after curcumin treatment were higher in scrambled control cells than in TM-KD cells. In conclusion, our results demonstrated that TM plays a suppressive role in the progression and metastasis of ER+ breast cancer, and it regulates curcumin sensitivity by interfering with ABCC1, LRP1, and MDR1 gene expression.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - G M Shazzad Hossain Prince
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, La Jolla, San Diego, CA 92093, USA
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jia Chang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chin-Sheng Hung
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
9
|
Meng X, Dong S, Yangyang L, Wang S, Xu X, Liu T, Zhuang X. Adenosine triphosphate-binding cassette subfamily C members in liver hepatocellular carcinoma: Bioinformatics-driven prognostic value. Medicine (Baltimore) 2022; 101:e28869. [PMID: 35363194 PMCID: PMC9282002 DOI: 10.1097/md.0000000000028869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2023] Open
Abstract
Aberrant expression of adenosine triphosphate-binding cassette subfamily C (ABCC), one of the largest superfamilies and transporter gene families of membrane proteins, is associated with various tumors. However, its relationship with liver hepatocellular carcinoma (LIHC) remains unclear.We used the Oncomine, UALCAN, Human Protein Atlas, GeneMANIA, GO, Kyoto Encyclopedia of Genes and Genomes (KEGG), TIMER, and Kaplan-Meier Plotter databases. On May 20, 2021, we searched these databases for the terms ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC6, ABCC7, ABCC8, ABCC9, ABCC10, ABCC11, ABCC12, ABCC13, and "liver cancer." The exposure group comprised LIHC patients, and the control group comprised normal patients (those with noncancerous liver tissue). All patients shown in the retrieval language search were included. We compared the mRNA expression of these proteins in LIHC and control patients to examine the potential role of ABCC1-13 in LIHC.Relative to the normal liver tissue, mRNA expression of ABCC1/2/3/4/5/6/10 was significantly upregulated (P < .001), and that of ABCC9/11 significantly downregulated (both P < .001), in LIHC. ABCC mRNA expression varied with gender (P < .05), except for ABCC11-13; with tumor grade (P < 0.05), except for ABCC7/12/13; with tumor stage (P < .05), except for ABCC11-13; and with lymph node metastasis status (P < .05), except for ABCC7/8/11/12/13. Based on KEGG enrichment analysis, these genes were associated with the following pathways: ABC transporters, Bile secretion, Antifolate resistance, and Peroxisome (P < .05). Except for ABCC12/13, the ABCCs were significantly associated with B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration (P < .05). High mRNA expression of ABCC1/4/5/8 (P < .05) and low expression of ABCC6/7/9/12/13 (P < .05) indicated poor prognosis. Prognostic significance was indicated for ABCC2/13 for both men and women (P < .05); for ABCC1/6/12/13 for tumor grades 1-3 (P < .05); for ABCC5/11/12/13 for all tumor stages (P < .05); for ABCC1/11/12/13 for American Joint Committee on Cancer T stages 1-3 (P < .05); and for ABCC1/5/6/13 for vascular invasion. None showed prognostic significance for microvascular invasion (P < .05).We identified ABCC1/2/3/4/5/6/9/10/11 as potential diagnostic markers, and ABCC1/4/5/6/7/8/9/12/13 as prognostic markers, of LIHC. Our future work will promote the use of ABCCs in the diagnosis and treatment of LIHC.
Collapse
Affiliation(s)
- Xiangtong Meng
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Shen Dong
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Liu Yangyang
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Endocrinology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| | - Song Wang
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Xiaohao Xu
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Research Center of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province, China
| | - Tiejun Liu
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Department of Hepatology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| | - Xiong Zhuang
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Department of Hepatology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| |
Collapse
|
10
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
11
|
Shawky AM, Abdalla AN, Ibrahim NA, Abourehab MAS, Gouda AM. Discovery of new pyrimidopyrrolizine/indolizine-based derivatives as P-glycoprotein inhibitors: Design, synthesis, cytotoxicity, and MDR reversal activities. Eur J Med Chem 2021; 218:113403. [PMID: 33823396 DOI: 10.1016/j.ejmech.2021.113403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Targeting P-glycoprotein (P-gp, ABCB1 transporter), which plays an essential role in multi-drug resistance (MDR) in cancers, with new cytotoxic agents is a promising strategy in cancer chemotherapy. In the current study, we report the synthesis of thirteen novel pyrimidopyrrolizine, pyrimidoindolizine, and diazepinopyrrolizine derivatives. The new compounds exhibited cytotoxic activities against MCF7, A2780 and HT29 cancer cell lines (IC50 = 0.02-19.58 μM) and MRC5 (IC50 = 0.17-20.57 μM). The six most active compounds (23b, 24a,b and, 31c-e) were evaluated for their MDR reversal activities in MCF7/ADR cells. Mechanistic study using real-time PCR revealed the ability of compound 31c to inhibit P-gp. In addition, compound 31c increased the accumulation of Rho123 inside MCF7/ADR cells in a dose-dependent manner compared to verapamil. Compound 31c arrested the cell cycle of MCF7 cells at the G1 phase. Compound 31c also caused a significant dose-dependent increase of early and late apoptotic events. Molecular docking analysis revealed a high binding affinity for compound 31c toward P-gp. Like zosuquidar, compound 31c displayed one hydrogen bond and several hydrophobic interactions with amino acids in P-gp. These results indicated that compound 31c represents a potential anticancer candidate with MDR reversal activity.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Central Laboratory for Micro-analysis, Minia University, Minia, 61519, Egypt
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Departmentof Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Nashwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
12
|
Sauer H, Kampmann H, Khosravi F, Sharifpanah F, Wartenberg M. The nicotinamide phosphoribosyltransferase antagonist FK866 inhibits growth of prostate tumour spheroids and increases doxorubicin retention without changes in drug transporter and cancer stem cell protein expression. Clin Exp Pharmacol Physiol 2021; 48:422-434. [PMID: 33349973 DOI: 10.1111/1440-1681.13452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme for nicotinamide adenine dinucleotide (NAD) synthesis and is involved in cancer cell proliferation through regulation of energy production pathways. Therefore, NAMPT inhibitors are promising drugs for cancer therapy by limiting energy supply of tumours. Herein, we demonstrated that the NAMPT inhibitor FK866 ((E)-N-(4-(1-Benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) dose-dependently inhibited growth and cell motility of DU-145 prostate tumour spheroids and decreased the intracellular ATP concentration. The apoptosis marker cleaved caspase-3 remained unchanged, but the autophagy marker microtubule-associated protein 1A/1B-light chain 3 (LC3) was upregulated. Growth inhibition was reversed upon co-administration of NAD to the cell culture medium. FK866 decreased calcein as well as pheophorbide A efflux from tumour spheroids and increased doxorubicin toxicity, indicating interference with function of drug efflux transporters. DU-145 multicellular tumour spheroids expressed the stem cell associated markers CD133, CD44, Oct4, Nanog, Sox2, and drug transporters ABCB1, ABCG2, and ABCC1 which are associated with stem cell properties in cancer cells. The ABCB1 inhibitor zosuquidar, the ABCG2 inhibitor Ko143, and the ABCC1 inhibitor MK571 increased calcein retention. Neither protein expression of stem cell markers, nor drug transporters was significantly changed upon FK866 treatment. In conclusion, our data suggest that FK866 inhibits prostate cancer cell proliferation by interference with the energy metabolism, and function of drug efflux transporters.
Collapse
Affiliation(s)
- Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Gießen, Germany
| | - Henning Kampmann
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Gießen, Germany
| | - Farhad Khosravi
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Gießen, Germany
| | - Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Gießen, Germany
| | - Maria Wartenberg
- Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
Rizzo M. Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochim Biophys Acta Rev Cancer 2020; 1875:188481. [PMID: 33217485 DOI: 10.1016/j.bbcan.2020.188481] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.
Collapse
Affiliation(s)
- Milena Rizzo
- Non-coding RNA Group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.
| |
Collapse
|