1
|
Liu Z, Zhang H, Yao J. Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury. Pharmaceuticals (Basel) 2024; 17:1363. [PMID: 39459003 PMCID: PMC11510579 DOI: 10.3390/ph17101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE Gossypol is a natural polyphenolic dialdehyde product that is primarily isolated from cottonseed. It is a racemized mixture of (-)-gossypol and (+)-gossypol that has anti-infection, antimalarial, antiviral, antifertility, antitumor and antioxidant activities, among others. Gossypol optical isomers have been reported to differ in their biological activities and toxic effects. METHOD In this study, we performed a metabolomics analysis of rat serum using 1H-NMR technology to investigate gossypol optical isomers' mechanism of action on uterine fibroids. Network toxicology was used to explore the mechanism of the liver injury caused by gossypol optical isomers. SD rats were randomly divided into a normal control group; model control group; a drug-positive group (compound gossypol acetate tablets); high-, medium- and low-dose (-)-gossypol acetate groups; and high-, medium- and low-dose (+)-gossypol acetate groups. RESULT Serum metabolomics showed that gossypol optical isomers' pharmacodynamic effect on rats' uterine fibroids affected their lactic acid, cholesterol, leucine, alanine, glutamate, glutamine, arginine, proline, glucose, etc. According to network toxicology, the targets of the liver injury caused by gossypol optical isomers included HSP90AA1, SRC, MAPK1, AKT1, EGFR, BCL2, CASP3, etc. KEGG enrichment showed that the toxicity mechanism may be related to pathways active in cancer, such as the PPAR signaling pathway, glycolysis/glycolysis gluconeogenesis, Th17 cell differentiation, and 91 other closely related signaling pathways. CONCLUSIONS (-)-gossypol acetate and (+)-gossypol acetate play positive roles in the treatment and prevention of uterine fibroids. Gossypol optical isomers cause liver damage through multiple targets and pathways.
Collapse
Affiliation(s)
- Zishuo Liu
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| | - Hui Zhang
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
2
|
Ailawadhi S, Parrondo RD, Dutta N, Han B, Ciccio G, Cherukuri Y, Alegria VR, LaPlant BR, Roy V, Sher T, Edwards B, Lanier S, Manna A, Heslop K, Caulfield T, Maldosevic E, Storz P, Manochakian R, Asmann Y, Chanan-Khan AA, Paulus A. AT-101 Enhances the Antitumor Activity of Lenalidomide in Patients with Multiple Myeloma. Cancers (Basel) 2023; 15:477. [PMID: 36672426 PMCID: PMC9857228 DOI: 10.3390/cancers15020477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 01/15/2023] Open
Abstract
Bcl-2 and Mcl-1 proteins play a role in multiple myeloma (MM) cell survival, for which targeted inhibitors are being developed. AT-101 is an oral drug, which disrupts Bcl-2 and Mcl-1 function, impedes mitochondrial bioenergetic processes and induces apoptosis in MM cells. When combined with lenalidomide and dexamethasone (Rd), AT-101 significantly reduced tumor burden in an in vivo xenograft model of MM. These data provided rationale for a phase I/II study to establish the effective dose of AT-101 in combination with Rd (ARd regimen) in relapsed/refractory MM. A total of 10 patients were enrolled, most with high-risk cytogenetics (80%) and prior stem cell transplant (70%). Three patients were lenalidomide-refractory, 2 were bortezomib-refractory and 3 were daratumumab-refractory. The ARd combination was well tolerated with most common grade 3/4 adverse events being cytopenia's. The overall response rate was 40% and clinical benefit rate was 90%. The median progression free survival was 14.9 months (95% CI 7.1-NE). Patients responsive to ARd showed a decrease in Bcl-2:Bim or Mcl-1:Noxa protein complexes, increased CD8+ T and NK cells and depletion of T and B-regulatory cells. The ARd regimen demonstrated an acceptable safety profile and promising efficacy in patients with relapsed/refractory MM prompting further investigation in additional patients.
Collapse
Affiliation(s)
- Sikander Ailawadhi
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Ricardo D. Parrondo
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Navnita Dutta
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Bing Han
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Gina Ciccio
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Yesesri Cherukuri
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Victoria R. Alegria
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Betsy R. LaPlant
- Department of Biostatistics, Mayo Clinic Rochester, Rochester, MN 55902, USA
| | - Vivek Roy
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Taimur Sher
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Brett Edwards
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Stephanie Lanier
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Alak Manna
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Keisha Heslop
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Emir Maldosevic
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Rami Manochakian
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Yan Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Asher A. Chanan-Khan
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Aneel Paulus
- Deparment of Hematology-Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| |
Collapse
|
3
|
Yuan J, Zhou M, Xin X, Yao J, Chang J. Comparison of the efficacy of gossypol acetate enantiomers in rats with uterine leiomyoma. J Nat Med 2023; 77:41-52. [PMID: 35984592 DOI: 10.1007/s11418-022-01644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Gossypol acetate (GA), as the product of racemic gossypol and acetic acid conjugated by hydrogen bond, is hydrolyzed into gossypol to exert its effect on treating uterine leiomyoma (UL), which has been listed in China. But hypokalemia and mild changes of liver function limit its clinical application. It had been reported that the biological activities of gossypol optical isomers were different. In this study, we aimed to clarify whether there were differences in the efficacy of gossypol enantiomers and whether a single gossypol optical isomer could alleviate adverse reactions in the treatment of UL. The results indicated that (-)-GA and (+)-GA had significant therapeutic effect on rats with UL. Interestingly, (-)-GA could better significantly ameliorate the pathological structure, inhibit the secretion of estrogen, and downregulate the expression of estrogen receptor-alpha (ER-α) and progesterone receptor (PR) than (+)-GA. Additionally, (-)-GA could better evidently decrease the symptoms of abnormally elevated inflammatory factors caused by UL. In contrast, (-)-GA and (+)-GA had certain effects on potassium ion concentration in serum, liver and kidney function, and the effects of (+)-GA on liver function were more obvious than (-)-GA. These findings will be of great significance to the drug development of gossypol optical isomers.
Collapse
Affiliation(s)
- Jie Yuan
- School of Pharmacy, Xinjiang Second Medical College, Karamay, 834000, China
| | - Mengyu Zhou
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Xiaobing Xin
- School of Pharmacy, Xinjiang Second Medical College, Karamay, 834000, China
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| | - Junmin Chang
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
4
|
Cai B, Gong L, Zhu Y, Kong L, Ju X, Li X, Yang X, Zhou H, Li Y. Identification of Gossypol Acetate as an Autophagy Modulator with Potent Anti-tumor Effect against Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2589-2599. [PMID: 35180345 DOI: 10.1021/acs.jafc.1c06399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autophagy, an evolutionarily conserved process, is intricately involved in many aspects of human health and a variety of human diseases, including cancer. Discovery of small-molecule autophagy modulators with potent anticancer effect would be of great significance. To this end, a natural product library consisting of 170 natural compounds were screened as autophagy modulators with potent cytotoxicity in our present study. Among these compounds, gossypol acetate (GAA), the mostly used medicinal form of gossypol, was identified. GAA effectively increased the number of autophagic puncta in GFP-LC3B-labeled 293T cells and significantly decreased cell viability in different cancer cells. In A549 cells, GAA at concentrations below 10 μM triggered caspase-independent cell death via targeting autophagy, as evidenced by elevated LC3 conversion and decreased p62/SQSTM1 levels. Knocking down of LC3 significantly attenuated GAA-induced cell death. Mechanistically, GAA at low concentrations induced autophagy through targeting AMPK-mTORC1-ULK1 signaling. Interestingly, high concentrations of GAA induced LC3 conversion, p62 accumulation, and yellow autophagosome formation, indicating that GAA at high concentrations blocked autophagic flux. Mechanistically, GAA decreased intracellular ATP level and suppressed lysosome activity. Exogenous ATP partially reversed the inhibitory effect of GAA on autophagy, suggesting that decreased ATP level and lysosome activity might be involved in the blocking of autophagy flux by GAA. Collectively, our present study reveals the mechanisms by which GAA modulates autophagy and illustrates whether autophagy regulation by GAA is functionally involved in GAA-induced cancer cell death.
Collapse
Affiliation(s)
- Bicheng Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
- Institute of Shenzhen Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China
| | - Liang Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Yiying Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xiaoman Ju
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xue Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
| | - Hongyu Zhou
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan, China
| |
Collapse
|
5
|
Chan MH, Huang WT, Satpathy A, Su TY, Hsiao M, Liu RS. Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics. Pharmaceutics 2022; 14:pharmaceutics14020456. [PMID: 35214188 PMCID: PMC8875488 DOI: 10.3390/pharmaceutics14020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
The most common malignant tumor of the brain is glioblastoma multiforme (GBM) in adults. Many patients die shortly after diagnosis, and only 6% of patients survive more than 5 years. Moreover, the current average survival of malignant brain tumors is only about 15 months, and the recurrence rate within 2 years is almost 100%. Brain diseases are complicated to treat. The reason for this is that drugs are challenging to deliver to the brain because there is a blood–brain barrier (BBB) protection mechanism in the brain, which only allows water, oxygen, and blood sugar to enter the brain through blood vessels. Other chemicals cannot enter the brain due to their large size or are considered harmful substances. As a result, the efficacy of drugs for treating brain diseases is only about 30%, which cannot satisfy treatment expectations. Therefore, researchers have designed many types of nanoparticles and nanocomposites to fight against the most common malignant tumors in the brain, and they have been successful in animal experiments. This review will discuss the application of various nanocomposites in diagnosing and treating GBM. The topics include (1) the efficient and long-term tracking of brain images (magnetic resonance imaging, MRI, and near-infrared light (NIR)); (2) breaking through BBB for drug delivery; and (3) natural and chemical drugs equipped with nanomaterials. These multifunctional nanoparticles can overcome current difficulties and achieve progressive GBM treatment and diagnosis results.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Aishwarya Satpathy
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| |
Collapse
|
6
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
7
|
Mittal P, Singh S, Sinha R, Shrivastava A, Singh A, Singh IK. Myeloid cell leukemia 1 (MCL-1): Structural characteristics and application in cancer therapy. Int J Biol Macromol 2021; 187:999-1018. [PMID: 34339789 DOI: 10.1016/j.ijbiomac.2021.07.166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Apoptosis, a major hallmark of cancer cells, regulates cellular fate and homeostasis. BCL-2 (B-cell CLL/Lymphoma 2) protein family is popularly known to mediate the intrinsic mode of apoptosis, of which MCL-1 is a crucial member. Myeloid cell leukemia 1 (MCL-1) is an anti-apoptotic oncoprotein and one of the most investigated members of the BCL-2 family. It is commonly known to be genetically altered, aberrantly overexpressed, and primarily associated with drug resistance in various human cancers. Recent advancements in the development of selective MCL-1 inhibitors and evaluating their effectiveness in cancer treatment establish its popularity as a molecular target. The overall aim is the selective induction of apoptosis in cancer cells by using a single or combination of BCL-2 family inhibitors. Delineating the precise molecular mechanisms associated with MCL-1-mediated cancer progression will certainly improve the efficacy of clinical interventions aimed at MCL-1 and hence patient survival. This review is structured to highlight the structural characteristics of MCL-1, its specific interactions with NOXA, MCL-1-regulatory microRNAs, and at the same time focus on the emerging therapeutic strategies targeting our protein of interest (MCL-1), alone or in combination with other treatments.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Rajesh Sinha
- Department of Dermatology, University of Alabama, Birmingham 35205, United States of America
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, New Delhi 110007, India.
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|