1
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2024; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Ji Y, Harris MA, Newton LM, Harris TJ, Fairlie WD, Lee EF, Hawkins CJ. Osteosarcoma cells depend on MCL-1 for survival, and osteosarcoma metastases respond to MCL-1 antagonism plus regorafenib in vivo. BMC Cancer 2024; 24:1350. [PMID: 39497108 PMCID: PMC11533409 DOI: 10.1186/s12885-024-13088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Osteosarcoma is the most common form of primary bone cancer, which primarily afflicts children and adolescents. Chemotherapy, consisting of doxorubicin, cisplatin and methotrexate (MAP) increased the 5-year osteosarcoma survival rate from 20% to approximately 60% by the 1980s. However, osteosarcoma survival rates have remained stagnant for several decades. Patients whose disease fails to respond to MAP receive second-line treatments such as etoposide and, in more recent years, the kinase inhibitor regorafenib. BCL-2 and its close relatives enforce cellular survival and have been implicated in the development and progression of various cancer types. BH3-mimetics antagonize pro-survival members of the BCL-2 family to directly stimulate apoptosis. These drugs have been proven to be efficacious in other cancer types, but their use in osteosarcoma has been relatively unexplored to date. We investigated the potential efficacy of BH3-mimetics against osteosarcoma cells in vitro and examined their cooperation with regorafenib in vivo. We demonstrated that osteosarcoma cell lines could be killed through inhibition of MCL-1 combined with BCL-2 or BCL-xL antagonism. Inhibition of MCL-1 also sensitized osteosarcoma cells to killing by second-line osteosarcoma treatments, particularly regorafenib. Importantly, we found that inhibition of MCL-1 with the BH3-mimetic S63845 combined with regorafenib significantly prolonged the survival of mice bearing pulmonary osteosarcoma metastases. Together, our results highlight the importance of MCL-1 in osteosarcoma cell survival and present a potential therapeutic avenue that may improve metastatic osteosarcoma patient outcomes.
Collapse
Affiliation(s)
- Yanhao Ji
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Michael A Harris
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Swinburne University, Hawthorn, VIC, 3122, Australia
| | - Tiffany J Harris
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
3
|
Bi Z, Zhou J, Ma Y, Guo Q, Ju B, Zou H, Zhan Z, Yang F, Du H, Gan X, Song E. Integrative analysis and risk model construction for super‑enhancer‑related immune genes in clear cell renal cell carcinoma. Oncol Lett 2024; 27:190. [PMID: 38495834 PMCID: PMC10941079 DOI: 10.3892/ol.2024.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer associated with poor prognosis, and accounts for the majority of RCC-related deaths. The lack of comprehensive diagnostic and prognostic biomarkers has limited further understanding of the pathophysiology of ccRCC. Super-enhancers (SEs) are congregated enhancer clusters that have a key role in tumor processes such as epithelial-mesenchymal transition, metabolic reprogramming, immune escape and resistance to apoptosis. RCC may also be immunogenic and sensitive to immunotherapy. In the present study, an Arraystar human SE-long non-coding RNA (lncRNA) microarray was first employed to profile the differentially expressed SE-lncRNAs and mRNAs in 5 paired ccRCC and peritumoral tissues and to identify SE-related genes. The overlap of these genes with immune genes was then determined to identify SE-related immune genes. A model for predicting clinical prognosis and response to immunotherapy was built following the comprehensive analysis of a ccRCC gene expression dataset from The Cancer Genome Atlas (TCGA) database. The patients from TCGA were divided into high- and low-risk groups based on the median score derived from the risk model, and the Kaplan-Meier survival analysis showed that the low-risk group had a higher survival probability. In addition, according to the receiver operating characteristic curve analysis, the risk model had more advantages than other clinical factors in predicting the overall survival (OS) rate of patients with ccRCC. Using this model, it was demonstrated that the high-risk group had a more robust immune response. Furthermore, 61 potential drugs with half-maximal inhibitory concentration values that differed significantly between the two patient groups were screened to investigate potential drug treatment of ccRCC. In summary, the present study provided a novel index for predicting the survival probability of patients with ccRCC and may provide some insights into the mechanisms through which SE-related immune genes influence the diagnosis, prognosis and potential treatment drugs of ccRCC.
Collapse
Affiliation(s)
- Zhenyu Bi
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jinghao Zhou
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Yan Ma
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Qingxin Guo
- Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang 157009, P.R. China
| | - Boyang Ju
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Haoran Zou
- Department of Urology, Zhumadian Central Hospital, Zhumadian, Henan 463000, P.R. China
| | - Zuhao Zhan
- Department of Urology, The First Hospital of Zibo, Zibo, Shandong 255200, P.R. China
| | - Feihong Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Han Du
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Xiuguo Gan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Erlin Song
- Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| |
Collapse
|
4
|
Luo S, Luo Y, Wang Z, Yin H, Wu Q, Du X, Xie X. Super-enhancer mediated upregulation of MYEOV suppresses ferroptosis in lung adenocarcinoma. Cancer Lett 2024; 589:216811. [PMID: 38490328 DOI: 10.1016/j.canlet.2024.216811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Super-enhancers (SEs) exerted a crucial role in regulating the transcription of oncogenes across various malignancies while the roles of SEs driven genes and the core regulatory elements remain elusive in LUAD. In this study, cancer-specific-SE-genes of lung adenocarcinoma (LUAD) were profiled through H3K27ac ChIP-seq data of cancer cell lines and normal lung tissues, which enriched in in biological processes and pathways integral to the pathophysiology of LUAD. Based on this study, LUAD cells were susceptible to SEs inhibitors, with a reduction of cell proliferation as well as an elevation of apoptosis upon JQ1 or THZ1 intervention. Moreover, the integration of SEs landscapes, CRISPRi, ChIP-PCR, Hi-C data analysis and dual-luciferase reporter assays revealed that myeloma overexpressed gene (MYEOV) was aberrantly overexpressed in LUAD via transcriptional activation by the core SE elements. Functionally, the knockdown of MYEOV undermined cell proliferation in vitro and tumor growth in vivo. In addition, the knockdown of MYEOV generated a prominent ferroptotic phenotype, characterized by elevation of intracellular ferrous iron, reactive oxygen species and lipid peroxidation, together with alteration in marker proteins (SLC7A11, GPX4, FTH1, and ACSL4). Instead, the overexpression of MYEOV accelerated cell proliferation and abrogated ferroptosis. Clinically, the overexpression of MYEOV was observed in LUAD tissues indicating a poor prognosis in patients with LUAD. Mechanistically, SMPD1-induced autophagic degradation of GPX4 assumed a crucial role in the process of ferroptosis triggered by MYEOV knockdown. Serving as an oncogene repressing ferroptosis, promoting proliferation as well as shortening survival in LUAD, SEs-mediated activation of MYEOV might distinguish as a promising therapeutic target.
Collapse
Affiliation(s)
- Shuimei Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yang Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ziming Wang
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Haofeng Yin
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing Wu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaowei Du
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China.
| |
Collapse
|
5
|
Ouyang Z, Zhu H, Liu Z, Tu C, Qu J, Lu Q, Xu M. Curcumin inhibits the proliferation and migration of osteosarcoma by regulating the expression of super -enhancer -associated genes. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:541-552. [PMID: 39019783 PMCID: PMC11255199 DOI: 10.11817/j.issn.1672-7347.2024.230224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Indexed: 07/19/2024]
Abstract
OBJECTIVES Super-enhancer-associated genes may be closely related to the progression of osteosarcoma, curcumin exhibits a certain inhibitory effect on tumors such as osteosarcoma. This study aims to investigate the effects of curcumin on osteosarcoma in vitro and in vivo, and to determine whether curcumin can inhibit the progression of osteosarcoma by suppressing the expression of super-enhancer-associated genes LIM and senescent cell antigen-like-containing domain 1 (LIMS1), secreted protein acidic and rich in cysteine (SPARC), and sterile alpha motif domain containing 4A (SAMD4A). METHODS Human osteosarcoma cell lines (MG63 cells or U2OS cells) were treated with 5 to 50 μmol/L curcumin for 24, 48, and 72 hours, followed by the methyl thiazolyl tetrazolium (MTT) assay to detect cell viability. Cells were incubated with dimethyl sulfoxide (DMSO) or curcumin (2.5, 5.0 μmol/L) for 7 days, and a colony formation assay was used to measure in vitro cell proliferation. After treatment with DMSO or curcumin (10, 15 μmol/L), a scratch healing assay and a transwell migration assay were performed to evaluate cell migration ability. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) and Western blotting were used to detect mRNA and protein expression levels of LIMS1, SPARC, and SAMD4A in the cells. An osteosarcoma-bearing nude mouse model was established, and curcumin was administered via gavage for 14 days to assess the impact of curcumin on tumor volume and weight in vivo. Real-time RT-PCR was used to measure mRNA expression levels of LIMS1, SPARC, and SAMD4A in the cancer and adjacent tissues from 12 osteosarcoma patients. RESULTS After treating cells with different concentrations of curcumin for 24, 48, and 72 hours, cell viability were all significantly decreased. Compared with the DMSO group, the colony formation rates in the 2.5 μmol/L and 5.0 μmol/L curcumin groups significantly declined (both P<0.01). The scratch healing assay showed that, compared with the DMSO group, the migration rates of cells in the 10 μmol/L and 15 μmol/L curcumin groups were significantly reduced. The exception was the 10 μmol/L curcumin group at 24 h, where the migration rate of U2OS cells did not show a statistically significant difference (P>0.05), while all other differences were statistically significant (P<0.01 or P<0.001). The transwell migration assay results showed that the number of migrating cells in the 10 μmol/L and 15 μmol/L curcumin groups was significantly lower than that in the DMSO group (both P<0.001). In the in vivo tumor-bearing mouse experiment, the curcumin group showed a reduction in tumor mass (P<0.01) and a significant reduction in tumor volume (P<0.001) compared with the control group. Compared with the DMSO group, the mRNA expression levels of LIMS1, SPARC, and SAMD4A in the 10 μmol/L and 15 μmol/L curcumin groups were significantly down-regulated (all P<0.05). Additionally, the protein expression level of LIMS1 in U2OS cells in the 10 μmol/L curcumin group was significantly lower than that in the DMSO group (P<0.05). Compared with adjacent tissues, the mRNA expression level of SPARC in osteosarcoma tissues was significantly increased (P<0.001), while the mRNA expression levels of LIMS1 and SAMD4A did not show statistically significant differences (both P>0.05). CONCLUSIONS Curcumin inhibits the proliferation and migration of osteosarcoma both in vitro and in vivo, which may be associated with the inactivation of super-enhancer-associated gene LIMS1.
Collapse
Affiliation(s)
- Zhanbo Ouyang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011.
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011.
- Department of Pharmacy, Yueyang Central Hospital, Yueyang Hunan 414000.
| | - Haihong Zhu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Zhongyue Liu
- Department of Orthopaedics, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Chao Tu
- Department of Orthopaedics, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Jian Qu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Qiong Lu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Min Xu
- Department of Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
6
|
Zhao K, Braun M, Meyer L, Otte K, Raifer H, Helmprobst F, Möschl V, Pagenstecher A, Urban H, Ronellenfitsch MW, Steinbach JP, Pesek J, Watzer B, Nockher WA, Taudte RV, Neubauer A, Nimsky C, Bartsch JW, Rusch T. A Novel Approach for Glioblastoma Treatment by Combining Apoptosis Inducers (TMZ, MTX, and Cytarabine) with E.V.A. (Eltanexor, Venetoclax, and A1210477) Inhibiting XPO1, Bcl-2, and Mcl-1. Cells 2024; 13:632. [PMID: 38607071 PMCID: PMC11011525 DOI: 10.3390/cells13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Leonie Meyer
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Vincent Möschl
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hans Urban
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Michael W. Ronellenfitsch
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Jelena Pesek
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Bernhard Watzer
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Wolfgang A. Nockher
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - R. Verena Taudte
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Fitzgerald MC, O'Halloran PJ, Kerrane SA, Ní Chonghaile T, Connolly NMC, Murphy BM. The identification of BCL-XL and MCL-1 as key anti-apoptotic proteins in medulloblastoma that mediate distinct roles in chemotherapy resistance. Cell Death Dis 2023; 14:705. [PMID: 37898609 PMCID: PMC10613306 DOI: 10.1038/s41419-023-06231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Medulloblastoma is the most common malignant paediatric brain tumour, representing 20% of all paediatric intercranial tumours. Current aggressive treatment protocols and the use of radiation therapy in particular are associated with high levels of toxicity and significant adverse effects, and long-term sequelae can be severe. Therefore, improving chemotherapy efficacy could reduce the current reliance on radiation therapy. Here, we demonstrated that systems-level analysis of basal apoptosis protein expression and their signalling interactions can differentiate between medulloblastoma cell lines that undergo apoptosis in response to chemotherapy, and those that do not. Combining computational predictions with experimental BH3 profiling, we identified a therapeutically-exploitable dependence of medulloblastoma cells on BCL-XL, and experimentally validated that BCL-XL targeting, and not targeting of BCL-2 or MCL-1, can potentiate cisplatin-induced cytotoxicity in medulloblastoma cell lines with low sensitivity to cisplatin treatment. Finally, we identified MCL-1 as an anti-apoptotic mediator whose targeting is required for BCL-XL inhibitor-induced apoptosis. Collectively, our study identifies that BCL-XL and MCL-1 are the key anti-apoptotic proteins in medulloblastoma, which mediate distinct protective roles. While BCL-XL has a first-line role in protecting cells from apoptosis basally, MCL-1 represents a second line of defence that compensates for BCL-XL upon its inhibition. We provide rationale for the further evaluation of BCL-XL and MCL-1 inhibitors in the treatment of medulloblastoma, and together with current efforts to improve the cancer-specificity of BCL-2 family inhibitors, these novel treatment strategies have the potential to improve the future clinical management of medulloblastoma.
Collapse
Affiliation(s)
- Marie-Claire Fitzgerald
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland
| | - Philip J O'Halloran
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Sean A Kerrane
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland
| | - Triona Ní Chonghaile
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
| | - Brona M Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland.
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland.
| |
Collapse
|
8
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
9
|
Zhuang HH, Qu Q, Teng XQ, Dai YH, Qu J. Superenhancers as master gene regulators and novel therapeutic targets in brain tumors. Exp Mol Med 2023; 55:290-303. [PMID: 36720920 PMCID: PMC9981748 DOI: 10.1038/s12276-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
Transcriptional deregulation, a cancer cell hallmark, is driven by epigenetic abnormalities in the majority of brain tumors, including adult glioblastoma and pediatric brain tumors. Epigenetic abnormalities can activate epigenetic regulatory elements to regulate the expression of oncogenes. Superenhancers (SEs), identified as novel epigenetic regulatory elements, are clusters of enhancers with cell-type specificity that can drive the aberrant transcription of oncogenes and promote tumor initiation and progression. As gene regulators, SEs are involved in tumorigenesis in a variety of tumors, including brain tumors. SEs are susceptible to inhibition by their key components, such as bromodomain protein 4 and cyclin-dependent kinase 7, providing new opportunities for antitumor therapy. In this review, we summarized the characteristics and identification, unique organizational structures, and activation mechanisms of SEs in tumors, as well as the clinical applications related to SEs in tumor therapy and prognostication. Based on a review of the literature, we discussed the relationship between SEs and different brain tumors and potential therapeutic targets, focusing on glioblastoma.
Collapse
Affiliation(s)
- Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410007, PR China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410007, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China.
| |
Collapse
|
10
|
Koessinger AL, Cloix C, Koessinger D, Heiland DH, Bock FJ, Strathdee K, Kinch K, Martínez-Escardó L, Paul NR, Nixon C, Malviya G, Jackson MR, Campbell KJ, Stevenson K, Davis S, Elmasry Y, Ahmed A, O'Prey J, Ichim G, Schnell O, Stewart W, Blyth K, Ryan KM, Chalmers AJ, Norman JC, Tait SWG. Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death Differ 2022; 29:2089-2104. [PMID: 35473984 PMCID: PMC9525582 DOI: 10.1038/s41418-022-01001-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumour in adults. GBM typically has a poor prognosis, mainly due to a lack of effective treatment options leading to tumour persistence or recurrence. We investigated the therapeutic potential of targeting anti-apoptotic BCL-2 proteins in GBM. Levels of anti-apoptotic BCL-xL and MCL-1 were consistently increased in GBM compared with non-malignant cells and tissue. Moreover, we found that relative to their differentiated counterparts, patient-derived GBM stem-like cells also displayed higher expression of anti-apoptotic BCL-2 family members. High anti-apoptotic BCL-xL and MCL-1 expression correlated with heightened susceptibility of GBM to BCL-2 family protein-targeting BH3-mimetics. This is indicative of increased apoptotic priming. Indeed, GBM displayed an obligate requirement for MCL-1 expression in both tumour development and maintenance. Investigating this apoptotic sensitivity, we found that sequential inhibition of BCL-xL and MCL-1 led to robust anti-tumour responses in vivo, in the absence of overt toxicity. These data demonstrate that BCL-xL and MCL-1 pro-survival function is a fundamental prerequisite for GBM survival that can be therapeutically exploited by BH3-mimetics.
Collapse
Affiliation(s)
- Anna L Koessinger
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Dominik Koessinger
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Florian J Bock
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Karen Strathdee
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kevin Kinch
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Laura Martínez-Escardó
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nikki R Paul
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Mark R Jackson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Katrina Stevenson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Sandeep Davis
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Yassmin Elmasry
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Asma Ahmed
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jim O'Prey
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Gabriel Ichim
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France
| | - Oliver Schnell
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jim C Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
11
|
Qian L, Vallega KA, Yao W, Wang D, Zhai Y, He X, Sun SY. Therapeutic potential of the novel Bcl-2/Bcl-X L dual inhibitor, APG1252, alone or in combination against non-small cell lung cancer. Mol Carcinog 2022; 61:1031-1042. [PMID: 36066010 DOI: 10.1002/mc.23458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/08/2022]
Abstract
Targeting the induction of apoptosis is a promising cancer therapeutic strategy with some clinical success. This study focused on evaluating the therapeutic efficacy of the novel Bcl-2/Bcl-XL dual inhibitor, APG1252-M1 (also named APG-1244; an in vivo active metabolite of APG1252 or pelcitoclax), as a single agent or in combination, against non-small cell lung cancer (NSCLC) cells. APG1252-M1 effectively decreased the survival of some NSCLC cell lines expressing low levels of Mcl-1 and induced apoptosis. Overexpression of ectopic Mcl-1 in the sensitive cells substantially compromised APG1252-M1's cell-killing effects, whereas inhibition of Mcl-1 greatly sensitized insensitive cell lines to APG1252-M1, indicating the critical role of Mcl-1 levels in impacting cell response to APG1252-M1. Moreover, APG1252-M1, when combined with the third generation epidermal growth factor receptor (EGFR) inhibitor, osimertinib, synergistically decreased the survival of EGFR-mutant NSCLC cell lines including those resistant to osimertinib with enhanced induction of apoptosis and abrogated emergence of acquired resistance to osimertinib. Importantly, the combination was effective in inhibiting the growth of osimertinib-resistant tumors in vivo. Collectively, these results demonstrate the efficacy of APG1252 alone or in combination against human NSCLC cells.
Collapse
Affiliation(s)
- Luxi Qian
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China.,Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Karin A Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Weilong Yao
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd, Suzhou, Jiangsu, P. R. China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Mcl-1 levels critically impact the sensitivities of human colorectal cancer cells to APG-1252-M1, a novel Bcl-2/Bcl-XL dual inhibitor that induces Bax-dependent apoptosis. Neoplasia 2022; 29:100798. [PMID: 35462114 PMCID: PMC9046866 DOI: 10.1016/j.neo.2022.100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022]
Abstract
New treatment options, such as targeted therapies, are urgently needed for the treatment of colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide. The current study focuses on demonstrating the therapeutic efficacies of APG-1252-M1 (an active form of the prodrug, APG-1252 or pelcitoclax), a highly potent Bcl-2/Bcl-XL dual inhibitor in clinical trials, against CRC and understanding the underlying mechanisms. APG-1252-M1 effectively decreased the survival of CRC cell lines, particularly those expressing relatively low levels of Mcl-1, with the induction of apoptosis. High levels of Mcl-1 were significantly correlated with decreased sensitivity of CRC cell lines to APG-1252-M1. When combined with an Mcl-1 inhibitor, APG-1252-M1 synergistically decreased the survival and induced apoptosis of APG-1252-M1-insensitive cell lines with high levels of Mcl-1. This combination further decreased the survival and enhanced apoptosis even in sensitive cell lines with relatively low levels of Mcl-1, whereas enforced expression of ectopic Mcl-1 in these cells abrogated APG-1252-M1’s effects on decreasing cell survival and inducing apoptosis, which could be reversed by Mcl-1 inhibition. APG-1252-M1 rapidly induced cytochrome C and Smac release from mitochondria with caspase-3 and PARP cleavage. Deficiency of Bax in CRC cells abolished APG-1252-M1’s ability to induce apoptosis, indicating that APG-1252-M1 induces Bax-dependent apoptosis. The current study thus demonstrates the potential of APG-1252-M1 as a monotherapy in the treatment of CRC, particularly those with low Mcl-1 expression, or in combination with an Mcl-1 inhibitor, warranting further evaluation in vivo and in the clinic.
Collapse
|
13
|
He W, Li X, Morsch M, Ismail M, Liu Y, Rehman FU, Zhang D, Wang Y, Zheng M, Chung R, Zou Y, Shi B. Brain-Targeted Codelivery of Bcl-2/Bcl-xl and Mcl-1 Inhibitors by Biomimetic Nanoparticles for Orthotopic Glioblastoma Therapy. ACS NANO 2022; 16:6293-6308. [PMID: 35353498 DOI: 10.1021/acsnano.2c00320] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma (GBM) is among the most treatment-resistant solid tumors and often recurrs after resection. One of the mechanisms through which GBM escapes various treatment modalities is the overexpression of anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2, Bcl-xl, and Mcl-1) in tumor cells. Small-molecule inhibitors such as ABT-263 (ABT), which can promote mitochondrial-mediated cell apoptosis by selectively inhibiting the function of Bcl-2 and Bcl-xl, have been proven to be promising anticancer agents in clinical trials. However, the therapeutic prospects of ABT for GBM treatment are hampered by its limited blood-brain barrier (BBB) penetration, dose-dependent thrombocytopenia, and the drug resistance driven by Mcl-1, which is overexpressed in GBM cells and further upregulated upon treatment with ABT. Herein, we reported that the Mcl-1-specific inhibitor A-1210477 (A12) can act synergistically with ABT to induce potent cell apoptosis in U87 MG cells, drug-resistant U251 cells, and patient-derived GBM cancer stem cells. We further designed a biomimetic nanomedicine, based on the apolipoprotein E (ApoE) peptide-decorated red blood cell membrane and pH-sensitive dextran nanoparticles, for the brain-targeted delivery of ABT and A12. The synergistic anti-GBM effect was retained after encapsulation in the nanomedicine. Additionally, the obtained nanomedicine possessed good biocompatibility, exhibited efficient BBB penetration, and could effectively suppress tumor growth and prolong the survival time of mice bearing orthotopic GBM xenografts without inducing detectable adverse effects.
Collapse
Affiliation(s)
| | | | - Marco Morsch
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | | | | - Roger Chung
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yan Zou
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Center for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
14
|
Nguyen TTT, Shang E, Westhoff MA, Karpel-Massler G, Siegelin MD. Methodological Approaches for Assessing Metabolomic Changes in Glioblastomas. Methods Mol Biol 2022; 2445:305-328. [PMID: 34973000 DOI: 10.1007/978-1-0716-2071-7_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma (GBM), a highly malignant primary brain tumor, inevitably leads to death. In the last decade, a variety of novel molecular characteristics of GBMs were unraveled. The identification of the mutation in the IDH1 and less commonly IDH2 gene was surprising and ever since has nurtured research in the field of GBM metabolism. While initially thought that mutated IDH1 were to act as a loss of function mutation it became clear that it conferred the production of an oncometabolite that in turn substantially reprograms GBM metabolism. While mutated IDH1 represents truly the tip of the iceberg, there are numerous other related observations in GBM that are of significant interest to the field, including the notion that oxidative metabolism appears to play a more critical role than believed earlier. Metabolic zoning is another important hallmark of GBM since it was found that the infiltrative margin that drives GBM progression reveals enrichment of fatty acid derivatives. Consistently, fatty acid metabolism appears to be a novel therapeutic target for GBM. How metabolism in GBM intersects is another pivotal issue that appears to be important for its progression and response and resistance to therapies. In this review, we will summarize some of the most relevant findings related to GBM metabolism and cell death and how these observations are influencing the field. We will provide current approaches that are applied in the field to measure metabolomic changes in GBM models, including the detection of unlabeled and labeled metabolites as well as extracellular flux analysis.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, NY, USA
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Burster T, Traut R, Yermekkyzy Z, Mayer K, Westhoff MA, Bischof J, Knippschild U. Critical View of Novel Treatment Strategies for Glioblastoma: Failure and Success of Resistance Mechanisms by Glioblastoma Cells. Front Cell Dev Biol 2021; 9:695325. [PMID: 34485282 PMCID: PMC8415230 DOI: 10.3389/fcell.2021.695325] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
According to the invasive nature of glioblastoma, which is the most common form of malignant brain tumor, the standard care by surgery, chemo- and radiotherapy is particularly challenging. The presence of glioblastoma stem cells (GSCs) and the surrounding tumor microenvironment protects glioblastoma from recognition by the immune system. Conventional therapy concepts have failed to completely remove glioblastoma cells, which is one major drawback in clinical management of the disease. The use of small molecule inhibitors, immunomodulators, immunotherapy, including peptide and mRNA vaccines, and virotherapy came into focus for the treatment of glioblastoma. Although novel strategies underline the benefit for anti-tumor effectiveness, serious challenges need to be overcome to successfully manage tumorigenesis, indicating the significance of developing new strategies. Therefore, we provide insights into the application of different medications in combination to boost the host immune system to interfere with immune evasion of glioblastoma cells which are promising prerequisites for therapeutic approaches to treat glioblastoma patients.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rebecca Traut
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Zhanerke Yermekkyzy
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Katja Mayer
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
16
|
Juric V, Hudson L, Fay J, Richards CE, Jahns H, Verreault M, Bielle F, Idbaih A, Lamfers MLM, Hopkins AM, Rehm M, Murphy BM. Transcriptional CDK inhibitors, CYC065 and THZ1 promote Bim-dependent apoptosis in primary and recurrent GBM through cell cycle arrest and Mcl-1 downregulation. Cell Death Dis 2021; 12:763. [PMID: 34344865 PMCID: PMC8333061 DOI: 10.1038/s41419-021-04050-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Activation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.
Collapse
Affiliation(s)
- Viktorija Juric
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Lance Hudson
- Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin, Ireland
| | - Joanna Fay
- Department of Pathology, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Cathy E Richards
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Maïté Verreault
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
| | - Franck Bielle
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Ahmed Idbaih
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, the Netherlands
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin, Ireland
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Brona M Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
17
|
Mittal P, Singh S, Sinha R, Shrivastava A, Singh A, Singh IK. Myeloid cell leukemia 1 (MCL-1): Structural characteristics and application in cancer therapy. Int J Biol Macromol 2021; 187:999-1018. [PMID: 34339789 DOI: 10.1016/j.ijbiomac.2021.07.166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Apoptosis, a major hallmark of cancer cells, regulates cellular fate and homeostasis. BCL-2 (B-cell CLL/Lymphoma 2) protein family is popularly known to mediate the intrinsic mode of apoptosis, of which MCL-1 is a crucial member. Myeloid cell leukemia 1 (MCL-1) is an anti-apoptotic oncoprotein and one of the most investigated members of the BCL-2 family. It is commonly known to be genetically altered, aberrantly overexpressed, and primarily associated with drug resistance in various human cancers. Recent advancements in the development of selective MCL-1 inhibitors and evaluating their effectiveness in cancer treatment establish its popularity as a molecular target. The overall aim is the selective induction of apoptosis in cancer cells by using a single or combination of BCL-2 family inhibitors. Delineating the precise molecular mechanisms associated with MCL-1-mediated cancer progression will certainly improve the efficacy of clinical interventions aimed at MCL-1 and hence patient survival. This review is structured to highlight the structural characteristics of MCL-1, its specific interactions with NOXA, MCL-1-regulatory microRNAs, and at the same time focus on the emerging therapeutic strategies targeting our protein of interest (MCL-1), alone or in combination with other treatments.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Rajesh Sinha
- Department of Dermatology, University of Alabama, Birmingham 35205, United States of America
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, New Delhi 110007, India.
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
18
|
Zhang L, Liu Z, Dong Y, Kong L. Epigenetic targeting of SLC30A3 by HDAC1 is related to the malignant phenotype of glioblastoma. IUBMB Life 2021; 73:784-799. [PMID: 33715270 DOI: 10.1002/iub.2463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
The epigenetic abnormality is believed as a major driver for cancer initiation. Histone modification plays a vital role in tumor formation and progression. Particularly, alteration in histone acetylation has been highly associated with gene expression, cell cycle, as well as carcinogenesis. By analyzing glioblastoma (GBM)-related microarray from the GEO database and conducting chromatin immunoprecipitation-sequencing (ChIP-seq), we discovered that solute carrier family 30 member 3 (SLC30A3), a super enhancer (SE)-regulated factor, was significantly reduced in GBM tissues. Furthermore, histone deacetylase 1 (HDAC1), overexpressed in GBM tissues, could inhibit SLC30A3 expression by promoting histone H3K27ac deacetylation modification of the SE region of SLC30A3. Our functional validation revealed that SLC30A3 can inhibit the growth and metastatic spread of GBM cells in vitro and in vivo, and can activate the MAPK signaling pathway to promote apoptosis of GBM cells. Moreover, overexpression of HDAC1 resulted in a significant increase in DNA replication activity, a significant decline in apoptosis and cell cycle arrest in GBM cells. In a word, these findings indicate that combined epigenetic targeting of SLC30A3 by HDAC1 and SE is potentially therapeutically feasible in GBM.
Collapse
Affiliation(s)
- Longzhou Zhang
- Department of Neurosurgery, First Hospital Affiliated to Zhengzhou University, Zhengzhou, P.R. China
| | - Zengjin Liu
- Department of Neurosurgery, First Hospital Affiliated to Zhengzhou University, Zhengzhou, P.R. China
| | - Yang Dong
- Department of Neurosurgery, First Hospital Affiliated to Zhengzhou University, Zhengzhou, P.R. China
| | - Lingchang Kong
- Department of Neurosurgery, Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou, P.R. China
| |
Collapse
|
19
|
It's time to die: BH3 mimetics in solid tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118987. [PMID: 33600840 DOI: 10.1016/j.bbamcr.2021.118987] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
The removal of cells by apoptosis is an essential process regulating tissue homeostasis. Cancer cells acquire the ability to circumvent apoptosis and survive in an unphysiological tissue context. Thereby, the Bcl-2 protein family plays a key role in the initiation of apoptosis, and overexpression of the anti-apoptotic Bcl-2 proteins is one of the molecular mechanisms protecting cancer cells from apoptosis. Recently, small molecules targeting the anti-apoptotic Bcl-2 family proteins have been identified, and with venetoclax the first of these BH3 mimetics has been approved for the treatment of leukemia. In solid tumors the anti-apoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL are frequently overexpressed or genetically amplified. In this review, we summarize the role of Mcl-1 and Bcl-xL in solid tumors and compare the different BH3 mimetics targeting Mcl-1 or Bcl-xL.
Collapse
|
20
|
Xie J, Chen MH, Ying CP, Chen MY. Neferine induces p38 MAPK/JNK1/2 activation to modulate melanoma proliferation, apoptosis, and oxidative stress. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1643. [PMID: 33490155 PMCID: PMC7812205 DOI: 10.21037/atm-20-7201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Melanoma is a malignant skin cancer that has a poor prognosis in advanced patients. The aim of the present study was to investigate the antitumor role of neferine in melanoma. Methods A375 and C32 cells were selected as research vectors in vitro. Cell counting Kit-8, 5-ethynyl-2’-deoxyuridine staining, transwell, and flow cytometry assay were used to examined cell malignant phenotypes. Mitochondrial dysfunction was detected by 5,50,6,60-tetrachloro-1,10,3,30-tetraethyl-imidacarbocyanine iodide staining and enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) generation was measured using oxidation sensitive fluorescent probe. The phosphorylation activity of p38 and Jun-N-terminal kinase (JNK) 1/2 were examined by Western blot. A xenograft model was established via the subcutaneous injection of A375 cells into the right flank of BALB/c mice in vivo. Results Neferine (2.5, 5, or 10 µM) treatment inhibited proliferation, invasion, and enhanced apoptotic rate of A375 and C32 cells. Neferine treatment induced abnormal changes in mitochondrial membrane potential. Further studies showed that neferine could significantly increase the production of reactive oxygen species (ROS) and 3,4-methylenedioxyamphetamine (MDA) content, decreased the superoxide dismutase (SOD) level. Neferine (5, 10, or 20 mg/kg) obviously suppressed the weight and size of the xenograft tumor, the number of apoptotic cells in vivo, and the expression of Ki67+ and survivin+ decreased. Notably, neferine also activated the phosphorylation of p38 and JNK1/2. Conclusions Neferine inhibits the proliferative and invasion ability of melanoma cells and promotes their apoptosis, ameliorating the malignant progression of melanoma, likely achieved by upregulating the phosphorylation levels of p38 mitogen-activated protein kinase and JNK1/2.
Collapse
Affiliation(s)
- Jun Xie
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ming-Hui Chen
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Chuan-Peng Ying
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ming-Yi Chen
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|