1
|
Vitali E, Franceschini B, Milana F, Soldani C, Polidoro MA, Carriero R, Kunderfranco P, Trivellin G, Costa G, Milardi G, Di Tommaso L, Torzilli G, Lleo A, Lania AG, Donadon M. Filamin A is involved in human intrahepatic cholangiocarcinoma aggressiveness and progression. Liver Int 2024; 44:518-531. [PMID: 38010911 DOI: 10.1111/liv.15800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 μM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Flavio Milana
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela A Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Milardi
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of General Surgery, University Maggiore Hospital, Novara, Italy
| |
Collapse
|
2
|
Romanzi A, Milosa F, Marcelli G, Critelli RM, Lasagni S, Gigante I, Dituri F, Schepis F, Cadamuro M, Giannelli G, Fabris L, Villa E. Angiopoietin-2 and the Vascular Endothelial Growth Factor Promote Migration and Invasion in Hepatocellular Carcinoma- and Intrahepatic Cholangiocarcinoma-Derived Spheroids. Biomedicines 2023; 12:87. [PMID: 38255193 PMCID: PMC10813100 DOI: 10.3390/biomedicines12010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aggressive hepatocellular carcinoma (HCC) overexpressing Angiopoietin-2 (ANG-2) (a protein linked with angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT)), shares 95% of up-regulated genes and a similar poor prognosis with the proliferative subgroup of intrahepatic cholangiocarcinoma (iCCA). We analyzed the pro-invasive effect of ANG-2 and its regulator vascular endothelial growth factor (VEGF) on HCC and CCA spheroids to uncover posUsible common ways of response. Four cell lines were used: Hep3B and HepG2 (HCC), HuCC-T1 (iCCA), and EGI-1 (extrahepatic CCA). We treated the spheroids with recombinant human (rh) ANG-2 and/or VEGF and then observed the changes at the baseline, after 24 h, and again after 48 h. Proangiogenic stimuli increased migration and invasion capability in HCC- and iCCA-derived spheroids and were associated with a modification in EMT phenotypic markers (a decrease in E-cadherin and an increase in N-cadherin and Vimentin), especially at the migration front. Inhibitors targeting ANG-2 (Trebananib) and the VEGF (Bevacizumab) effectively blocked the migration ability of spheroids that had been stimulated with rh-ANG-2 and rh-VEGF. Overall, our findings highlight the critical role played by ANG-2 and the VEGF in enhancing the ability of HCC- and iCCA-derived spheroids to migrate and invade, which are key processes in cancer progression.
Collapse
Affiliation(s)
- Adriana Romanzi
- Department of Biomedical, Metabolic and Neural Sciences, Clinical and Experimental Medicine Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.R.); (S.L.)
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Fabiola Milosa
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Gemma Marcelli
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Rosina Maria Critelli
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Simone Lasagni
- Department of Biomedical, Metabolic and Neural Sciences, Clinical and Experimental Medicine Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.R.); (S.L.)
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Isabella Gigante
- National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (I.G.); (F.D.); (G.G.)
| | - Francesco Dituri
- National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (I.G.); (F.D.); (G.G.)
| | - Filippo Schepis
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, School of Medicine, University of Padua, 35121 Padua, Italy; (M.C.); (L.F.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (I.G.); (F.D.); (G.G.)
| | - Luca Fabris
- Department of Molecular Medicine, School of Medicine, University of Padua, 35121 Padua, Italy; (M.C.); (L.F.)
| | - Erica Villa
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| |
Collapse
|
3
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-022-00739-y. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.,Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany.,Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| | | |
Collapse
|
4
|
Hsu CH, Weng PW, Chen MY, Yeh CT, Setiawan SA, Yadav VK, Wu ATH, Tzeng DTW, Gong JX, Yang Z, Tzeng YM. Therapeutic targeting of hepatocellular carcinoma cells with antrocinol, a novel, dual-specificity, small-molecule inhibitor of the KRAS and ERK oncogenic signaling pathways. Chem Biol Interact 2023; 370:110329. [PMID: 36565974 DOI: 10.1016/j.cbi.2022.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Until recently, sorafenib has been the only treatment approved by the U.S. Food and Drug Administration for patients with advanced hepatocellular carcinoma (HCC). Some patients, however, exhibit resistance to this treatment and subsequently experience cancer progression, recurrence, or death. Therefore, identifying a new alternative treatment for patients with little or no response to sorafenib treatment is vital. In this study, we explored the therapeutic potential and underlying molecular mechanism of antrocinol ((3aS,4R,6aS,10aR)-4-(hydroxymethyl)-7,7-dimethyldecahydro-1H-naphtho[1,8a-c]furan-1-one) in patients with HCC. The results indicated that antrocinol was more therapeutically effective than antrocin, Stivarga, and sorafenib against HCC cell lines. Antrocinol also substantially suppressed the expression of KRAS-GTP, p-MEK1/2, p-ERK1/2, and p-AKT in the Huh7 cell line. Additionally, antrocinol-induced apoptosis in the Huh7 cell line, inhibited the formation of tumorspheres, and suppressed the expression of cancer stem cell markers CD133, KLF4, CD44, OCT4, SOX2, and c-Myc. Animal studies revealed that antrocinol alone considerably suppressed tumor growth in nonobese diabetic/severe combined immunodeficient mice inoculated with Huh7 tumorspheres. It also synergistically enhanced the anticancer effect of sorafenib, resulting in enhanced suppression of tumor growth (p < 0.001) and tumorsphere formation (p < 0.001). In tumor samples resected from mice treated with antrocinol alone or in combination with sorafenib, immunohistochemical analysis revealed an increase in BAX expression and a decrease in ERK and AKT protein expression. To the best of our knowledge, this is the first report of the anti-HCC activity of antrocinol. With its higher therapeutic efficacy than that of sorafenib, antrocinol is a candidate drug for patients with HCC who demonstrate little or no response to sorafenib treatment.
Collapse
Affiliation(s)
- Chia-Hung Hsu
- Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City, 11031, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, 23561, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chi-Tai Yeh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, 23561, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan
| | - Syahru Agung Setiawan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Vijesh Kumar Yadav
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, 23561, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Alexander T H Wu
- Ph.D. Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region of China; Lifebit, London, EC2A 2AP, UK
| | - Jian-Xian Gong
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zhen Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Taitung, 95092, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| |
Collapse
|
5
|
Ruiz de Gauna M, Biancaniello F, González-Romero F, Rodrigues PM, Lapitz A, Gómez-Santos B, Olaizola P, Di Matteo S, Aurrekoetxea I, Labiano I, Nieva-Zuluaga A, Benito-Vicente A, Perugorria MJ, Apodaka-Biguri M, Paiva NA, Sáenz de Urturi D, Buqué X, Delgado I, Martín C, Azkargorta M, Elortza F, Calvisi DF, Andersen JB, Alvaro D, Cardinale V, Bujanda L, Banales JM, Aspichueta P. Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology 2022; 76:1617-1633. [PMID: 35030285 PMCID: PMC9790564 DOI: 10.1002/hep.32344] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.
Collapse
Affiliation(s)
- Mikel Ruiz de Gauna
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Francesca Biancaniello
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,Department of Translational and Precision Medicine"Sapienza" University of RomeRomeItaly
| | - Francisco González-Romero
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain.,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Beatriz Gómez-Santos
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Sabina Di Matteo
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,Department of Translational and Precision Medicine"Sapienza" University of RomeRomeItaly
| | - Igor Aurrekoetxea
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain.,Biocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Ane Nieva-Zuluaga
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Asier Benito-Vicente
- Department of Molecular BiophysicsBiofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)LeioaSpain.,Department of Biochemistry and Molecular BiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - María J Perugorria
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain
| | - Maider Apodaka-Biguri
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Nuno A Paiva
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Diego Sáenz de Urturi
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Xabier Buqué
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Igotz Delgado
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - César Martín
- Department of Molecular BiophysicsBiofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)LeioaSpain.,Department of Biochemistry and Molecular BiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Mikel Azkargorta
- Proteomics PlatformCIC bioGUNEBRTA (Basque Research and Technology Alliance)ProteoRed-ISCIIICIBERehdBizkaia Science and Technology ParkDerioSpain
| | - Felix Elortza
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain.,Proteomics PlatformCIC bioGUNEBRTA (Basque Research and Technology Alliance)ProteoRed-ISCIIICIBERehdBizkaia Science and Technology ParkDerioSpain
| | - Diego F Calvisi
- Institute of PathologyUniversity of RegensburgRegensburgGermany
| | - Jesper B Andersen
- Biotech Research & Innovation Centre (BRIC)Department of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine"Sapienza" University of RomeRomeItaly
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnology"Sapienza" University of RomeRomeItaly
| | - Luis Bujanda
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain
| | - Jesús M Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain.,IKERBASQUEBasque Foundation for ScienceBilbaoSpain.,Department of Biochemistry and GeneticsSchool of SciencesUniversity of NavarraPamplonaSpain
| | - Patricia Aspichueta
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain.,Biocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| |
Collapse
|
6
|
Viereckl MJ, Krutsinger K, Apawu A, Gu J, Cardona B, Barratt D, Han Y. Cannabidiol and Cannabigerol Inhibit Cholangiocarcinoma Growth In Vitro via Divergent Cell Death Pathways. Biomolecules 2022; 12:biom12060854. [PMID: 35740979 PMCID: PMC9221388 DOI: 10.3390/biom12060854] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and highly lethal disease with few effective treatment options. Cannabinoids, cannabidiol (CBD) and cannabigerol (CBG) are non-psychedelic components extracted from cannabis. These non-psychoactive compounds have shown anti-proliferative potential in other tumor models; however, the efficacy of CBD and CBG in CCA is unknown. Furthermore, two cell death pathways are implicated with CBD resulting in autophagic degeneration and CBG in apoptosis. HuCC-T1 cells, Mz-ChA-1 cells (CCA cell lines) and H69 cells (immortalized cholangiocytes), were treated with CBD and CBG for 24 to 48 h. The influence of these cannabinoids on proliferation was assessed via MTT assay. Apoptosis and cell cycle were evaluated via Annexin-V apoptosis assay and propidium iodide, respectively. The expression of proliferation biomarker Ki-67, apoptosis biomarker BAX, and autophagic flux biomarkers LC3b and LAMP1 were evaluated via immunofluorescence. Cell migration and invasion were evaluated via wound healing assay and trans-well migration invasion assays, respectively. The colony formation was evaluated via colony formation assay. In addition, the expression of autophagy gene LC3b and apoptosis genes BAX, Bcl-2, and cleaved caspase-3 were evaluated via Western blot. CBD and CBG are non-selective anti-proliferative agents yielding similar growth curves in CCA; both cannabinoids are effective, yet CBG is more active at lower doses. Low doses of CBD and CBG enhanced immortalized cholangiocyte activity. The reduction in proliferation begins immediately and occurs maximally within 24 h of treatment. Moreover, a significant increase in the late-stage apoptosis and a reduction in the number of cells in S stage of the cell cycle indicates both CBD and CBG treatment could promote apoptosis and inhibit mitosis in CCA cells. The fluorescent expression of BAX and LC3b was significantly enhanced with CBD treatment when compared to control. LAMP1 and LC3b colocalization could also be observed with CBD and CBG treatment indicating changes in autophagic flux. A significant inhibition of migration, invasion and colony formation ability was shown in both CBD and CBG treatment in CCA. Western blot showed an overall decrease in the ratio of anti-apoptotic protein Bcl-2 with respect to pro-apoptotic protein BAX with CBG treatment. Furthermore, CBD treatment enhanced the expression of Type II cell death (autophagic degeneration) protein LC3b, which was reduced in CBG-treated CCA cells. Meanwhile, CBG treatment upregulated Type I cell death (programmed apoptosis) protein cleaved caspase-3. CBD and CBG are effective anti-cancer agents against CCA, capable of inhibiting the classic hallmarks of cancer, with a divergent mechanism of action (Type II or Type I respectively) in inducing these effects.
Collapse
Affiliation(s)
- Michael J. Viereckl
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA; (M.J.V.); (K.K.); (B.C.)
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA; (M.J.V.); (K.K.); (B.C.)
| | - Aaron Apawu
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA;
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Bryana Cardona
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA; (M.J.V.); (K.K.); (B.C.)
| | - Donovan Barratt
- School of Biological Sciences, Iowa State University, Ames, IA 50011, USA;
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA; (M.J.V.); (K.K.); (B.C.)
- Correspondence: ; Tel.: +1-970-351-2004
| |
Collapse
|