1
|
Wylie D, Wang X, Yao J, Xu H, Ferrick-Kiddie EA, Iwase T, Krishnamurthy S, Ueno NT, Lambowitz AM. TGIRT-seq of Inflammatory Breast Cancer Tumor and Blood Samples Reveals Widespread Enhanced Transcription Impacting RNA Splicing and Intronic RNAs in Plasma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.26.23290469. [PMID: 37398275 PMCID: PMC10312853 DOI: 10.1101/2023.05.26.23290469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive and lethal breast cancer subtype but lacks unequivocal genomic differences or robust biomarkers that differentiate it from non-IBC. Here, Thermostable Group II intron Reverse Transcriptase RNA-sequencing (TGIRT-seq) revealed myriad differences in tumor samples, Peripheral Blood Mononuclear Cells (PBMCs), and plasma that distinguished IBC from non-IBC patients and healthy donors across all tested receptor-based subtypes. These included numerous differentially expressed protein-coding gene and non-coding RNAs in all three sample types, a granulocytic immune response in IBC PBMCs, and over-expression of antisense RNAs, suggesting wide-spread enhanced transcription in both IBC tumors and PBMCs. By using TGIRT-seq to quantitate Intron-exon Depth Ratios (IDRs) and mapping reads to both genome and transcriptome reference sequences, we developed methods for parallel analysis of transcriptional and post-transcriptional gene regulation. This analysis identified numerous differentially and non-differentially expressed protein-coding genes in IBC tumors and PBMCs with high IDRs, the latter reflecting rate-limiting RNA splicing that negatively impacts mRNA production. Mirroring gene expression differences in tumors and PBMCs, over-represented protein-coding gene RNAs in IBC patient plasma were largely intronic RNAs, while those in non-IBC patients and healthy donor plasma were largely mRNA fragments. Potential IBC biomarkers in plasma included T-cell receptor pre-mRNAs and intronic, LINE-1, and antisense RNAs. Our findings provide new insights into IBC and set the stage for monitoring disease progression and response to treatment by liquid biopsy. The methods developed for parallel transcriptional and post-transcriptional gene regulation analysis have potentially broad RNA-seq and clinical applications.
Collapse
Affiliation(s)
- Dennis Wylie
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Cancer Biology Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | | | - Toshiaki Iwase
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Translational Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Cancer Biology Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Translational Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Alan M Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
2
|
Hao S, Ge P, Su W, Wang Y, Abd El-Aty AM, Tan M. Steady-State Delivery and Chemical Modification of Food Nutrients to Improve Cancer Intervention Ability. Foods 2024; 13:1363. [PMID: 38731734 PMCID: PMC11083276 DOI: 10.3390/foods13091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer is a crucial global health problem, and prevention is an important strategy to reduce the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing body of evidence suggests that specific nutrients in foods may have a preventive effect against cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer intervention. It discusses the potential mechanisms of action of various dietary components, including phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as carotenoids, flavonoids, and ω-3 fatty acids, which have been proven to have anticancer properties. The effects of steady-state delivery and chemical modification of these food's bioactive components on anticancer and intervention are summarized. Future research should focus on identifying the specific bioactive compounds in foods responsible for their intervention effects and exploring the potential synergistic effects of combining different nutrients in foods. Dietary interventions that incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and improving overall health.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Peng Ge
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Malik S, Fatima B, Hussain D, Imran M, Chohan TA, Khan MS, Majeed S, Najam-Ul-Haq M. Synthesis of novel nonsteroidal anti-inflammatory galloyl β-sitosterol-loaded lignin-capped Ag-based drug. Inflammopharmacology 2024; 32:1333-1351. [PMID: 37994993 DOI: 10.1007/s10787-023-01390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Biocompatible anti-inflammatory lignin-capped Ag (LCAg) nanoparticles (NPs) were synthesized for the delivery of galloyl β-sitosterol (Galloyl-BS). β-Sitosterol (BS) is effective against inflammatory responses, like cancer-induced inflammations. BS was modified via gallic acid esterification to enhance its anti-inflammatory potential. LCAg NPs were synthesized by a green method and loaded with galloyl-BS. For comparison, pure BS was also loaded onto LCAg NPs in a separate assembly. The antioxidant potential of Galloyl-BS was greater (IC50 177 µM) than pure BS. Materials were characterized by FT-IR, SEM, XRD, and Zeta potential. Using UV-Vis spectroscopy, drug release experiments were performed by varying pH, time, concentration, and temperature. Maximum drug release was observed after 18 h at pH 6 and 40 °C. Galloyl-BS showed improved drug loading efficiency, release %age, and antioxidant activity compared to pure BS when loaded onto LCAg NPs. DLCAg exhibited excellent anti-inflammatory activity in rat models. These findings indicate that galloyl-BS (drug)-loaded LCAg (DLCAg) NPs have the potential as an anti-inflammatory agent without any prior release and scavenging in normal cells.
Collapse
Affiliation(s)
- Sana Malik
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Imran
- Biochemistry Section Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Tahir Ali Chohan
- Department of Biochemistry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
4
|
Zhang Z, Wu H, Shen C, Zhou F. Comprehensive Characterization of Immune Cell Infiltration Characteristics and Drug Sensitivity Analysis in Inflammatory Breast Cancer Based on Bioinformatic Strategy. Biochem Genet 2024; 62:1021-1039. [PMID: 37517031 DOI: 10.1007/s10528-023-10460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Inflammatory breast cancer (IBC) is a rare and highly invasive form of breast cancer, renowned for its aggressive behavior, malignant capacity, and unfavorable prognosis. Despite considerable advancements in comprehending the underlying biology of IBC, the immune cell infiltration (ICI) profile in IBC remains inadequately elucidated. The current work endeavors to investigate the ICI characteristics of IBC and ascertain the pivotal immune cell subtypes and genes that impact its prognosis. The present study employed microarray data from the GEO database to demonstrate that IBC exhibited a lower abundance of activated mast cells (AMC) in comparison to non-inflammatory breast cancer (nIBC) or normal breast tissue (NBT). Additionally, the mRNA expression level of the gene polo-like kinase 5 (PLK5), which was correlated with AMC, was found to be lower in IBC relative to nIBC or NBT. Furthermore, this investigation provided compelling evidence indicating a potential association between a decreased mRNA expression level of PLK5 and a shorter progression-free survival in patients with breast cancer. The gene set enrichment analysis performed on PLK5 revealed that the gene expression in IBC was closely associated with diverse immune functions and pathways. Besides, a negative correlation has been established between PLK5 mRNA expression level and a majority of immune checkpoint-related genes, thereby suggesting the potential suitability of immunotherapy treatment for IBC. In summary, this study offers valuable insights into the ICI profile of IBC and identifies potential target PLK5 for improving its clinical management.
Collapse
Affiliation(s)
- Zhengguang Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haitao Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China.
| |
Collapse
|
5
|
Ji X, Williams KP, Zheng W. Applying a Gene Reversal Rate Computational Methodology to Identify Drugs for a Rare Cancer: Inflammatory Breast Cancer. Cancer Inform 2023; 22:11769351231202588. [PMID: 37846218 PMCID: PMC10576937 DOI: 10.1177/11769351231202588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/01/2023] [Indexed: 10/18/2023] Open
Abstract
The aim of this study was to utilize a computational methodology based on Gene Reversal Rate (GRR) scoring to repurpose existing drugs for a rare and understudied cancer: inflammatory breast cancer (IBC). This method uses IBC-related gene expression signatures (GES) and drug-induced gene expression profiles from the LINCS database to calculate a GRR score for each candidate drug, and is based on the idea that a compound that can counteract gene expression changes of a disease may have potential therapeutic applications for that disease. Genes related to IBC with associated differential expression data (265 up-regulated and 122 down-regulated) were collated from PubMed-indexed publications. Drug-induced gene expression profiles were downloaded from the LINCS database and candidate drugs to treat IBC were predicted using their GRR scores. Thirty-two (32) drug perturbations that could potentially reverse the pre-compiled list of 297 IBC genes were obtained using the LINCS Canvas Browser (LCB) analysis. Binary combinations of the 32 perturbations were assessed computationally to identify combined perturbations with the highest GRR scores, and resulted in 131 combinations with GRR greater than 80%, that reverse up to 264 of the 297 genes in the IBC-GES. The top 35 combinations involve 20 unique individual drug perturbations, and 19 potential drug candidates. A comprehensive literature search confirmed 17 of the 19 known drugs as having either anti-cancer or anti-inflammatory activities. AZD-7545, BMS-754807, and nimesulide target known IBC relevant genes: PDK, Met, and COX, respectively. AG-14361, butalbital, and clobenpropit are known to be functionally relevant in DNA damage, cell cycle, and apoptosis, respectively. These findings support the use of the GRR approach to identify drug candidates and potential combination therapies that could be used to treat rare diseases such as IBC.
Collapse
Affiliation(s)
- Xiaojia Ji
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Kevin P Williams
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Weifan Zheng
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
6
|
Ansari JA, Malik JA, Ahmed S, Bhat FA, Khanam A, Mir SA, Abouzied AS, Ahemad N, Anwar S. Targeting Breast Cancer Signaling via Phytomedicine and Nanomedicine. Pharmacology 2023; 108:504-520. [PMID: 37748454 DOI: 10.1159/000531802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sakeel Ahmed
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | | | - Afreen Khanam
- Department of Pharmacology, Jamia Hamdard, New Delhi, India
| | - Suhail Ahmad Mir
- Department of Pharmacy, University of Kashmir, Jammu and Kashmir, India
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nafees Ahemad
- School of Pharmacy, MONASH University Malaysia, Bandar Sunway, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
7
|
Kong J, Bandyopadhyay S, Chen W, Al-Mufarrej F, Choi L, Kosir MA. Improved Rate of Negative Margins for Inflammatory Breast Cancer Using Intraoperative Frozen Section Analysis. Cancers (Basel) 2023; 15:4597. [PMID: 37760566 PMCID: PMC10526412 DOI: 10.3390/cancers15184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer with a poor survival rate. Modified radical mastectomy (MRM) with negative pathologic margins is critical for improved survival. We aim to study the potential benefit of intraoperative frozen section analysis (FSA) to improve disease-free margins. METHODS This prospective, monocentric study included 19 patients who underwent MRM for IBC. For each patient, a 2 mm continuous skin edge was sent for FSA to guide further resection. The rate of tumor-free margins and the concurrence between the FSA and permanent pathological results were analyzed. RESULTS Overall, 15 of the 19 patients achieved negative margins, including four patients who would have had positive margins without FSA. The odds ratio of achieving a negative final margin with FSA was infinity (p = 0.031), and there was a strong agreement between the FSA and permanent pathological results (Kappa-0.83; p < 0.0001). CONCLUSIONS The FSA technique decreased the number of positive margins in IBC patients undergoing MRM, thereby potentially reducing the need for re-operation, allowing immediate wound closure, and preventing delays in the administration of adjuvant radiation therapy. More extensive trials are warranted to establish the use of intraoperative FSA in IBC treatment.
Collapse
Affiliation(s)
- Joshua Kong
- Department of Surgery, Wayne State University, 4160 John R, Suite 400, Detroit, MI 48201, USA
| | - Sudeshna Bandyopadhyay
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
- Department of Pathology, Wayne State University, 540 E. Canfield, Ste. 9374, Detroit, MI 48201, USA
| | - Wei Chen
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
| | - Faisal Al-Mufarrej
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
- Division of Plastic Surgery, Department of Surgery, Wayne State University, 4160 John R, Suite 400, Detroit, MI 48201, USA
| | - Lydia Choi
- Department of Surgery, Wayne State University, 4160 John R, Suite 400, Detroit, MI 48201, USA
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
| | - Mary A. Kosir
- Department of Surgery, Wayne State University, 4160 John R, Suite 400, Detroit, MI 48201, USA
- Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA (W.C.)
| |
Collapse
|
8
|
Jahangiri A, Ezzeddini R, Zounemat Kermani N, Bahrami F, Salek Farrokhi A. Combination of STAT3 inhibitor with Herceptin reduced immune checkpoints expression and provoked anti-breast cancer immunity: An in vitro study. Scand J Immunol 2023; 98:e13300. [PMID: 38441231 DOI: 10.1111/sji.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 03/07/2024]
Abstract
Breast cancer (BC) is the most prevalent diagnosed cancer among women. Herceptin blocks the effects of Her-2 and tumour cell growth. Despite many achievements using Herceptin in Her-2+ invasive BC treatment, there are treatment failures and resistances. The signal transducer and activator of transcription 3 (STAT3) is persistently activated in BC and is associated with immune suppression and tumour cell proliferation. We evaluated whether STAT3 inhibition could increase Herceptin impact on in vitro reduction of immune checkpoint inhibitors and polarize T cells to a protective immune response. We treated SK-BR-3 cells with Herceptin and the STAT3-inhibitor (FLLL32) and assessed the apoptosis and expression of apoptosis-related proteins, VEGF, Her-2 and apoptosis targets of STAT3. PBMCs were isolated from healthy donors and co-cultured with SK-BR-3 cells in the presence or absence of Herceptin and FLLL32. PD-L1, CTLA-4, TIM-3 and T-cell intracellular cytokines were then evaluated. Our results demonstrated that STAT3 inhibition and Herceptin increased SK-BR-3 cell apoptosis, significantly. STAT3 inhibition through combination treatment had a more significant effect on regulating PD-1, TIM-3 and CTLA-4 expression on PBMCs. Alternatively, the combination of FLLL32 and Herceptin promoted T helper-1 protective immune response. The combination of FLLL32 and Herceptin suppress the expression of immune checkpoints and provoke the T-helper1 immune response in lymphocytes. Our analysis indicates STAT3 as a promising target that improves Herceptin's role in breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Amirhossein Jahangiri
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rana Ezzeddini
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
9
|
Balamurugan K, Poria DK, Sehareen SW, Krishnamurthy S, Tang W, McKennett L, Padmanaban V, Czarra K, Ewald AJ, Ueno NT, Ambs S, Sharan S, Sterneck E. Stabilization of E-cadherin adhesions by COX-2/GSK3β signaling is a targetable pathway in metastatic breast cancer. JCI Insight 2023; 8:156057. [PMID: 36757813 PMCID: PMC10070121 DOI: 10.1172/jci.insight.156057] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Metastatic progression of epithelial cancers can be associated with epithelial-mesenchymal transition (EMT) including transcriptional inhibition of E-cadherin (CDH1) expression. Recently, EM plasticity (EMP) and E-cadherin-mediated, cluster-based metastasis and treatment resistance have become more appreciated. However, the mechanisms that maintain E-cadherin expression in this context are less understood. Through studies of inflammatory breast cancer (IBC) and a 3D tumor cell "emboli" culture paradigm, we discovered that cyclooxygenase 2 (COX-2; PTGS2), a target gene of C/EBPδ (CEBPD), or its metabolite prostaglandin E2 (PGE2) promotes protein stability of E-cadherin, β-catenin, and p120 catenin through inhibition of GSK3β. The COX-2 inhibitor celecoxib downregulated E-cadherin complex proteins and caused cell death. Coexpression of E-cadherin and COX-2 was seen in breast cancer tissues from patients with poor outcome and, along with inhibitory GSK3β phosphorylation, in patient-derived xenografts (PDX) including triple negative breast cancer (TNBC).Celecoxib alone decreased E-cadherin protein expression within xenograft tumors, though CDH1 mRNA levels increased, and reduced circulating tumor cell (CTC) clusters. In combination with paclitaxel, celecoxib attenuated or regressed lung metastases. This study has uncovered a mechanism by which metastatic breast cancer cells can maintain E-cadherin-mediated cell-to-cell adhesions and cell survival, suggesting that some patients with COX-2+/E-cadherin+ breast cancer may benefit from targeting of the PGE2 signaling pathway.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Dipak K Poria
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Saadiya W Sehareen
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, Maryland, USA
| | - Lois McKennett
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Veena Padmanaban
- Departments of Cell Biology and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelli Czarra
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, Maryland, USA
| | - Shikha Sharan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| |
Collapse
|
10
|
Alonso-Diez A, Affolter V, Sevane N, Dunner S, Valdivia G, Clemente M, De Andrés P, Illera J, Pérez-Alenza M, Peña L. Cell adhesion molecules E-cadherin and CADM1 are differently expressed in canine inflammatory mammary cancer. Res Vet Sci 2022; 152:307-313. [DOI: 10.1016/j.rvsc.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
|
11
|
Mohamed HT, El-Sharkawy AA, El-Shinawi M, Schneider RJ, Mohamed MM. Inflammatory Breast Cancer: The Secretome of HCMV+ Tumor-Associated Macrophages Enhances Proliferation, Invasion, Colony Formation, and Expression of Cancer Stem Cell Markers. Front Oncol 2022; 12:899622. [PMID: 35847899 PMCID: PMC9281473 DOI: 10.3389/fonc.2022.899622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive phenotype of breast cancer that is characterized by a high incidence early metastasis. We previously reported a significant association of human cytomegalovirus (HCMV) DNA in the carcinoma tissues of IBC patients but not in the adjacent normal tissues. HCMV-infected macrophages serve as “mobile vectors” for spreading and disseminating virus to different organs, and IBC cancer tissues are highly infiltrated by tumor-associated macrophages (TAMs) that enhance IBC progression and promote breast cancer stem cell (BCSC)-like properties. Therefore, there is a need to understand the role of HCMV-infected TAMs in IBC progression. The present study aimed to test the effect of the secretome (cytokines and secreted factors) of TAMs derived from HCMV+ monocytes isolated from IBC specimens on the proliferation, invasion, and BCSC abundance when tested on the IBC cell line SUM149. HCMV+ monocytes were isolated from IBC patients during modified radical mastectomy surgery and tested in vitro for polarization into TAMs using the secretome of SUM149 cells. MTT, clonogenic, invasion, real-time PCR arrays, PathScan Intracellular Signaling array, and cytokine arrays were used to characterize the secretome of HCMV+ TAMs for their effect on the progression of SUM149 cells. The results showed that the secretome of HCMV+ TAMs expressed high levels of IL-6, IL-8, and MCP-1 cytokines compared to HCMV- TAMs. In addition, the secretome of HCMV+ TAMs induced the proliferation, invasion, colony formation, and expression of BCSC-related genes in SUM149 cells compared to mock untreated cells. In addition, the secretome of HCMV+ TAMs activated the phosphorylation of intracellular signaling molecules p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK in SUM149 cells. In conclusion, this study shows that the secretome of HCMV+ TAMs enhances the proliferation, invasion, colony formation, and BCSC properties by activating the phosphorylation of p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK intracellular signaling molecules in IBC cells.
Collapse
Affiliation(s)
- Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
- *Correspondence: Hossam Taha Mohamed,
| | | | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Galala University, Suez, Egypt
| | - Robert J. Schneider
- Department of Microbiology, School of Medicine, New York University, New York, NY, United States
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Sector of International Cooperation, Galala University, Suez, Egypt
| |
Collapse
|
12
|
Praveen TK, Gangadharappa HV, Abu Lila AS, Moin A, Mehmood K, Krishna KL, Hussain T, Alafanan A, Shakil S, Rizvi SMD. Inflammation targeted nanomedicines: patents and applications in cancer therapy. Semin Cancer Biol 2022; 86:645-663. [DOI: 10.1016/j.semcancer.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
|
13
|
Villodre ES, Hu X, Larson R, Finetti P, Gomez K, Balema W, Stecklein SR, Santiago‐Sanchez G, Krishnamurthy S, Song J, Su X, Ueno NT, Tripathy D, Van Laere S, Bertucci F, Vivas‐Mejía P, Woodward WA, Debeb BG. Lipocalin 2 promotes inflammatory breast cancer tumorigenesis and skin invasion. Mol Oncol 2021; 15:2752-2765. [PMID: 34342930 PMCID: PMC8486564 DOI: 10.1002/1878-0261.13074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive form of primary breast cancer characterized by rapid onset and high risk of metastasis and poor clinical outcomes. The biological basis for the aggressiveness of IBC is still not well understood and no IBC-specific targeted therapies exist. In this study, we report that lipocalin 2 (LCN2), a small secreted glycoprotein belonging to the lipocalin superfamily, is expressed at significantly higher levels in IBC vs non-IBC tumors, independently of molecular subtype. LCN2 levels were also significantly higher in IBC cell lines and in their culture media than in non-IBC cell lines. High expression was associated with poor-prognosis features and shorter overall survival in IBC patients. Depletion of LCN2 in IBC cell lines reduced colony formation, migration, and cancer stem cell populations in vitro and inhibited tumor growth, skin invasion, and brain metastasis in mouse models of IBC. Analysis of our proteomics data showed reduced expression of proteins involved in cell cycle and DNA repair in LCN2-silenced IBC cells. Our findings support that LCN2 promotes IBC tumor aggressiveness and offer a new potential therapeutic target for IBC.
Collapse
Affiliation(s)
- Emilly S. Villodre
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaoding Hu
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Richard Larson
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Pascal Finetti
- Laboratory of Predictive OncologyAix‐Marseille UniversityInsermCNRSInstitut Paoli‐CalmettesCRCMMarseilleFrance
| | - Kristen Gomez
- Department of Biological SciencesThe University of Texas at BrownsvilleTXUSA
| | - Wintana Balema
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Shane R. Stecklein
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ginette Santiago‐Sanchez
- Department Biochemistry and Cancer CenterUniversity of Puerto Rico Medical Sciences CampusSan Juan, Puerto Rico
| | - Savitri Krishnamurthy
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Juhee Song
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaoping Su
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Naoto T. Ueno
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Debu Tripathy
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Steven Van Laere
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)University of AntwerpBelgium
| | - François Bertucci
- Laboratory of Predictive OncologyAix‐Marseille UniversityInsermCNRSInstitut Paoli‐CalmettesCRCMMarseilleFrance
| | - Pablo Vivas‐Mejía
- Department Biochemistry and Cancer CenterUniversity of Puerto Rico Medical Sciences CampusSan Juan, Puerto Rico
| | - Wendy A. Woodward
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Bisrat G. Debeb
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| |
Collapse
|
14
|
Alonso-Diez Á, Cáceres S, Peña L, Crespo B, Illera JC. Anti-Angiogenic Treatments Interact with Steroid Secretion in Inflammatory Breast Cancer Triple Negative Cell Lines. Cancers (Basel) 2021; 13:3668. [PMID: 34359570 PMCID: PMC8345132 DOI: 10.3390/cancers13153668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Human inflammatory breast cancer (IBC) is a highly angiogenic disease for which antiangiogenic therapy has demonstrated only a modest response, and the reason for this remains unknown. Thus, the purpose of this study was to determine the influence of different antiangiogenic therapies on in vitro and in vivo steroid hormone and angiogenic growth factor production using canine and human inflammatory breast carcinoma cell lines as well as the possible involvement of sex steroid hormones in angiogenesis. IPC-366 and SUM149 cell lines and xenotransplanted mice were treated with different concentrations of VEGF, SU5416, bevacizumab and celecoxib. Steroid hormone (progesterone, dehydroepiandrostenedione, androstenedione, testosterone, dihydrotestosterone, estrone sulphate and 17β-oestradiol), angiogenic growth factors (VEGF-A, VEGF-C and VEGF-D) and IL-8 determinations in culture media, tumour homogenate and serum samples were assayed by EIA. In vitro, progesterone- and 17β-oestradiol-induced VEGF production promoting cell proliferation and androgens are involved in the formation of vascular-like structures. In vivo, intratumoural testosterone concentrations were augmented and possibly associated with decreased metastatic rates, whereas elevated E1SO4 concentrations could promote tumour progression after antiangiogenic therapies. In conclusion, sex steroid hormones could regulate the production of angiogenic factors. The intratumoural measurement of sex steroids and growth factors may be useful to develop preventive and individualized therapeutic strategies.
Collapse
Affiliation(s)
- Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Sara Cáceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Belén Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
15
|
Alsterda A, Asha K, Powrozek O, Repak M, Goswami S, Dunn AM, Memmel HC, Sharma-Walia N. Salubrinal Exposes Anticancer Properties in Inflammatory Breast Cancer Cells by Manipulating the Endoplasmic Reticulum Stress Pathway. Front Oncol 2021; 11:654940. [PMID: 34094947 PMCID: PMC8173155 DOI: 10.3389/fonc.2021.654940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) regulates protein folding, post-translational modifications, lipid synthesis, and calcium signaling to attenuate the accumulation of misfolded proteins causing ER stress and maintains cellular homeostasis. The tumor microenvironment is rich in soluble cytokines, chemokines, growth, and angiogenic factors and can drive the ER’s abnormal functioning in healthy cells. Cancer cells adapt well to the tumor microenvironment induced ER stress. We identified that the inflammatory breast cancer (IBC) cells abundantly express osteoprotegerin (OPG) and their tumor microenvironment is rich in OPG protein. OPG also called osteoclast differentiation factor/osteoclastogenesis inhibitory factor (OCIF) is a soluble decoy receptor for receptor activator of nuclear factor-kappa B ligand (RANKL). Employing mass spectrometry analysis, we identified a set of ER chaperones associated with OPG in IBC cell lysates (SUM149PT, SUM1315MO2) compared to healthy human mammary epithelial cells (HMEC). Proximity ligation assay (PLA) and immunoprecipitation assay validated the interaction between OPG and ER chaperone and master regulator of unfolded protein response (UPR) GRP78/BiP (glucose-regulated protein/Binding immunoglobulin protein). We detected remarkably high gene expression of CCAAT enhancer-binding protein homologous protein (CHOP), inositol-requiring enzyme 1 (IRE1α), protein disulfide-isomerase (PDI), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4), X-box binding protein 1 (XBP-1) and growth arrest and DNA damage-inducible protein (GADD34) in SUM149PT and SUM190PT cells when compared to HMEC. Similarly, tissue sections of human IBC expressed high levels of ER stress proteins. We evaluated cell death and apoptosis upon Salubrinal and phenylbutyrate treatment in healthy and IBC cells by caspase-3 activity and cleaved poly (ADP-ribose) polymerase (PARP) protein assay. IBC (SUM149PT and SUM190PT) cells were chemosensitive to Salubrinal treatment, possibly via inhibition in OPG secretion, upregulating ATF4, and CHOP, thus ultimately driving caspase-3 mediated IBC cell death. Salubrinal treatment upregulated PDI, which connects ER stress to oxidative stress. We observed increased ROS production and reduced cell proliferation of Salubrinal treated IBC cells. Treatment with antioxidants could rescue IBC cells from ROS and aborted cell proliferation. Our findings implicate that manipulating ER stress with Salubrinal may provide a safer and tailored strategy to target the growth of inflammatory and aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Andrew Alsterda
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Kumari Asha
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Olivia Powrozek
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Miroslava Repak
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sudeshna Goswami
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
16
|
Ahmed SH, Espinoza-Sánchez NA, El-Damen A, Fahim SA, Badawy MA, Greve B, El-Shinawi M, Götte M, Ibrahim SA. Small extracellular vesicle-encapsulated miR-181b-5p, miR-222-3p and let-7a-5p: Next generation plasma biopsy-based diagnostic biomarkers for inflammatory breast cancer. PLoS One 2021; 16:e0250642. [PMID: 33901254 PMCID: PMC8075236 DOI: 10.1371/journal.pone.0250642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare, but aggressive entity of breast carcinoma with rapid dermal lymphatic invasion in young females. It is either poorly or misdiagnosed as mastitis because of the absence of a distinct lump. Small extracellular vesicles (sEVs) circulating in liquid biopsies are a novel class of minimally invasive diagnostic alternative to invasive tissue biopsies. They modulate cancer progression via shuttling their encapsulated cargo including microRNAs (miRNAs) into recipient cells to either trigger signaling or induce malignant transformation of targeted cells. Plasma sEVs < 200 nm were isolated using a modified cost-effective polyethylene glycol (PEG)-based precipitation method and compared to standard methods, namely ultracentrifugation and a commercial kit, where the successful isolation was verified by different approaches. We evaluated the expression levels of selected sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p using quantitative real PCR (qPCR). Relative to non-IBC, our qPCR data showed that sEV-derived miR-181b-5p and miR-222-3p were significantly upregulated, whereas let-7a-5p was downregulated in IBC patients. Interestingly, receiver operating characteristic (ROC) curves analysis revealed that diagnostic accuracy of let-7a-5p alone was the highest for IBC with an area under curve (AUC) value of 0.9188, and when combined with miR-222-3p the AUC was improved to 0.973. Further, 38 hub genes were identified using bioinformatics analysis. Together, circulating sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p serve as promising non-invasive diagnostic biomarkers for IBC.
Collapse
Affiliation(s)
- Sarah Hamdy Ahmed
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Ahmed El-Damen
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Sarah Atef Fahim
- Biochemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Mohamed El-Shinawi
- Galala University, Suez, Egypt.,Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | |
Collapse
|
17
|
Li Z, Liu B, Li C, Sun S, Zhang H, Sun S, Wang Z, Zhang X. NRBP2 Functions as a Tumor Suppressor and Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer. Front Oncol 2021; 11:634026. [PMID: 33816275 PMCID: PMC8012753 DOI: 10.3389/fonc.2021.634026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
Nuclear Receptor Binding Protein 2 (NRBP2), one of the pseudokinases discovered during a screen of neural differentiation genes, inhibits tumor progression in medulloblastoma and hepatocellular carcinoma. However, the role and the mechanism of NRBP2 in the regulation of the progression of breast cancer (BC) have not been reported. In our study, NRBP2 was downregulated in human BC tissues compared with the corresponding normal tissues. Moreover, bioinformatics and cellular experiments illustrated that a lower level of NRBP2 contributed to a poor prognosis for patients with BC. In addition, we characterized the NRBP2-overexpressing BC cells and found that NRBP2 overexpression dramatically suppressed cell proliferation and invasion and inhibited the epithelial-mesenchymal transition (EMT) in cells in vitro, whereas knockdown of NRBP2 reversed these effects. Furthermore, overexpression of NRBP2 in the orthotopic breast tumor model significantly reduced lung metastatic nodules in nude mice. Mechanistically, NRBP2 regulated the activation of the 5′-adenosine monophosphate (AMP)-activated protein kinase/ mammalian target of rapamycin (AMPK/mTOR) signaling pathway. Moreover, the inhibition of cell proliferation, invasion and the EMT by NRBP2 overexpression was partially rescued after treatment with an AMPK inhibitor. Conversely, mTOR-specific inhibitors eliminated the effects of NRBP2 knockdown on increasing cell proliferation, invasion and the EMT, which suggested the anti-tumor effect of NRBP2, which may be partially related to the regulation of the AMPK/mTOR pathway. Taken together, NRBP2, a novel and effective prognostic indicator, inhibited the progression of BC and may become a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bingxiong Liu
- Department of General Surgery, Hanchuan People's Hospital, Hanchuan, China
| | - Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanpu Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiongjie Zhang
- Department of General Surgery, Hanchuan People's Hospital, Hanchuan, China
| |
Collapse
|
18
|
NDRG1 Expression Is an Independent Prognostic Factor in Inflammatory Breast Cancer. Cancers (Basel) 2020; 12:cancers12123711. [PMID: 33321961 PMCID: PMC7763268 DOI: 10.3390/cancers12123711] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Inflammatory breast cancer (IBC) is a rare and aggressive variant of breast cancer that is responsible for a significant number of breast cancer-related deaths. Herein, we describe how the expression of a specific protein named N-myc downstream-regulated gene 1 (NDRG1), commonly described as a gene that prevents the spread of cancer cells to distant organs, may have a paradoxical role in cancer progression in IBC. We found that the level of expression of NDRG1 in tumor tissues predicts the survival outcome of patients with IBC. We also observed that NDRG1, together with other important prognostic factors such as estrogen receptor status and stage, could be used to further analyze prognostic outcome or treatment response of patients. Abstract NDRG1 is widely described as a metastasis suppressor in breast cancer. However, we found that NDRG1 is critical in promoting tumorigenesis and brain metastasis in mouse models of inflammatory breast cancer (IBC), a rare but highly aggressive form of breast cancer. We hypothesized that NDRG1 is a prognostic marker associated with poor outcome in patients with IBC. NDRG1 levels in tissue microarrays from 64 IBC patients were evaluated by immunohistochemical staining with NDRG1 (32 NDRG1-low (≤median), 32 NDRG1-high (>median)). Overall and disease-free survival (OS and DSS) were analyzed with Kaplan–Meier curves and log-rank test. Univariate analysis showed NDRG1 expression, tumor grade, disease stage, estrogen receptor (ER) status, and receipt of adjuvant radiation to be associated with OS and DSS. NDRG1-high patients had poorer 10-year OS and DSS than NDRG1-low patients (OS, 19% vs. 45%, p = 0.0278; DSS, 22% vs. 52%, p = 0.0139). On multivariable analysis, NDRG1 independently predicted OS (hazard ratio (HR) = 2.034, p = 0.0274) and DSS (HR = 2.287, p = 0.0174). NDRG1-high ER-negative tumors had worse outcomes OS, p = 0.0003; DSS, p = 0.0003; and NDRG1-high tumors that received adjuvant radiation treatment had poor outcomes (OS, p = 0.0088; DSS, p = 0.0093). NDRG1 was a significant independent prognostic factor for OS and DSS in IBC patients. Targeting NDRG1 may represent a novel strategy for improving clinical outcomes for patients with IBC.
Collapse
|