1
|
Kim J, Park S, Kim SJ, Yoo I, Kim H, Hwang S, Sim KM, Kim I, Jun E. High-throughput drug screening using a library of antibiotics targeting cancer cell lines that are resistant and sensitive to gemcitabine. Biochem Biophys Res Commun 2024; 730:150369. [PMID: 39013264 DOI: 10.1016/j.bbrc.2024.150369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Gemcitabine is a nucleoside analog widely used as an anticancer agent against several types of cancer. Although gemcitabine sometimes shows excellent effectiveness, cancer cells are often poorly responsive to or resistant to the drug. Recently, specific strains or dysbiosis of the human microbiome were correlated with drug reactivity and resistance acquisition. Therefore, we aimed to identify antibiotic compounds that can modulate the microbiome to enhance the responsiveness to gemcitabine. To achieve this, we confirmed the gemcitabine responsiveness based on public data and conducted drug screening on a set of 250 antibiotics compounds. Subsequently, we performed experiments to investigate whether the selected compounds could enhance the responsiveness to gemcitabine. First, we grouped a total of seven tumor cell lines into resistant and sensitive group based on the IC50 value (1 μM) of gemcitabine obtained from the public data. Second, we performed high-throughput screening with compound treatments, identifying seven compounds from the resistant group and five from the sensitive group based on dose dependency. Finally, the combination of the selected compound, puromycin dihydrochloride, with gemcitabine in gemcitabine-resistant cell lines resulted in extensive cell death and a significant increase in cytotoxic efficacy. Additionally, mRNA levels associated with cell viability and stemness were reduced. Through this study, we screened antibiotics to further improve the efficacy of existing anticancer drugs and overcome resistance. By combining existing anticancer agents and antibiotic substances, we hope to establish various drug combination therapies and ultimately improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Jinju Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sojung Park
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seong-Jin Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Inha Yoo
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Heeseon Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Supyong Hwang
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Kyoung Mi Sim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Inki Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Eunsung Jun
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
2
|
Pisanu L, Mucaj K, Conio V, Bertuccio F, Giana I, Arlando L, Russo M, Montini S, Bortolotto C, Corsico AG, Stella GM. Lung bronchiectasisas a paradigm of the interplay between infection and colonization on plastic modulation of the pre-metastatic niche. Front Oncol 2024; 14:1480777. [PMID: 39469649 PMCID: PMC11513253 DOI: 10.3389/fonc.2024.1480777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
The lungs are most often a preferential target organ for malignant spreading and growth. It is well known that chronic parenchymal inflammation and prolonged injuries represents an independent risk factor for cancer onset. Growing evidence supports the implication of lung microbiota in the pathogenesis of lung cancer. However, the full interplay between chronic inflammation, bacterial colonization, pathologic condition as bronchiectasis and malignant growth deserves better clarification. We here aim at presenting and analyzing original data and discussing the state-of-the-art on the knowledge regarding how this complex milieu acts on the plasticity of the lung pre-metastatic niche to point out the rationale for early diagnosis and therapeutic targeting.
Collapse
Affiliation(s)
- Lucrezia Pisanu
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Klodjana Mucaj
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Valentina Conio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Francesco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Ilaria Giana
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Arlando
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Marianna Russo
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Simone Montini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia Medical School, Pavia, Italy
- Radiology Institute, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
3
|
Liang A, Korani L, Yeung CLS, Tey SK, Yam JWP. The emerging role of bacterial extracellular vesicles in human cancers. J Extracell Vesicles 2024; 13:e12521. [PMID: 39377479 PMCID: PMC11460218 DOI: 10.1002/jev2.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as pivotal mediators between bacteria and host. In addition to being crucial players in host homeostasis, they have recently been implicated in disease pathologies such as cancer. Hence, the study of BEVs represents an intriguing and rapidly evolving field with substantial translational potential. In this review, we briefly introduce the fundamentals of BEV characteristics, cargo and biogenesis. We emphatically summarize the current relationship between BEVs across various cancer types, illustrating their role in tumorigenesis, treatment responses and patient survival. We further discuss the inherent advantages of BEVs, such as stability, abundance and specific cargo profiles, that make them attractive candidates for non-invasive diagnostic and prognostic approaches. The review also explores the potential of BEVs as a strategy for cancer therapy, considering their ability to deliver therapeutic agents, modulate the tumour microenvironment (TME) and elicit immunomodulatory responses. Understanding the clinical significance of BEVs may lead to the development of better-targeted and personalized treatment strategies. This comprehensive review evaluates the current progress surrounding BEVs and poses questions to encourage further research in this emerging field to harness the benefits of BEVs for their full potential in clinical applications against cancer.
Collapse
Affiliation(s)
- Aijun Liang
- Department of Hepatobiliary Surgery IIZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lavisha Korani
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sze Keong Tey
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery IIZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| |
Collapse
|
4
|
Martin S, Smith C, Stewart K, Barr W, Cheslett D, O'Connor I, Swords F, Ijaz UZ, O'Dwyer K. The hepatopancreas microbiome of velvet crab, Necora puber. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70014. [PMID: 39354672 PMCID: PMC11445078 DOI: 10.1111/1758-2229.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Crustaceans are a valuable resource globally, both ecologically and economically, and investigations into their health are becoming increasingly important as exploitation rises. The microbiome plays a crucial role in crustacean immunity, and understanding its composition and structure can provide insights into the health of an organism and its interactions with various factors. In this study, we investigated the hepatopancreas microbiome of the velvet swimming crab, Necora puber, and compared its composition and structure with several study factors, including two different sampling points and infection with a paramyxid parasite, Paramarteilia canceri. To our knowledge, we provide the first description of a velvet crab microbiome, highlighting the dominance of a single microorganism, Candidatus hepatoplasma. We identified variations in microbiome composition between sampling points and discussed the possible processes affecting microbiome assembly. We also outline a core microbiome for the velvet crab hepatopancreas, consisting of 12 core phyla. Our study adds to the growing literature on crustacean microbiomes and provides a baseline for future investigations into the velvet crab microbiome and the health of this crustacean species.
Collapse
Affiliation(s)
- Signe Martin
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| | - Cindy Smith
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Kelly Stewart
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - William Barr
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | | | - Ian O'Connor
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| | | | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Katie O'Dwyer
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| |
Collapse
|
5
|
Xuan M, Gu X, Liu Y, Yang L, Li Y, Huang D, Li J, Xue C. Intratumoral microorganisms in tumors of the digestive system. Cell Commun Signal 2024; 22:69. [PMID: 38273292 PMCID: PMC10811838 DOI: 10.1186/s12964-023-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingru Liu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Li Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yi Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Sevcikova A, Mladosievicova B, Mego M, Ciernikova S. Exploring the Role of the Gut and Intratumoral Microbiomes in Tumor Progression and Metastasis. Int J Mol Sci 2023; 24:17199. [PMID: 38139030 PMCID: PMC10742837 DOI: 10.3390/ijms242417199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
7
|
Han J, Li M, Li X, Liu C, Li XL, Wang K, Qiao R, Yang F, Han X, Li XJ. Effects of microbes in pig farms on occupational exposed persons and the environment. AMB Express 2023; 13:136. [PMID: 38032532 PMCID: PMC10689614 DOI: 10.1186/s13568-023-01631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In terms of pig farming, pig gut microbes have a significant effect on farmers and the farm environment. However, it is still unclear which microbial composition is more likely to contribute to this effect. This study collected a total of 136 samples, including pigs' faeces samples, farmers' faeces samples, samples from individuals who had no contact with any type of farm animal (referred to as 'non-exposed' persons), and environmental dust samples (collected from inside and outside pig houses and the farm) from two pig farms, pig farm A and pig farm B. Whereafter, 16S rRNA sequencing and taxonomic composition analysis were performed. According to the study, compared to non-exposed persons, pig farmers had a significantly higher abundance of 7 genera. In addition, the farmers were grouped according to the duration of their occupational exposure, and it was shown that 4 genera, including Turicibacter, Terrisporobacter, and Clostridium_sensu_stricto_1, exhibited a rise in more frequent contact with pigs. As compared to outside the pig house, the environmental dust has a greater concentration of the 3 bacteria mentioned before. Therefore, these 3 microbes can be considered as co-occurring microbes that may exist both in humans and the environment. Also, the 3 co-occurring microbes are involved in the fermentation and production of short-chain fatty acids and their effectiveness decreased as distance from the farm increased. This study shows that the 3 microbes where pig farmers co-occur with the environment come from pig farms, which provides fresh ideas for preventing the spread of microbial aerosols in pig farms and reducing pollution.
Collapse
Affiliation(s)
- Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyu Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chuang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiu-Ling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xin-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya, China.
| |
Collapse
|
8
|
Meng YF, Fan ZY, Zhou B, Zhan HX. Role of the intratumoral microbiome in tumor progression and therapeutics implications. Biochim Biophys Acta Rev Cancer 2023; 1878:189014. [PMID: 37918451 DOI: 10.1016/j.bbcan.2023.189014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microbes are widely present in various organs of the human body and play important roles in numerous physiological and pathological processes. Nevertheless, owing to multiple limiting factors, such as contamination and low biomass, the current understanding of the intratumoral microbiome is limited. The intratumoral microbiome exerts tumor-promoting or tumor-suppressive effects by engaging in metabolic reactions within the body, regulating signaling cancer-related pathways, and impacting both host cells function and immune system. It is important to emphasize that intratumoral microbes exhibit substantial heterogeneity in terms of composition and abundance across various tumor types, thereby potentially influencing diverse aspects of tumorigenesis, progression, and metastasis. These findings suggest that intratumoral microbiome have great potential as diagnostic and prognostic biomarkers. By manipulating the intratumoral microbes to employ cancer therapy, the efficacy of chemotherapy or immunotherapy can be enhanced while minimizing adverse effects. In this review, we comprehensively describe the composition and function of the intratumoral microbiome in various human solid tumors. Combining recent advancements in research, we discuss the origins, mechanisms, and prospects of the clinical applications of intratumoral microbiome.
Collapse
Affiliation(s)
- Yu-Fan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Yao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Han-Xiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
9
|
Gorini F, Tonacci A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants (Basel) 2023; 12:1898. [PMID: 37891977 PMCID: PMC10604861 DOI: 10.3390/antiox12101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid cancer (TC), the most frequent malignancy of the endocrine system, has recorded an increasing incidence in the last decades. The etiology of TC remains at least partly unknown and, among modifiable risk factors, the gut microbiota and dietary nutrients (vitamins, essential microelements, polyphenols, probiotics) have been recognized to not only influence thyroid function, but exert critical effects on TC development and progression. Recent discoveries on the existence of tumor microbiota also in the TC microenvironment provide further evidence for the essential role of tumor microorganisms in TC etiology and severity, as well as acting as prognostic markers and as a potential target of adjuvant care in the treatment of TC patients. Therefore, in this review, we summarize current knowledge on the relationship of the tumor microbiome with the clinical tumor characteristics and TC progression, also illustrating the molecular mechanisms underlying this association, and how antioxidant nutrients may be used as a novel strategy to both control gut health and reduce the risk for TC. Furthermore, we discuss how new technologies might be exploited for the development of new foods with high nutritional values, antioxidant capability, and even attractiveness to the individual in terms of sensory and emotional features.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
10
|
Guan SW, Lin Q, Yu HB. Intratumour microbiome of pancreatic cancer. World J Gastrointest Oncol 2023; 15:713-730. [PMID: 37275446 PMCID: PMC10237023 DOI: 10.4251/wjgo.v15.i5.713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Pancreatic cancer is a high mortality malignancy with almost equal mortality and morbidity rates. Both normal and tumour tissues of the pancreas were previously considered sterile. In recent years, with the development of technologies for high-throughput sequencing, a variety of studies have revealed that pancreatic cancer tissues contain small amounts of bacteria and fungi. The intratumour microbiome is being revealed as an influential contributor to carcinogenesis. The intratumour microbiome has been identified as a crucial factor for pancreatic cancer progression, diagnosis, and treatment, chemotherapy resistance, and immune response. A better understanding of the biology of the intratumour microbiome of pancreatic cancer contributes to the establishment of better early cancer screening and treatment strategies. This review focuses on the possible origins of the intratumour microbiome in pancreatic cancer, the intratumour localization, the interaction with the tumour microenvironment, and strategies for improving the outcome of pancreatic cancer treatment. Thus, this review offers new perspectives for improving the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Shi-Wei Guan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Quan Lin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hai-Bo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
11
|
Liu J, Luo F, Wen L, Zhao Z, Sun H. Current Understanding of Microbiomes in Cancer Metastasis. Cancers (Basel) 2023; 15:1893. [PMID: 36980779 PMCID: PMC10047396 DOI: 10.3390/cancers15061893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer has been the first killer that threatens people's lives and health. Despite recent improvements in cancer treatment, metastasis continues to be the main reason for death from cancer. The functions of microbiome in cancer metastasis have been studied recently, and it is proved that microbiome can influence tumor metastasis, as well as positive or negative responses to therapy. Here, we summarize the mechanisms of microorganisms affecting cancer metastasis, which include epithelial-mesenchymal transition (EMT), immunity, fluid shear stress (FSS), and matrix metalloproteinases (MMPs). This review will not only give a further understanding of relationship between microbiome and cancer metastasis, but also provide a new perspective for the microbiome's application in cancer metastasis prevention, early detection, and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
12
|
Mohseni AH, Taghinezhad-S S, Casolaro V, Lv Z, Li D. Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death Dis 2023; 14:154. [PMID: 36828830 PMCID: PMC9958015 DOI: 10.1038/s41419-023-05560-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/26/2023]
Abstract
The central role of the microbiota as a pivotal factor regulating anti-tumor immune responses has recently been appreciated. Increasing evidence has put a spotlight on the connection of microbiota to T cells, by showing impaired effector and/or memory responses in germ-free (GF) mice or in the presence of dysbiotic communities, and association with tumor growth and overall survival (OS). These observations also have significant implications for anti-tumor therapy and vaccination, suggesting that the communication between T cells and the microbiota involves soluble mediators (microbiota-derived metabolites) that influence various functions of T cells. In addition, there is growing appreciation of the role of bacterial translocation into the peritumoral milieu from the intestinal tract, as well as of locally developed tumor microbial communities, spatially separated from the gut microbiota, in shaping the tumor microbiome. Collectively, these findings have added new support to the idea that tonic inputs mirroring the existence of tumor microbiome could regulate the function of tumor-infiltrating T cells and tissue-resident memory T (TRM) cells. In this review, we focus on recent advances and aspects of these active areas of investigation and provide a comprehensive overview of the unique mechanisms that play a pivotal role in the regulation of anti-tumor immunity by the microbiota, some of which could be of particular relevance for addressing problems caused by tumor heterogeneity. It is our hope that this review will provide a theoretical foundation for future investigations in this area.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sedigheh Taghinezhad-S
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China.
- Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China.
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Stramazzo I, Capriello S, Filardo S, Centanni M, Virili C. Microbiota and Thyroid Disease: An Updated Systematic Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023. [DOI: 10.1007/5584_2023_770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Jeon S, Jun E, Chang H, Yhee JY, Koh EY, Kim Y, Jung JY, Jeong EJ, Lee JW, Shim MK, Yoon HY, Chang S, Kim K, Kim SC. Prediction the clinical EPR effect of nanoparticles in patient-derived xenograft models. J Control Release 2022; 351:37-49. [PMID: 36089170 DOI: 10.1016/j.jconrel.2022.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Many preclinically tested nanoparticles in existing animal models fail to be directly translated into clinical applications because of their poor resemblance to human cancer. Herein, the enhanced permeation and retention (EPR) effect of glycol chitosan nanoparticles (CNPs) in different tumor microenvironments (TMEs) was compared using different pancreatic tumor models, including pancreatic cancer cell line (BxPC3), patient-derived cancer cell (PDC), and patient-derived xenograft (PDX) models. CNPs were intravenously injected into different tumor models, and their accumulation efficiency was evaluated using non-invasive near-infrared fluorescence (NIRF) imaging. In particular, differences in angiogenic vessel density, collagen matrix, and hyaluronic acid content in tumor tissues of the BxPC3, PDC, and PDX models greatly affected the tumor-targeting efficiency of CNPs. In addition, different PDX models were established using different tumor tissues of patients to predict the clinical EPR effect of CNPs in inter-patient TMEs, wherein the gene expression levels of PECAM1, COL4A1, and HAS1 in human tumor tissues were observed to be closely related to the EPR effect of CNPs in PDX models. The results suggested that the PDX models could mimic inter-patient TMEs with different blood vessel structures and extracellular matrix (ECM) content that critically affect the tumor-targeting ability of CNPs in different pancreatic PDX models. This study provides a better understanding of the heterogeneity and complexity of inter-patient TMEs that can predict the response of various nanoparticles in individual tumors for personalized cancer therapy.
Collapse
Affiliation(s)
- Sangmin Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunsung Jun
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Republic of Korea; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyeyoun Chang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ji Young Yhee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Green Vet, 131-1 Ihyeon-ro 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Eun-Young Koh
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yeounhee Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eun Ji Jeong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Jong Won Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea; College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
15
|
Amara S, Yang LV, Tiriveedhi V, Muzaffar M. Complex Role of Microbiome in Pancreatic Tumorigenesis: Potential Therapeutic Implications. Cells 2022; 11:1900. [PMID: 35741028 PMCID: PMC9221309 DOI: 10.3390/cells11121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related mortality with limited diagnostic and therapeutic options. Although immunotherapy has shown promise in the treatment of several cancers, its role in pancreatic cancer is rather limited. Several studies have focused on determining the role of the tumor microenvironment with cancer-cell-intrinsic events and tumor-infiltrating immune cellular properties. However, in the past decade, there has been emerging research aimed at delineating the role of the host microbiome, including the metabolites from microbes and host responses, on pancreatic tumorigenesis. Importantly, there is emerging evidence suggesting the beneficial role of a gut microbiome transplant to improve immunotherapeutic outcomes in cancer patients. In this review, we summarize the recent understanding of the role of the microbiome in pancreatic cancer progression, along with its clinical diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Suneetha Amara
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Li V. Yang
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| | - Mahvish Muzaffar
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| |
Collapse
|
16
|
Wenhui Y, Zhongyu X, Kai C, Zhaopeng C, Jinteng L, Mengjun M, Zepeng S, Yunshu C, Peng W, Yanfeng W, Huiyong S. Variations in the Gut Microbiota in Breast Cancer Occurrence and Bone Metastasis. Front Microbiol 2022; 13:894283. [PMID: 35722347 PMCID: PMC9204246 DOI: 10.3389/fmicb.2022.894283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/29/2022] [Indexed: 01/18/2023] Open
Abstract
Breast cancer is the most common cancer in women and the second most common cancer overall. Although advancements in the early diagnosis and therapy of breast cancer have occurred in recent years, the prognosis of breast cancer bone metastasis remains poor and this type of cancer is rarely cured. The gut microbiota is indispensable for internal homeostasis and regulates various biological processes. Understanding the gut microbiota profiles in normal controls (NCs), breast cancer patients with no metastasis (BNs), and breast cancer patients with bone metastasis (BMs) may shed light on the development of diagnostic and therapeutic targets for breast cancer and bone metastasis. We comprehensively analyzed the gut microbiota from NCs, BNs, and BMs and found that the community diversity decreased in the order of NCs, BNs, and BMs. Streptococcus, Campylobacter and Moraxellaceae showed higher abundances in BNs and BMs than in NCs. The lack of Megamonas and Akkermansia in the BM compared with those in the NC and BN groups was considered related to bone metastasis. Additionally, based on the distinct gut microbiota profiles, we predicted that lipid transportation and metabolism, as well as folate biosynthesis, participate in breast cancer occurrence and that steroid hormone biosynthesis influences bone metastasis. Our study demonstrated that variations in gut microbiota are associated with breast cancer occurrence and bone metastasis, providing attractive targets to develop therapeutic and diagnostic methods.
Collapse
Affiliation(s)
- Yu Wenhui
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xie Zhongyu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chen Kai
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cai Zhaopeng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Li Jinteng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ma Mengjun
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Su Zepeng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Che Yunshu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wang Peng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wang Peng,
| | - Wu Yanfeng
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Wu Yanfeng,
| | - Shen Huiyong
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shen Huiyong,
| |
Collapse
|
17
|
Chen Z, Zhang S, Dong S, Xu H, Zhou W. Association of the Microbiota and Pancreatic Cancer: Opportunities and Limitations. Front Immunol 2022; 13:844401. [PMID: 35309293 PMCID: PMC8928443 DOI: 10.3389/fimmu.2022.844401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The human body is thoroughly colonized by a wide variety of microorganisms, termed microbiota. Pancreatic cancer, one of the most aggressive forms of cancer, is no exception. The microbiota of pancreatic cancer largely influences and even dominates the occurrence, development and outcome of pancreatic cancer in many ways. Studies have shown that microbiota could change the malignant phenotype and prognosis of pancreatic cancer by stimulating persistent inflammation, regulating the antitumor immune system, changing the tumor microenvironment and affecting cellular metabolism. This is why the association of the microbiota with pancreatic cancer is an emerging area of research that warrants further exploration. Herein, we investigated the potential microbial markers of pancreatic cancer, related research models, the mechanism of action of microbiota in pancreatic cancer, and pancreatic cancer-microbiota-related treatment.
Collapse
Affiliation(s)
- Zhou Chen
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shaofeng Zhang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Shi Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Xu
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Dai D, Yang Y, Yang Y, Dang T, Xiao J, Wang W, Teng L, Xu J, Ye J, Jiang H. Alterations of thyroid microbiota across different thyroid microhabitats in patients with thyroid carcinoma. J Transl Med 2021; 19:488. [PMID: 34847917 PMCID: PMC8638380 DOI: 10.1186/s12967-021-03167-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Background In recent years, the incidence rate of Thyroid carcinoma (TC) has been increasing worldwide. Thus, research on factors of TC carcinogenesis may promote TC prevention and decrease the incidence rate. There are several studies targeting the correlation between gut microbiota and thyroid disease. Carcinogenesis of several malignancies is influenced by microbiota. However, thyroid microbiome of TC has not been revealed. This study investigated thyroid microbiota in different TC microhabitats. Methods We performed 16s rRNA gene sequencing using tumor tissues and matched peritumor tissues from 30 patients with TC to characterize thyroid microbiota. Results The richness and diversity of thyroid microbiota were lower in TC tumor samples than in matched peritumor tissues. At the genus level, the core microbiota of thyroid included Sphingomonas, Comamonas, Acinetobacter, Pseudomonas, Microvirgula, and Soonwooa. The abundance of Sphingomonas and Aeromonas was significantly increased in tumor tissues, while the abundance of Comamonas, Acinetobacter, and Peptostreptococcus was significantly enhanced in peritumor tissues. The combination of Comamonas and Sphingomonas could discriminate tumor samples from peritumor samples with an area under the curve (AUC) of 0.981 (95% confidence interval [CI] 0.949–1.000). The abundance of Sphingomonas was significantly higher in N1 stage than in N0 stage. Sphingomonas could distinguish between N0 and N1 stage with an AUC of 0.964 (95% CI 0.907–1.000). Conclusions The microbial diversity and composition were significantly different between peritumor and tumor microhabitats from patients with TC, which may eventually affect TC carcinogenesis and progression. The combination of Comamonas and Sphingomonas could serve as a powerful biomarker for discrimination between tumor and peritumor tissues. Furthermore, the higher abundance of Sphingomonas was correlated with lymph node metastasis, indicating that the abundance of Sphingomonas may indicate a poor prognosis for TC patients, and Sphingomonas may play a role in promoting TC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03167-9.
Collapse
Affiliation(s)
- Daofeng Dai
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yong Yang
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Tianfeng Dang
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiansheng Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weibin Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Juan Xu
- Pathology Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| | - Jing Ye
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Hongqun Jiang
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
19
|
Huang H, Hu Y, Guo L, Wen Z. Integrated bioinformatics analyses of key genes involved in hepatocellular carcinoma immunosuppression. Oncol Lett 2021; 22:830. [PMID: 34691257 PMCID: PMC8527569 DOI: 10.3892/ol.2021.13091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer. Chronically unresolved inflammation may remodel the immunosuppressive tumor microenvironment, which is rich in innate immune cells. The mechanisms via which HCC progresses through the evasion of the innate immune surveillance remain unclear. The present study thus aimed to identify key genes involved in HCC immunosuppression and to establish an innate immune risk signature, with the ultimate goal of obtaining new insight into effective immunotherapies. HCC and normal liver tissue mRNA expression and clinicopathological data were obtained from the Cancer Genome Atlas database. The immunosuppressive innate immune-related genes (IIRGs) in HCC were screened using integrated bioinformatics analyses. Gene expression was then validated using the Gene Expression Omnibus database and the Human Protein Atlas database, and tissues were obtained from patients with HCC who underwent surgery. In total, 3,676 genes were identified as differentially expressed mRNAs after comparing the HCC tissues with the normal liver tissues in TCGA. Gene Set Enrichment Analyses revealed 21 highly expressed IIRGs in HCC tissues. A survival analysis and Cox regression model were used to construct an innate immune risk signature, including three IIRGs: Collectin-12 (COLEC12), matrix metalloproteinase-12 (MMP12) and mucin-12 (MUC12) genes. Univariate and multivariate Cox analyses revealed that the signature of the three IIRGs was a robust independent risk factor in relation to the overall survival (OS) of patients with HCC. The expression of the three aforementioned IIRGs was confirmed through external validation. Moreover, COLEC12 and MMP12 expression significantly correlated with that of immune checkpoint molecules or immunosuppressive cytokines. The tumor immune dysfunction and exclusion tool predicted that the increased expression of the three IIRGs in patients with HCC was significantly associated with the efficacy of relatively poor immune checkpoint blockade therapy. Conclusively, a novel innate immune-related risk signature for patients with HCC was constructed and validated. This signature may be involved in immunosuppression, and may be used to predict a poor prognosis, functioning as a potential immunotherapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Hongyan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Youwen Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
20
|
Li JJ, Zhu M, Kashyap PC, Chia N, Tran NH, McWilliams RR, Bekaii-Saab TS, Ma WW. The role of microbiome in pancreatic cancer. Cancer Metastasis Rev 2021; 40:777-789. [PMID: 34455517 PMCID: PMC8402962 DOI: 10.1007/s10555-021-09982-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Recent studies of the human microbiome have offered new insights into how the microbiome can impact cancer development and treatment. Specifically, in pancreatic ductal adenocarcinoma (PDAC), the microbiota has been shown to modulate PDAC risk, contribute to tumorigenesis, impact the tumor microenvironment, and alter treatment response. These findings provide rationale for further investigations into leveraging the microbiome to develop new strategies to diagnose and treat PDAC patients. There is growing evidence that microbiome analyses have the potential to become easily performed, non-invasive diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. More excitingly, there is now emerging interest in developing interventions based on the modulation of microbiota. Fecal microbiota transplantation, probiotics, dietary changes, and antibiotics are all potential strategies to augment the efficacy of current therapeutics and reduce toxicities. While there are still challenges to overcome, this is a rapidly growing field that holds promise for translation into clinical practice and provides a new approach to improving patient outcomes.
Collapse
Affiliation(s)
- Jenny Jing Li
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Mojun Zhu
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Purna C Kashyap
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nguyen H Tran
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Robert R McWilliams
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology/Oncology, Mayo Clinic, 2779 E. Mayo Boulevard, Phoenix, AZ, USA
| | - Wen Wee Ma
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|
21
|
Modulation of the Mucosa-Associated Microbiome Linked to the PTPN2 Risk Gene in Patients with Primary Sclerosing Cholangitis and Ulcerative Colitis. Microorganisms 2021; 9:microorganisms9081752. [PMID: 34442830 PMCID: PMC8399714 DOI: 10.3390/microorganisms9081752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota appears to be involved in the pathogenesis of primary sclerosing cholangitis (PSC). The protein tyrosine phosphatase nonreceptor 2 (PTPN2) gene risk variant rs1893217 is associated with gut dysbiosis in inflammatory bowel disease (IBD), and PTPN2 was mentioned as a possible risk gene for PSC. This study assessed the microbial profile of ulcerative colitis (UC) patients with PSC and without PSC (non-PSC). Additionally, effects of the PTPN2 risk variant were assessed. In total, 216 mucosal samples from ileum, colon, and rectum were collected from 7 PSC and 42 non-PSC patients, as well as 28 control subjects (non-IBD). The microbial composition was derived from 16S rRNA sequencing data. Overall, bacterial richness was highest in PSC patients, who also had a higher relative abundance of the genus Roseburia compared to non-PSC, as well as Haemophilus, Fusobacterium, Bifidobacterium, and Actinobacillus compared to non-IBD, as well as a lower relative abundance of Bacteroides compared to non-PSC and non-IBD, respectively. After exclusion of patients with the PTPN2 risk variant, Brachyspira was higher in PSC compared to non-PSC, while, solely in colon samples, Eubacterium and Tepidimonas were higher in PSC vs. non-IBD. In conclusion, this study underlines the presence of gut mucosa-associated microbiome changes in PSC patients and rather weakens the role of PTPN2 as a PSC risk gene.
Collapse
|