1
|
Khakwani MMAK, Ji XY, Khattak S, Sun YC, Yao K, Zhang L. Targeting colorectal cancer at the level of nuclear pore complex. J Adv Res 2024:S2090-1232(24)00245-5. [PMID: 38876192 DOI: 10.1016/j.jare.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.
Collapse
Affiliation(s)
- Muhammad Mahtab Aslam Khan Khakwani
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian, Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan 450064, China
| | - Saadullah Khattak
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ying-Chuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang, Henan 430000, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China.
| | - Lei Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Durand M, Cabaud Gibouin V, Duplomb L, Salmi L, Caillot M, Sola B, Camus V, Jardin F, Garrido C, Jego G. A first-in-class inhibitor of HSP110 to potentiate XPO1-targeted therapy in primary mediastinal B-cell lymphoma and classical Hodgkin lymphoma. J Exp Clin Cancer Res 2024; 43:148. [PMID: 38773631 PMCID: PMC11110392 DOI: 10.1186/s13046-024-03068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.
Collapse
Affiliation(s)
- Manon Durand
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | - Vincent Cabaud Gibouin
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | - Laurence Duplomb
- INSERM, UMR1231, Equipe GAD, University of Burgundy, Dijon, 21078, France
| | - Leila Salmi
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | | | - Brigitte Sola
- INSERM, U1245, Normandy University, Caen, 14000, France
| | - Vincent Camus
- Department of Hematology, Centre Henri Becquerel, Rouen, 76000, France
| | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, Rouen, 76000, France
| | - Carmen Garrido
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
- Georges François Leclerc Cancer Centre, CGFL, Dijon, France
| | - Gaëtan Jego
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France.
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France.
- INSERM, UMR1231, Université Bourgogne, 7 Boulevard Jeanne d'Arc, Dijon, 21078, France.
| |
Collapse
|
3
|
Jin Y, Wu H, Liu J, Cho WC, Song G. Application and progress of CRISPR/Cas9 gene editing in B-cell lymphoma: a narrative review. Transl Cancer Res 2024; 13:1584-1595. [PMID: 38617522 PMCID: PMC11009809 DOI: 10.21037/tcr-23-1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024]
Abstract
Background and Objective Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) gene editing and CRISPR/Cas9 screening libraries are hot topics, and have high application values in the diagnosis and treatment of genetic diseases, and the improvement of prognosis. The major treatment of B-cell lymphoma is chemotherapy combined with biological therapy. Due to the individual specificity and the emergence of drug resistance, the therapeutic efficacy varies. The objective of this article is to explore potential targets to enhance therapeutic effects, optimize treatment plans, and improve the prognosis of patients with B-cell lymphoma. Methods We undertook a comprehensive, narrative review of the latest literature to define the current application and progress of CRISPR/Cas9 in B-cell lymphoma. Key Content and Findings The concepts of CRISPR/Cas9, the mechanism of gene editing, and the procedures of CRISPR/Cas9 screening libraries are investigated for candidate genes. We mainly focus on application and progress of CRISPR/Cas9 in B-cell lymphoma and screen out some genes, signaling pathways, and cytokines, which may become potential targets for clinical treatment. Conclusions CRISPR/Cas9 gene editing has great promise in the treatment of B-cell lymphoma. This article reviews some genes, signaling pathways, and cytokines related to the progression and prognosis of B-cell lymphoma to provide a strong theoretical basis.
Collapse
Affiliation(s)
- Ying Jin
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Haiyi Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianzhao Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Dalian Medical University, Dalian, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Caillot M, Miloudi H, Taly A, Profitós-Pelejà N, Santos JC, Ribeiro ML, Maitre E, Saule S, Roué G, Jardin F, Sola B. Exportin 1-mediated nuclear/cytoplasmic trafficking controls drug sensitivity of classical Hodgkin's lymphoma. Mol Oncol 2023; 17:2546-2564. [PMID: 36727672 PMCID: PMC10701774 DOI: 10.1002/1878-0261.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/22/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Exportin 1 (XPO1) is the main nuclear export receptor that controls the subcellular trafficking and the functions of major regulatory proteins. XPO1 is overexpressed in various cancers and small inhibitors of nuclear export (SINEs) have been developed to inhibit XPO1. In primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin's lymphoma (cHL), the XPO1 gene may be mutated on one nucleotide and encodes the mutant XPO1E571K . To understand the impact of mutation on protein function, we studied the response of PMBL and cHL cells to selinexor, a SINE, and ibrutinib, an inhibitor of Bruton tyrosine kinase. XPO1 mutation renders lymphoma cells more sensitive to selinexor due to a faster degradation of mutant XPO1 compared to the wild-type. We further showed that a mistrafficking of p65 (RELA) and p52 (NFκB2) transcription factors between the nuclear and cytoplasmic compartments accounts for the response toward ibrutinib. XPO1 mutation may be envisaged as a biomarker of the response of PMBL and cHL cells and other B-cell hemopathies to SINEs and drugs that target even indirectly the NFκB signaling pathway.
Collapse
Affiliation(s)
| | | | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Nuria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Juliana C Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marcelo L Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Elsa Maitre
- Normandie Univ, INSERM, Unicaen, Caen, France
- Laboratoire d'hématologie, CHU Côte de Nacre, Caen, France
| | - Simon Saule
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Fabrice Jardin
- Normandie Univ, INSERM, Unirouen, Rouen, France
- Service d'hématologie, Centre de lutte contre le cancer Henri Becquerel, Rouen, France
| | | |
Collapse
|
5
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
6
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
7
|
Restrepo P, Bhalla S, Ghodke-Puranik Y, Aleman A, Leshchenko V, Melnekoff DT, Agte S, Jiang J, Madduri D, Richter J, Richard S, Chari A, Cho HJ, Jagannath S, Walker CJ, Landesman Y, Laganà A, Parekh S. A Three-Gene Signature Predicts Response to Selinexor in Multiple Myeloma. JCO Precis Oncol 2022; 6:e2200147. [PMID: 35704796 PMCID: PMC10530420 DOI: 10.1200/po.22.00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Selinexor is the first selective inhibitor of nuclear export to be approved for the treatment of relapsed or refractory multiple myeloma (MM). Currently, there are no known genomic biomarkers or assays to help select MM patients at higher likelihood of response to selinexor. Here, we aimed to characterize the transcriptomic correlates of response to selinexor-based therapy. METHODS We performed RNA sequencing on CD138+ cells from the bone marrow of 100 patients with MM who participated in the BOSTON study, followed by differential gene expression and pathway analysis. Using the differentially expressed genes, we used cox proportional hazard models to identify a gene signature predictive of response to selinexor, followed by validation in external cohorts. RESULTS The three-gene signature predicts response to selinexor-based therapy in patients with MM in the BOSTON cohort. Then, we validated this gene signature in 64 patients from the STORM cohort of triple-class refractory MM and additionally in an external cohort of 35 patients treated in a real-world setting outside of clinical trials. We found that the signature tracks with both depth and duration of response, and it also validates in a different tumor type using a cohort of pretreatment tumors from patients with recurrent glioblastoma. Furthermore, the genes involved in the signature, WNT10A, DUSP1, and ETV7, reveal a potential mechanism through upregulated interferon-mediated apoptotic signaling that may prime tumors to respond to selinexor-based therapy. CONCLUSION In this study, we present a present a novel, three-gene expression signature that predicts selinexor response in MM. This signature has important clinical relevance as it could identify patients with cancer who are most likely to benefit from treatment with selinexor-based therapy.
Collapse
Affiliation(s)
- Paula Restrepo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sherry Bhalla
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Adolfo Aleman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Violetta Leshchenko
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David T. Melnekoff
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sarita Agte
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joy Jiang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deepu Madduri
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Janssen Pharmaceutical Research and Development, Raritan, NJ
| | - Joshua Richter
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shambavi Richard
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hearn Jay Cho
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Multiple Myeloma Research Foundation, Norwalk, CT
| | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Alessandro Laganà
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
8
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
9
|
Trothen SM, Zang RX, Lurie A, Dikeakos JD. PACS-1 contains distinct motifs for nuclear-cytoplasmic transport and interacts with the RNA-binding protein PTBP1 in the nucleus and cytosol. FEBS Lett 2022; 596:232-248. [PMID: 34822171 DOI: 10.1002/1873-3468.14243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Phosphofurin acidic cluster sorting protein 1 (PACS-1) is canonically a cytosolic trafficking protein, yet recent reports have described nuclear roles for PACS-1. Herein, we sought to define the nuclear transport mechanism of PACS-1. We demonstrate that PACS-1 nucleocytoplasmic trafficking is dependent on its interaction with the nuclear transport receptors importin alpha 5 and exportin 1. PACS-1 nuclear entry and exit are defined by a nuclear localization signal (NLS, residues 311-318) and nuclear export signal (NES3, residues 366-375). Mutation of the PACS-1 NLS and NES3 altered the localization of a complex formed between PACS-1 and an RNA-binding protein, polypyrimidine tract-binding protein 1. Overall, we identify the nuclear localization mechanism of PACS-1 and highlight a potential role for PACS-1 in RNA-binding protein trafficking.
Collapse
Affiliation(s)
- Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Rong Xuan Zang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Antony Lurie
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Kim E, Mordovkina DA, Sorokin A. Targeting XPO1-Dependent Nuclear Export in Cancer. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S178-S70. [PMID: 35501995 DOI: 10.1134/s0006297922140140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Nucleocytoplasmic transport of macromolecules is tightly regulated in eukaryotic cells. XPO1 is a transport factor responsible for the nuclear export of several hundred protein and RNA substrates. Elevated levels of XPO1 and recurrent mutations have been reported in multiple cancers and linked to advanced disease stage and poor survival. In recent years, several novel small-molecule inhibitors of XPO1 were developed and extensively tested in preclinical cancer models and eventually in clinical trials. In this brief review, we summarize the functions of XPO1, its role in cancer, and the latest results of clinical trials of XPO1 inhibitors.
Collapse
Affiliation(s)
- Ekaterina Kim
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Daria A Mordovkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Galinski B, Alexander TB, Mitchell DA, Chatwin HV, Awah C, Green AL, Weiser DA. Therapeutic Targeting of Exportin-1 in Childhood Cancer. Cancers (Basel) 2021; 13:6161. [PMID: 34944778 PMCID: PMC8699059 DOI: 10.3390/cancers13246161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 01/24/2023] Open
Abstract
Overexpression of Exportin-1 (XPO1), a key regulator of nuclear-to-cytoplasmic transport, is associated with inferior patient outcomes across a range of adult malignancies. Targeting XPO1 with selinexor has demonstrated promising results in clinical trials, leading to FDA approval of its use for multiple relapsed/refractory cancers. However, XPO1 biology and selinexor sensitivity in childhood cancer is only recently being explored. In this review, we will focus on the differential biology of childhood and adult cancers as it relates to XPO1 and key cargo proteins. We will further explore the current state of pre-clinical and clinical development of XPO1 inhibitors in childhood cancers. Finally, we will outline potentially promising future therapeutic strategies for, as well as potential challenges to, integrating XPO1 inhibition to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Basia Galinski
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Thomas B. Alexander
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Daniel A. Mitchell
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Hannah V. Chatwin
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Chidiebere Awah
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Daniel A. Weiser
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| |
Collapse
|
12
|
Abeykoon JP, Hampel PJ, King RL, Wood AJ, Larson MC, Nowakowski KE, Zanwar SS, Dasari S, Ruan GJ, Ravindran A, Wellik LE, Paludo J, Link BK, Cerhan JR, Ansell SM, Nowakowski GS, Thompson CA, Maurer MJ, Wenzl K, Novak AJ, Wu X, Habermann TM, Witzig TE. The significance of gradient expression of chromosome region maintenance protein 1 (exportin1) in large cell lymphoma. Haematologica 2021; 106:2261-2264. [PMID: 33657788 PMCID: PMC8327726 DOI: 10.3324/haematol.2020.278277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
| | - Paul J Hampel
- Division of Hematology, Department of Internal Medicine
| | - Rebecca L King
- Division of Hematopathology, Department of Laboratory Medicine and Pathology
| | - Adam J Wood
- Division of Hematopathology, Department of Laboratory Medicine and Pathology
| | - Melissa C Larson
- Department of Health Sciences Research,Mayo Clinic, 200 First Street SW, Rochester, MN, 55905
| | | | | | - Surendra Dasari
- Department of Health Sciences Research,Mayo Clinic, 200 First Street SW, Rochester, MN, 55905
| | - Gordon J Ruan
- Division of Hematology, Department of Internal Medicine
| | - Aishwarya Ravindran
- Division of Hematopathology, Department of Laboratory Medicine and Pathology
| | | | - Jonas Paludo
- Division of Hematology, Department of Internal Medicine
| | - Brian K Link
- Division of Hematology, University of Iowa, Iowa City, IA
| | - James R Cerhan
- Department of Health Sciences Research,Mayo Clinic, 200 First Street SW, Rochester, MN, 55905
| | | | | | | | - Matthew J Maurer
- Department of Health Sciences Research,Mayo Clinic, 200 First Street SW, Rochester, MN, 55905
| | - Kerstin Wenzl
- Division of Hematology, Department of Internal Medicine
| | - Anne J Novak
- Division of Hematology, Department of Internal Medicine
| | - Xiaosheng Wu
- Division of Hematology, Department of Internal Medicine
| | | | | |
Collapse
|
13
|
Cell-Free Total Nucleic Acid-Based Genotyping of Aggressive Lymphoma: Comprehensive Analysis of Gene Fusions and Nucleotide Variants by Next-Generation Sequencing. Cancers (Basel) 2021; 13:cancers13123032. [PMID: 34204385 PMCID: PMC8235203 DOI: 10.3390/cancers13123032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary This study aimed to simultaneously demonstrate pathogenic chromosomal translocations and point mutations from both tissue biopsy and peripheral blood (PB) liquid biopsy (LB) samples of aggressive lymphoma patients. Matched samples were analyzed by next-generation sequencing for the same 125 genes. Eight different gene fusions, including the classical BCL2, BCL6, and MYC genes were detected in the corresponding samples with generally good agreement. Besides, mutations of 29 commonly affected genes, such as BCL2, MYD88, NOTCH2, EZH2, and CD79B could be identified in the matched samples at a rate of 16/24 (66.7%). Our prospective study demonstrates a non-invasive approach to identify frequent gene fusions and variants in aggressive lymphomas. In conclusion, PB LB sampling substantially supports the oncogenetic diagnostics of lymphomas, especially at anatomically critical sites (such as the central nervous system). Abstract Chromosomal translocations and pathogenic nucleotide variants both gained special clinical importance in lymphoma diagnostics. Non-invasive genotyping from peripheral blood (PB) circulating free nucleic acid has been effectively used to demonstrate cancer-related nucleotide variants, while gene fusions were not covered in the past. Our prospective study aimed to isolate and quantify PB cell-free total nucleic acid (cfTNA) from patients diagnosed with aggressive lymphoma and to compare with tumor-derived RNA (tdRNA) from the tissue sample of the same patients for both gene fusion and nucleotide variant testing. Matched samples from 24 patients were analyzed by next-generation sequencing following anchored multiplexed polymerase chain reaction (AMP) for 125 gene regions. Eight different gene fusions, including the classical BCL2, BCL6, and MYC genes, were detected in the corresponding tissue biopsy and cfTNA specimens with generally good agreement. Synchronous BCL2 and MYC translocations in double-hit high-grade B-cell lymphomas were obvious from cfTNA. Besides, mutations of 29 commonly affected genes, such as BCL2, MYD88, NOTCH2, EZH2, and CD79B, could be identified in matched cfTNA, and previously described pathogenic variants were detected in 16/24 cases (66.7%). In 3/24 cases (12.5%), only the PB sample was informative. Our prospective study demonstrates a non-invasive approach to identify frequent gene fusions and variants in aggressive lymphomas. cfTNA was found to be a high-value representative reflecting the complexity of the lymphoma aberration landscape.
Collapse
|