1
|
Guesmi F, Tahri W, Mehrez A, Barkaoui T, Prasad S, Giuffrè AM, Landoulsi A. Colorectal carcinoma cell targeting aromatherapy with Teucrium ramosissimum essential oil to sensitize TRAIL/Apo2L-induced HCT-116 cell death. Int Immunopharmacol 2024; 136:112405. [PMID: 38850792 DOI: 10.1016/j.intimp.2024.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
This report drives insights for the investigation of the underlying mechanisms of antitumor effects of Teucrium ramosissimum (TrS) essential oil (EO) that elicits colon tumor protection via activation of cell death machinery. A study of the aerial part phytocomplex was performed by FTIR spectra and GC/MS. In vivo colon carcinogenesis induced by LPS was carried out using mouse model. HCT-116 cells were coincubated with TrS EO and TRAIL-resistant cancer cells, and then cell lysates were assessed using Western blotting technique for death and decoy receptor expression. TrS essential oil potentiates TRAIL-mediated apoptosis cell death of HCT-116 as detected by PARP cleavage and caspase activation. Further data suggest that TrS up-regulates DR 5/4 expression, and down-regulates DcRs expression. Additionally, TrS potentiates apoptosis in TRAIL-resistant tumor cells through induction of MAPK signalling components, including ERK, p38 kinase, JNK, and activation of CHOP, and SP1, involved in DR5 expression. Moreover, Teucrium EO phytoconstituents mediate HCT-116 cells apoptosis by evoking cell cycle arrest at the G1 and G2/M phase through diminishing the expression of cyclin D1 acting as a potent multitargeted factors of inhibition of JAK/STAT oncogenic signaling pathway. These results demonstrate that TRAIL-induced apoptosis enhancing effect of TrS mediated through proto-oncogene expression in HCT-116. TrS administered intragastrically is able to prevent tumor of colon by stopping carcinogenesis process and impede tumor cell growth in in vivo analysis promoted by LPS. On the whole, our results revealed that TrS is an effective antitcancer agent through the induction of transcription factor and kinases, either are needed to trigger Apo2L receptors.
Collapse
Affiliation(s)
- Fatma Guesmi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia; Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Wiem Tahri
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Amel Mehrez
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Taha Barkaoui
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Research and Development, Noble Pharma LLC, Menomonie, WI 54751, USA
| | - Angelo Maria Giuffrè
- Department AGRARIA, University of Studies "Mediterranea" of Reggio Calabria, Via dell'Università, 25 - 89124 Reggio Calabria, Italy.
| | - Ahmed Landoulsi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
2
|
Rashidi R, Roohbakhsh A, Mohtashami L, Mobasheri L, Kheradmand H, Amiri MS, Ghorbani A, Mousavi SH. Cytotoxic and apoptotic effects of Ferula gummosa Boiss: extract on human breast adenocarcinoma cell line. Mol Biol Rep 2024; 51:592. [PMID: 38683376 DOI: 10.1007/s11033-024-09364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Ferula gummosa Boiss. is a well-known and valuable medicinal plant in Iran. Research has shown that this plant has several pharmacological properties, including anti-bacterial, anti-cancer and etc. In the present study, we investigated the cytotoxic properties of F. gummosa Boiss. extract in MCF-7 breast adenocarcinoma cells. METHODS The cytotoxicity and pro-apoptotic properties of the extract were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test and propidium iodide (PI) stained cells, respectively. Apoptosis and necrosis were evaluated by annexin V-PI staining. The levels of reactive oxygen species (ROS),malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) was determined to evaluate oxidative stress. The cell migration and the gene expression were assessed by scratch assay and quantitative real-time polymerase chain reaction (q-RT-PCR), respectively. RESULTS The extract of F. gummosa decreased the viability and cell cycle progression of MCF-7 cells by inducing apoptosis and necrosis, increasing ROS and MDA levels, and decreasing GSH levels and SOD activity. It also lowered the cells' migration capability by enhancing p53 mRNA levels and reducing MMP-9 mRNA expression. CONCLUSION F. gummosa exhibited pro-apoptotic, anti-proliferative, and anti-metastatic effects on MCF-7 cells. It is therefore recommended that detailed future research be done on different parts of the plant or its secondary metabolites to find anti-cancer lead compounds.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Mohtashami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Mobasheri
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Kheradmand
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biology, Payame Noor University, Tehran, Iran.
| |
Collapse
|
3
|
Zareei S, Pourmand S, Eskandarzadeh M, Massahi S. In silico anti-alzheimer study of phytochemicals from Lamiaceae family through GSK3-β inhibition. Sci Rep 2024; 14:834. [PMID: 38191548 PMCID: PMC10774376 DOI: 10.1038/s41598-023-47069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024] Open
Abstract
Glycogen synthase kinase 3-beta (GSK3-β) is a serine-threonine protease expressed in the brain, and its hyperactivity is considered the underlying cause of Alzheimer's disease. This enzyme requires an ATP molecule in its N-terminal lobe to phosphorylate its substrates, with the most important substrate being the Tau protein. This study focuses on the inhibitory mechanism of four naturally occurring compounds-apigenin, luteolin, rosmarinic acid, and salvianolic acid-from the Laminaceae family against GSK3-β. The orientation of the ligands within the ATP-binding pocket of GSK3-β and their binding energy were determined through molecular docking. Additionally, molecular dynamics simulations was conducted to study the conformational changes induced by the ligands in the protein structure. The results showed that apigenin and salvianolic acid achieved deeper parts of the cavity compared to luteolin and rosmarinic acid and formed stable complexes with the enzyme. In the rosmarinic acid complex, the enzyme exhibited the most exposed conformation. On the other hand, luteolin binding caused a small closure of the opening, suggesting a potentially ATP-competitive role. Our results suggest these compounds as lead candidates for the design of GSK3-β inhibitors.
Collapse
Affiliation(s)
- Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Pourmand
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, PO Box: 51666-16471, Tabriz, Iran.
| | - Marzieh Eskandarzadeh
- Research Committee of Faculty of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Shokoufeh Massahi
- Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran.
| |
Collapse
|
4
|
Kart NNB, Günal B, Mutlu D, Doğan NM, Arslan Ş, Semiz G. Evaluating Antibiofilm, Cytotoxic and Apoptotic Activities of Scutellaria brevibracteata subsp. brevibracteata Essential Oil. Chem Biodivers 2023; 20:e202300878. [PMID: 37947368 DOI: 10.1002/cbdv.202300878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Essential oils have many important biological properties, including antibacterial and antibiofilm activities. These unique properties make, essential oils good alternatives to synthetic chemical drugs, which have many side effects. In this study, we aimed to determine the chemical composition and biological activity of the essential oil obtained from Scutellaria brevibracteata subsp. brevibracteata. Specifically, its antibiofilm activity against Pseudomonas aeruginosa PAO1 and Staphylococcus aureus ATCC 29213 biofilms using XTT assay. Cytotoxic and apoptotic properties of the essential oil were investigated in human lung cancer cells (A540 and H1299) using MTT assay, Annexin V-FITC and propidium iodide staining and q-PCR. Thirty-two different compounds were identified from the essential oil, of which elemol (20.42 %), γ-eudesmol (20.12 %) and β-eudesmol (14.85 %) were the main components. The essential oil was more effective against P. aeruginosa PAO1 biofilm (79 %) than S. aureus ATCC 29213 biofilm (27 %). The specific activity of the essential oil against P. aeruginosa biofilm may be related to its high terpene contents. In addition, the essential oil showed high cytotoxic activity towards A549 (IC50 9.09 μg/ml) and H1299 (IC50 55.04 μg/ml) cell lines, inducing apoptosis in these cancer cells. These results demonstrate the antibiofilm and anticancer activities of S. brevibracteata subsp. brevibracteata essential oil.
Collapse
Affiliation(s)
| | - Batıkan Günal
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Doğukan Mutlu
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Nazime Mercan Doğan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Şevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Gürkan Semiz
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
5
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Dawood H, Celik I, Ibrahim RS. Computational biology and in vitro studies for anticipating cancer-related molecular targets of sweet wormwood (Artemisia annua). BMC Complement Med Ther 2023; 23:312. [PMID: 37684586 PMCID: PMC10492370 DOI: 10.1186/s12906-023-04135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide. Recently, it was shown that many natural extracts have positive effects against cancer, compared with chemotherapy or recent hormonal treatments. A. annua is an annual medicinal herb used in the traditional Chinese medicine. It has also been shown to inhibit the proliferation of various cancer cell lines. METHODS Multi-level modes of action of A. annua constituents in cancer therapy were investigated using an integrated approach of network pharmacology, molecular docking, dynamic simulations and in-vitro cytotoxicity testing on both healthy and cancer cells. RESULTS Network pharmacology-based analysis showed that the hit Artemisia annua constituents related to cancer targets were 3-(2-methylpropanoyl)-4-cadinene-3,11-diol, artemisinin G, O-(2-propenal) coniferaldehyde, (2-glyceryl)-O-coniferaldehyde and arteamisinin III, whereas the main cancer allied targets were NFKB1, MAP2K1 and AR. Sixty-eight significant signaling KEGG pathways with p < 0.01 were recognized, the most enriched of which were prostate cancer, breast cancer, melanoma and pancreatic cancer. Thirty-five biological processes were mainly regulated by cancer, involving cellular response to mechanical stimulus, positive regulation of gene expression and transcription. Molecular docking analysis of the top hit compounds against the most enriched target proteins showed that 3-(2-methylpropanoyl)-4-cadinene-3,11-diol and O-(2-propenal) coniferaldehyde exhibited the most stabilized interactions. Molecular dynamics simulations were performed to explain the stability of these two compounds in their protein-ligand complexes. Finally, confirmation of the potential anticancer activity was attained by in-vitro cytotoxicity testing of the extract on human prostate (PC-3), breast (MDA-MB-231), pancreatic (PANC-1) and melanoma (A375) cancerous cell lines. CONCLUSION This study presents deeper insights into A. annua molecular mechanisms of action in cancer for the first time using an integrated approaches verifying the herb's value.
Collapse
Affiliation(s)
- Hend Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
7
|
Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int J Mol Sci 2022; 23:ijms232314787. [PMID: 36499134 PMCID: PMC9736547 DOI: 10.3390/ijms232314787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The kingdom of plants as a "green biofabric" of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.
Collapse
|
8
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
9
|
Mao JJ, Pillai GG, Andrade CJ, Ligibel JA, Basu P, Cohen L, Khan IA, Mustian KM, Puthiyedath R, Dhiman KS, Lao L, Ghelman R, Cáceres Guido P, Lopez G, Gallego-Perez DF, Salicrup LA. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA Cancer J Clin 2022; 72:144-164. [PMID: 34751943 DOI: 10.3322/caac.21706] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
The increase in cancer incidence and mortality is challenging current cancer care delivery globally, disproportionally affecting low- and middle-income countries (LMICs) when it comes to receiving evidence-based cancer prevention, treatment, and palliative and survivorship care. Patients in LMICs often rely on traditional, complementary, and integrative medicine (TCIM) that is more familiar, less costly, and widely available. However, spheres of influence and tensions between conventional medicine and TCIM can further disrupt efforts in evidence-based cancer care. Integrative oncology provides a framework to research and integrate safe, effective TCIM alongside conventional cancer treatment and can help bridge health care gaps in delivering evidence-informed, patient-centered care. This growing field uses lifestyle modifications, mind and body therapies (eg, acupuncture, massage, meditation, and yoga), and natural products to improve symptom management and quality of life among patients with cancer. On the basis of this review of the global challenges of cancer control and the current status of integrative oncology, the authors recommend: 1) educating and integrating TCIM providers into the cancer control workforce to promote risk reduction and culturally salient healthy life styles; 2) developing and testing TCIM interventions to address cancer symptoms or treatment-related adverse effects (eg, pain, insomnia, fatigue); and 3) disseminating and implementing evidence-based TCIM interventions as part of comprehensive palliative and survivorship care so patients from all cultures can live with or beyond cancer with respect, dignity, and vitality. With conventional medicine and TCIM united under a cohesive framework, integrative oncology may provide citizens of the world with access to safe, effective, evidence-informed, and culturally sensitive cancer care.
Collapse
Affiliation(s)
- Jun J Mao
- Bendheim Integrative Medicine Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geetha Gopalakrishna Pillai
- Traditional, Complementary and Integrative Medicine Unit, Service Delivery and Safety Department, World Health Organization, Geneva, Switzerland
| | | | - Jennifer A Ligibel
- Leonard P. Zakim Center for Integrative Therapies and Healthy Living, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Partha Basu
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Lorenzo Cohen
- Integrative Medicine Program, Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ikhlas A Khan
- National Center for Natural Products Research, University of Mississippi, Jackson, Mississippi
| | - Karen M Mustian
- Wilmot Cancer Institute, Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | | | | | - Lixing Lao
- Virginia University of Integrative Medicine, Fairfax, Virginia
| | - Ricardo Ghelman
- Brazilian Academic Consortium for Integrative Health, University of São Paulo, São Paulo, Brazil
| | - Paulo Cáceres Guido
- Pharmacokinetics and Research in Clinical Pharmacology and Integrative Medicine Group, Garrahan Pediatric Hospital, Buenos Aires, Argentina
- Traditional, Complementary, and Integrative Medicine Network of the Americas, São Paulo, Brazil
| | - Gabriel Lopez
- Integrative Medicine Program, Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel F Gallego-Perez
- Traditional, Complementary, and Integrative Medicine Network of the Americas, São Paulo, Brazil
- Boston University School of Public Health, Boston, Massachusetts
| | - Luis Alejandro Salicrup
- Center for Global Health and Office of Cancer Complementary and Alternative Medicine, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
10
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
11
|
Oalđe Pavlović M, Kolarević S, Đorđević J, Jovanović Marić J, Lunić T, Mandić M, Kračun Kolarević M, Živković J, Alimpić Aradski A, Marin PD, Šavikin K, Vuković-Gačić B, Božić Nedeljković B, Duletić-Laušević S. A Study of Phytochemistry, Genoprotective Activity, and Antitumor Effects of Extracts of the Selected Lamiaceae Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112306. [PMID: 34834669 PMCID: PMC8623784 DOI: 10.3390/plants10112306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 05/03/2023]
Abstract
This study was designed to evaluate the genoprotective, antigenotoxic, as well as antitumor potential of methanolic, ethanolic, and aqueous extracts of Melissa officinalis, Mentha × piperita, Ocimum basilicum, Rosmarinus officinalis, Salvia officinalis, and Satureja montana (Lamiaceae), in different model systems. The polyphenols in these extracts were quantified both spectrophotometrically and using HPLC-DAD technique, while DPPH assay was used to assess the antioxidant activity. The genoprotective potential was tested on pUC19 Escherichia coli XL1-blue, and the antigenotoxicity on Salmonella typhimurium TA1535/pSK1002 and human lung fibroblasts, while the antitumor activity was assessed on colorectal cancer cells. Rosmarinic acid, quercetin, rutin, and luteolin-7-O-glucoside were among the identified compounds. Methanolic extracts had the best DPPH-scavenging and SOS-inducing activities, while ethanolic extracts exhibited the highest antigenotoxicity. Additionally, all extracts exhibited genoprotective potential on plasmid DNA. The antitumor effect was mediated by modulation of reactive oxygen species (ROS), nitric oxide (NO) production, and exhibition of genotoxic effects on tumor cells, especially with O. basilicum ethanolic extract. Generally, the investigated extracts were able to provide antioxidant protection for the acellular, prokaryotic, and normal human DNA, while also modulating the production of ROS and NO in tumor cells, leading to genotoxicity toward these cells and their decrease in proliferation.
Collapse
Affiliation(s)
- Mariana Oalđe Pavlović
- Department of Plant Morphology and Systematics, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (A.A.A.); (P.D.M.); (S.D.-L.)
- Correspondence: ; Tel.: +381-11-3244-498
| | - Stoimir Kolarević
- Centre for Genotoxicology and Ecogenotoxicology, Department of Microbiology, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (S.K.); (J.Đ.); (J.J.M.); (B.V.-G.)
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11070 Belgrade, Serbia;
| | - Jelena Đorđević
- Centre for Genotoxicology and Ecogenotoxicology, Department of Microbiology, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (S.K.); (J.Đ.); (J.J.M.); (B.V.-G.)
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11070 Belgrade, Serbia
| | - Jovana Jovanović Marić
- Centre for Genotoxicology and Ecogenotoxicology, Department of Microbiology, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (S.K.); (J.Đ.); (J.J.M.); (B.V.-G.)
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11070 Belgrade, Serbia;
| | - Tanja Lunić
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (T.L.); (M.M.); (B.B.N.)
| | - Marija Mandić
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (T.L.); (M.M.); (B.B.N.)
| | - Margareta Kračun Kolarević
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11070 Belgrade, Serbia;
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1,11070 Belgrade, Serbia; (J.Ž.); (K.Š.)
| | - Ana Alimpić Aradski
- Department of Plant Morphology and Systematics, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (A.A.A.); (P.D.M.); (S.D.-L.)
| | - Petar D. Marin
- Department of Plant Morphology and Systematics, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (A.A.A.); (P.D.M.); (S.D.-L.)
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1,11070 Belgrade, Serbia; (J.Ž.); (K.Š.)
| | - Branka Vuković-Gačić
- Centre for Genotoxicology and Ecogenotoxicology, Department of Microbiology, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (S.K.); (J.Đ.); (J.J.M.); (B.V.-G.)
| | - Biljana Božić Nedeljković
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (T.L.); (M.M.); (B.B.N.)
| | - Sonja Duletić-Laušević
- Department of Plant Morphology and Systematics, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (A.A.A.); (P.D.M.); (S.D.-L.)
| |
Collapse
|
12
|
Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lamiaceae plants are a widespread family of herbaceous plants with around 245 plant genera and nearly 22,576 species distributed in the world. Some of the most representative and widely studied Lamiaceae plants belong to the Ocimum, Origanum, Salvia, and Thymus genera. These plants are a rich source of bioactive molecules such as terpenes, flavonoids, and phenolic acids. In this sense, there is a subgroup of flavonoids classified as flavones. Flavones have antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic potential; thus, efficient extraction techniques from their original plant matrixes have been developed. Currently, conventional extraction methods involving organic solvents are no longer recommended due to their environmental consequences, and new environmentally friendly techniques have been developed. Moreover, once extracted, the bioactivity of flavones is highly linked to their bioavailability, which is often neglected. This review aims to comprehensively gather recent information (2011–2021) regarding extraction techniques and their important relationship with the bioavailability of flavones from Lamiaceae plants including Salvia, Ocimum, Thymus, and Origanum.
Collapse
|
13
|
Zengin G, Mahomoodally MF, Aktumsek A, Jekő J, Cziáky Z, Rodrigues MJ, Custodio L, Polat R, Cakilcioglu U, Ayna A, Gallo M, Montesano D, Picot-Allain C. Chemical Profiling and Biological Evaluation of Nepeta baytopii Extracts and Essential Oil: An Endemic Plant from Turkey. PLANTS 2021; 10:plants10061176. [PMID: 34207852 PMCID: PMC8228258 DOI: 10.3390/plants10061176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
Nepeta baytopii is a poorly studied, endemic Nepeta species (Lamiaceae) of Turkey. For the first time, the biological activities (antioxidant, enzyme inhibition, and cytotoxicity properties) of the hexane, ethyl acetate, methanol, water/methanol, and water extracts and essential oil prepared from N. baytopii aerial parts were assessed. Hydro-methanol (41.25 mg gallic acid equivalent (GAE)/g) and water extracts (50.30 mg GAE/g), respectively showed the highest radical scavenging (94.40 and 129.22 mg Trolox equivalent (TE)/g, for 2,2-diphenyl-1-picrylhydrazyl radical and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid radical scavenging assays) and reducing (229.37 and 129.55 mg TE/g, for ferric-reducing antioxidant power and cupric-reducing antioxidant capacity assays) capacities in vitro. An interestingly high inhibition was observed for ethyl acetate extract against butyrylcholinesterase (10.85 mg galantamine equivalent/g). The methanol extract showed high cytotoxicity (31.7%) against HepG2 cells. Caryophyllene oxide was identified in high concentrations in the essential oil (39.3%). Luteolin and apigenin and their derivatives were identified from the methanol and water extracts. The results obtained from this study highlighted that the abundance of highly bioactive compounds from Nepeta baytopii ensures the multiple biological activities of the tested extracts, and this suggests a potential use in the pharmaceutical and nutraceutical fields, and therefore should be investigated further.
Collapse
Affiliation(s)
- Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya 42130, Turkey; (G.Z.); (A.A.)
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (M.F.M.); (C.P.-A.)
| | - Abdurrahman Aktumsek
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya 42130, Turkey; (G.Z.); (A.A.)
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4405 Nyíregyháza, Hungary; (J.J.); (Z.C.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4405 Nyíregyháza, Hungary; (J.J.); (Z.C.)
| | - Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (M.J.R.); (L.C.)
| | - Luisa Custodio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (M.J.R.); (L.C.)
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Bingöl 12000, Turkey;
| | - Ugur Cakilcioglu
- Department of Botany, Pertek Sakine Genç Vocational School, Munzur University, Tunceli 62000, Turkey;
| | - Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, Bingöl 12000, Turkey;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131 Naples, Italy
- Correspondence: (M.G.); (D.M.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (M.G.); (D.M.)
| | - Carene Picot-Allain
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (M.F.M.); (C.P.-A.)
| |
Collapse
|
14
|
Antioxidant Properties of Plant-Derived Phenolic Compounds and Their Effect on Skin Fibroblast Cells. Antioxidants (Basel) 2021; 10:antiox10050726. [PMID: 34063059 PMCID: PMC8147979 DOI: 10.3390/antiox10050726] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plants are rich sources of a diverse range of chemicals, many of which have significant metabolic activity. One large group of secondary compounds are the phenolics, which act as inter alia potent reactive oxygen scavengers in cells, including fibroblasts. These common dermis residue cells play a crucial role in the production of extracellular matrix components, such as collagen, and maintaining the integrity of connective tissue. Chronic wounds or skin exposure to UV-irradiation disrupt fibroblast function by the generation of reactive oxygen species, which may damage cell components and modify various signaling pathways. The resulting imbalance may be reversed by the antioxidant activity of plant-derived phenolic compounds. This paper reviews the current state of knowledge on the impact of phenolics on fibroblast functionality under oxidative stress conditions. It examines a range of compounds in extracts from various species, as well as single specific plant-derived compounds. Phenolics are a good candidate for eliminating the causes of skin damage including wounds and aging and acting as skin care agents.
Collapse
|
15
|
Guerrini A, Sacchetti G, Echeverria Guevara MP, Paganetto G, Grandini A, Maresca I, Menghini L, Di Martino L, Marengo A, Tacchini M. Wild Italian Hyssopus officinalis subsp. aristatus (Godr.) Nyman: From Morphological and Phytochemical Evidences to Biological Activities. PLANTS 2021; 10:plants10040631. [PMID: 33810509 PMCID: PMC8065824 DOI: 10.3390/plants10040631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022]
Abstract
Three specimens of H. officinalis subsp. aristatus were collected in three areas of the Abruzzo region (Italy) and subjected to macroscopic and microscopic observation to support their botanical identification. The essential oils (EOs) obtained from the aerial parts of the samples were characterized with the object to define their phytochemical and pharmaceutical biology profile. They highlight three different chemotypes, including one never seen in previous literature (CIV17-EO, distilled from sample harvested in 2017 at Civitaretenga), that showed a fingerprinting with the predominance of (-)-limonen-10-yl-acetate (67.9%). In 2017 European Food Safety Authority (EFSA) reported the genotoxicity of similar compounds, therefore, to dismiss any safety concern for the CIV17-EO use as flavouring substance, the Ames test was performed with no evidence of mutagenic activity. Safety of use coupled with chemical characterization of this new chemotype set the stage for a better standardization of H. officinalis EOs. The ethanolic extracts, on the other hand, with qualitatively similar chemical profiles in which caftaric, chlorogenic and rosmarinic acid were the main molecules, showed interesting antioxidant activity and a slight cytotoxicity towards the A549 cell line that could indicate a starting point for the evaluation of an additional preventive tool for maintaining health status.
Collapse
Affiliation(s)
- Alessandra Guerrini
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini, 3, 44123 Ferrara, Italy; (A.G.); (G.S.); (G.P.); (A.G.); (I.M.)
| | - Gianni Sacchetti
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini, 3, 44123 Ferrara, Italy; (A.G.); (G.S.); (G.P.); (A.G.); (I.M.)
| | | | - Guglielmo Paganetto
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini, 3, 44123 Ferrara, Italy; (A.G.); (G.S.); (G.P.); (A.G.); (I.M.)
| | - Alessandro Grandini
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini, 3, 44123 Ferrara, Italy; (A.G.); (G.S.); (G.P.); (A.G.); (I.M.)
| | - Immacolata Maresca
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini, 3, 44123 Ferrara, Italy; (A.G.); (G.S.); (G.P.); (A.G.); (I.M.)
| | - Luigi Menghini
- Department of Pharmacy, Botanical Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Luciano Di Martino
- Ufficio Monitoraggio e Conservazione Biodiversità Vegetale, Ente Parco Nazionale della Majella, Via Badia, 28 loc. Badia Morronese, 67039 Sulmona (AQ), Italy;
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy;
| | - Massimo Tacchini
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini, 3, 44123 Ferrara, Italy; (A.G.); (G.S.); (G.P.); (A.G.); (I.M.)
- Correspondence: ; Tel.: +39-3284517778
| |
Collapse
|
16
|
The effect of Sclareol on the expression of MDR-1 gene and Glycoprotein-P Level in MKN-45 human gastric cancer cells. JOURNAL OF RESEARCH IN APPLIED AND BASIC MEDICAL SCIENCES 2021. [DOI: 10.52547/rabms.7.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|